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Abstract: Learning control for robotic manipulators has been developed over the past decade and
to the best of the authors’ knowledge, it is still in its infant development stage; the authors believe
that it will become one of the most promising directions in the control area in robotic manipulators.
Learning control in robotic manipulators is mainly used to address the issue that the friction at the
joints of robotic mechanisms and other uncertainties may exist in the dynamic models, which are very
complex and may even be impossible to model mathematically. In this paper, the authors review and
discuss the learning control in robotic manipulators and some issues in learning control for robotic
manipulators are also illustrated. This review is able to give a general guideline for future research in
learning control for robotic manipulators.
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1. Introduction

Robotic manipulators have been used in many industries. However, most of the control systems that
are used nowadays include traditional PID (proportional–integral–derivative) control, computed torque
control, and other nonlinear model-based controls. In academia, learning control in robotic manipulators
has been intensively studied in the past years. However, learning control is rarely used in industries
nowadays due to its control structure complexity, expenses, and other reasons [1,2].

Learning control in robotic manipulators is mainly used to address the issue that the friction
at the joints of robotic mechanisms, to correct, for example, high frequency vibrations caused by
elasticity in the joints, as well as other uncertainties, may exist in the dynamic models, which are
very complex and may even be impossible to model mathematically. Friction at joints is nonlinearly
dependent on joint velocity and sometimes also dependent on joint position [3]. The main idea behind
the leaning control approach is to develop a control approach so that it is not necessary to model
those uncertainties mathematically, but to learn them. Furthermore, it is noticed that in most of
the industrial robots, they have the characteristics of the reference trajectory being repeated over
a specified operation. The motivation for the development of learning control in robotics is that in
some cases where pre-planning is not impossible, adaptive control or other other types are not good
enough to handle this kind of situation, rather, learning control can then be used in this scenario. Also,
one of the characteristics in learning controls is that it is permitted to fail as compared to, for example,
adaptive control, where it is not permitted to fail. Learning control will become prevalent in robotics
compared to other methods since in the future, robots will need to learn by themselves rather than
through pre-planning by users every time. Since learning control in robotic manipulators has been
investigated in the last decade, the authors believe that it is necessary to give a review on the learning
control for robotic manipulators in order to provide a general summary and guideline for the upcoming
research in the learning control of robotic manipulators.

One of the commonly used approaches and ideologies in designing a learning control system
for robotic manipulators is to make full use of available information on the robotic dynamic models
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and then learn what cannot be modelled (e.g., friction). Put in another way, one usually partitions the
dynamic of the robotic manipulators into two parts: modelled and un-modelled. We use the knowledge
and information from the modelled system to learn and update the can-not-be-modelled system.

Learning control for robotic manipulators is quickly developed after the development of the
adaptive control of robotic manipulators. The most significant advantage of using the learning control
in robotic manipulators is that it is not necessary to model the complex models and uncertainties
(e.g., friction at joints) mathematically. However, there is a limitation in using the learning control in
robotic manipulators, which is that the robotic manipulators need to have repeated motions so that
those complex models can be learned by the learning control system; luckily, the fact of the matter is
that most robotic manipulators nowadays used in the manufacturing plants have a repetitive motion
characteristic. Although the authors believe that the most important contributions have been cited and
included, it is possible that the authors here are unware of some works.

The organization of this paper is as follows: Section 2 briefly presents general learning control
and its background; learning control in robotic manipulators is presented and reviewed in Section 3;
finally, the conclusion is given in Section 4.

2. Learning Control

In traditional control systems, there is a feedback loop which is used to compare the output with
the desired value and create a difference, which is then given to the controller. Normally, we can
adjust control parameters in order to achieve a better control performance. Keep in mind that the
above mentioned loop is only produced on the condition that we know every parameter in the robotic
manipulator system dynamics. However, when parameters in the robotic system change with respect to
time and are not predictable, the traditional control system as mentioned above is not quite as effective
anymore. Under this situation, we can employ adaptive control. To extend it further, if there are
unmodelled dynamics (e.g., friction at joints are hard to model or sometimes even impossible to
model), one can then resort to the learning control scheme. The learning control scheme will then
be useful to compensate for the remaining unmodelled effects after one performs the parameter
identification. For example, after the adaptive control scheme conducts the identification of unknown
parameters in a model, the learning algorithm will be used to further minimize the trajectory-following
errors. A basic learning control concept is shown in Figure 1.
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3. Learning Control in Robotic Manipulators

The early development of learning control for robotic manipulators can be traced back to [4],
where the author proposed the method of trial and correction of the reference function to address the
problem of the tremendous computation effort of the computed torques. Through repeating a trial and
correction process, the reference function that is able to realize the ideal pattern of the trajectory can
therefore be determined. Details can be referred to [4]. The stability of the proposed control algorithm
was also verified. Following this, several typical learning control schemes were proposed. For example,
following a similar approach to that in [4], a learning strategy for robotic mechanisms is developed
in [5] for the case of repeated trials of a trajectory. Through adequate learning, random trajectories
that are within the velocity and torque limits of the robotic arm can therefore be carried out with
bounded errors. In [6,7], a learning control principle is put forward for linear and nonlinear dynamical
systems based on a PID-type iterative process and is applied to a trajectory tracking control for robotic
mechanisms. The convergence of the proposed control system was also proved. Following the above
studies, the learning control for robotic manipulators has been developed intensively.

3.1. Iterative Learning Control and Its Variants

In [8,9], a notion named the “betterment process” is put forward in order to offer a learning
ability of automatic-construction of a better control input to MIMO robotic systems. The betterment
process has an iteration law that automatically produces an actuator input better than the previous one
through employing previous data under the condition that the desired output response is provided.
This process has an iterative learning system so that the current input (to joint actuators) is formed of
the previous input and an error term that exhibits the difference between the previous motion path
and the specified ideal motion path. In [10], direct iterative learning control is developed in a way
that a uniform convergence of error is guaranteed. The conditions on the convergence of the control
system are determined. The proposed control system was applied to the trajectory control of a robotic
manipulator and obtained decent outcomes. The proposed control system in [10] set a foundation of
servo theory.

In [11], the author developed a kind of PI-based learning control algorithm that does not utilize
the velocity signals derivative geared to the robotic mechanisms motion control. The author illustrates
the robustness of the learning control w.r.t. initialization errors. It is found that by incorporating
a forgetting factor to the iterative learning principle, a robustness performance where trajectories
move toward a desired neighborhood and stay in it can be guaranteed. In [12], the authors illustrate
a robust adaptive learning control technique for robotic mechanisms tracking problems in task space.
The learning control can reach zero tracking error regardless of external disturbances and modelling
uncertainties. The control algorithm is also convergent. Since the algorithm is designed in the task
space, inverse kinematics are not required.

In [13], the authors presented an adaptive iterative learning control for a two-DOF planar robotic
mechanism with uncertainties and revolute joints in Cartesian space for path tracing. The proposed
controller has a PD system and a learning feedforward term, and it can be used to anticipate the ideal
actuator torque. Based on the Lyapunov approach, the developed control system is proved as stable.
In [14], the issue in the process of developing an iterative learning control system for the trajectory
tracking of robotic mechanisms that have external disturbances with conducting repetitive works and
with no knowledge of the velocity measurement is demonstrated. To handle this issue, the authors put
forward a velocity observer that contains an iterative form which is used to recreate the velocity signal.
By assuming that the disturbances are repetitive and employing a Lyapunov-like positive definite
sequence, the designed control is shown to be asymptotically stable and the observation error is also
shown to be asymptotically stable.

In [15], a precision tracking control approach for robotic mechanisms is illustrated. To address the
problem of the nonlinear and coupled dynamics in robotic mechanisms and the transmission error,
the authors employed a nonparametric statistical learning technique that can achieve the data-driven
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iterative compensation of torque and motor reference. Transmission error is managed through separate
learning modules. The developed technique is able to use both a timed trajectory measurement and
untimed contour inspection. In [16], by incorporating model-based with iterative learning control,
a technique is developed for the purpose of having high-quality direct-drive robotic systems motion
control in repetitive works. The model-based segment is mainly used for compensating for the
nonlinear terms and coupled dynamics of the robotic system. The authors employ an approach,
which is on the basis of a batch-adaptive control, to approximate the model parameters. The remaining
dynamics of the robotic system after the compensation from the model-based segment are determined
through employing the frequency response function measurements. The developed learning control is
applied to a spatial serial direct-drive robot mechanism, and the experimental results indicate that
a substantial improvement of the motion control performance in every single joint has been achieved.

In [17], an optimization-based iterative learning control technique is briefly presented for arbitrary
nonlinear robotic mechanisms with n-DOF in a closed-loop configuration. The designed learning
technique has two steps which are executed at each iteration. Model correction is first solved
through dealing with the torque and joint angular position measurements. The resulting correction is
subsequently employed in the model inversion step for the purpose of computing a reference update
via solving an optimization problem. The designed technique is tested in a 6-DOF robot mechanism.
In [18], the author illustrates an adaptive iterative learning control scheme that is formed on the
basis of an estimation process by employing a Kalman filter and the optimization of a quadratic
criterion. It is observed that through including the measurement disturbance, the resulting iterative
learning control filters are iteration-varying. After experimental studies on an ABB industrial robotic
manipulator, it is observed that an improvement in the trajectory tracing on the motor-side of the
robotic manipulator is achieved and also the designed adaptive and model-based iterative learning
control scheme provides better results than that of a conventional iterative learning control scheme
with constant gains.

In [19], based on the studies in [20,21], the authors illustrate how the adaptive learning control
system developed in [22] can be further used in robot mechanisms that are driven by non-salient-pole
permanent magnet synchronous motors. Unstructured uncertain dynamics of the robotic system
that has rotational joints and uncertainties in stator resistances of the synchronous motors are
considered. In [23], the authors designed an adaptive iterative learning control technique for uncertain
robot mechanisms. It differs from other learning techniques in that the uncertain parameters are
approximated in the time domain, while repetitive disturbances are determined and compensated
for thereafter in the iteration domain. The developed adaptive iterative learning control technique is
a combination of traditional adaptive control and iterative learning control. The designed learning
control scheme is tested by a planar 2-DOF (degrees of freedom) serial mechanism.

In [24], an output-based adaptive iterative learning control technique for a 2-DOF robot mechanism
is developed. Through employing the output-based adaptive iterative learning control, the tracking
performance can therefore be improved iteratively with smaller values of observer-controller gains based
on the condition that the system traces the same task iteratively. The output-based adaptive iterative
learning control technique joins the PD control system with an adaptive segment which can update
uncertain velocity signal parameters iteratively via the linear observer output. Based on the Lyapunov
online switching system, tracking errors convergence is guaranteed. In [25], an iterative learning control
that is formed on the basis of the passivity for 2-DOF robotic mechanisms with antagonistic bi-articular
muscles is developed. The iterative learning control scheme is designed by resorting to the Arimoto-type
iterative learning control presented in [26]. The closed-loop system’s convergence is analyzed on the basis
of passivity. The designed controller is robust in that the parameters of the accurate models are not needed
for the input torque. Details can be referred to in [25].

In [27], the authors simply applied the iterative learning control to an underwater robotic
system to address the issue that the parameter approximation of hydrodynamic coefficients of the
underwater robotic system is unsuited to establish the feedforward control inputs due to the difficulty
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in modeling and approximating the hydrodynamic terms. The advantages of the iterative learning
control are illustrated by the experimental results. In [28], the authors employed the model-free
feedback-assisted iterative learning control scheme for the purpose of the path tracking of a 6-DOF
mechanism. The iterative learning control scheme is used to produce the feedforward control signal
and the direct feedback control is used to produce the feedback control signal. The developed control
scheme can conduct accurate trajectory tracking via iterative learning. Due to the scheme being
model-free, the singularity issue is avoided, which usually arises in the traditional Jacobean-based
visual servo system. Through experimental studies, it is observed that the designed control system is
robust to image noise.

In [29], a new indirect iterative learning control scheme is developed for a robot mechanism that
conducts repeat operations and has non-Gaussian disturbances. A performance index regarding the
entropy of the tracking error and the related optimization technique are employed for estimating
the control system local parameters. The authors compared a developed learning control scheme
to a traditional iterative learning controller, and it was proved that the developed learning control
scheme is stable. The developed learning control technique is tested in the robot trajectory tracking.
In [30], the authors employed the model-based iterative learning control technique for the purpose
of improving the tracking accuracy for an industrial serial robotic manipulator that has elasticity.
In order to minimize the predicted tracking error in the next iteration, the iterative learning control
scheme refreshes the robotic manipulator’s reference trajectory iteratively. The tracking error is
anticipated through a model of the closed-loop dynamics of the robotic manipulator, and the model
contains the variation of servo resonance frequency and the first resonance frequency along the
trajectory. Through experiments, it is found that the tracking error of the robotic manipulator
is reduced.

In [31], an iterative learning control technique that is composed of feedforward learning controls
and hybrid feedback PD-PID (P refers to proportional, I refers to integral, D refers to derivative)
controls is proposed for a two-link flexible robotic mechanism. The PID is used to restrain linkage
vibrations via the end-points acceleration feedback and the PD (P refers to proportional, D refers to
derivative) is used to guarantee the hubs to trace the desired trajectory via the hub angle and joint
velocity feedback. By incorporating the iterative learning control scheme to the feedforward path to
anticipate the desired torque, the input tracking and vibration suppression of the robotic system can be
successfully accomplished. The proposed learning control technique is demonstrated as robust through
the payload variation effect studies. In [32], the authors developed backstepping adaptive iterative
learning control through integrating the merits of adaptive iterative learning control, the backstepping
design approach, and the fuzzy neural network function estimation attribute for a robotic mechanism
that conducts repetitive works. The purpose of employing the fuzzy neural network as a fuzzy neural
learning segment is to compensate for the unknown certainty equivalent control system, and the
purpose of employing the iterative learning control is to compensate for the uncertainties. Based on
the Lyapunov technique, it is proved that the tracking error converges to zero.

In [33], a hybrid iterative learning control technique geared to restrain vibrations and the track input
for a flexible robotic mechanism is designed based on a collocated PD with iterative learning control.
The collocated PD control that uses the hub-angle and hub-velocity feedback is used to manipulate the
mechanism motions. By incorporating the iterative learning control with acceleration feedback and the
genetic algorithm, which is used to optimize the learning parameters, the vibration of the mechanism is
suppressed. The designed learning control technique is used in a 1-DOF flexible robotic mechanism with
and without loads. In [34], the author developed adaptive iterative learning control on the basis of the
mathematical model and identified a model for a 1-DOF flexible robotic mechanism to address the issue
that the flexible mechanism vibrates with a low frequency. Since the flexible mechanism is nonlinear and
time-varying, in order to satisfy the control system design requests, an adaptive nonlinear autoregressive
with exogenous input model is determined through employing the input/output experimental data.
It is found that adaptive iterative learning control developed by employing the identified adaptive
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nonlinear autoregressive with exogenous input model outperforms the adaptive iterative learning control
developed by employing the mathematical model.

In [35], the authors designed a new type of feedback controller for robot mechanisms with random
communication delays through incorporating the optimal P-type iterative learning controller concept
and a minimum tracking error entropy control scheme. In the process of controller development,
it is treated as an optimization problem that has a performance index and constraint. More precisely,
the performance index indicates the concept of the closed-loop tracking error minimum entropy
control. In [36], a wavelet series-based learning control technique is designed to address the tracking
controls of a robotic mechanism. Wavelet series estimation is employed for estimating the ideal
and real path of the robotic mechanism and converting these values into a number of wavelet
coefficients. A learning control scheme is developed in the wavelet domain which pushes the real
output technique’s wavelet coefficients to the corresponding wavelet coefficients of the ideal path,
and in this way, the tracking of the robotic mechanism can be accomplished. Through experiments,
it is observed that the learning control scheme designed in the wavelet domain can effectively cope
with the uncertainties in a robotic mechanism.

In [37], an adaptive iterative learning control method is designed to cope with the uncertain parameters
and other disturbances for a rigid robotic mechanism for the purpose of tracing trajectories. The designed
control system is based on incorporating the PD control and an iterative segment. The control system is
proved to be stable by resorting to the Lyapunov method. Later in [38], the proposed adaptive iterative
learning control is tested on a five degrees-of-freedom serial mechanism. However, an issue is found that
the learning process needs to be stopped after some iterations in order to not make the noise effect increase.
In [39], the issue of developing iterative learning control with a forgetting factor for path tracing for robotic
mechanisms that have external disturbances and conducting repetitive works without needing to have the
precise knowledge of the robotic systems structure model or robotic system parameters is investigated.
The merit of the designed control scheme is that it not only applies to robotic mechanisms that have model
uncertainties, but also applies to entirely unknown robotic systems. The stability of the designed learning
control is proved by resorting to the Lyapunov method. Details can be referred to in [39].

In [40], iterative learning control for a planar 2-DOF serial mechanism with revolute joints is put
forward on the basis of the finite dimensional input subspace. The designed control system can achieve
tracking purpose, even without knowing the error signals’ time derivatives or mechanism’s dynamics
exact information. However, it is noticed that the learning process has to be stopped in the experimental
study after certain trails due to gradual gathering of the motor noises and the starting resetting errors.
In [41], a nonlinear iterative learning control for MIMO robotic mechanisms is developed. An algorithm
that can guarantee the errors of trajectory-tracing to be confined by a specified error norm is designed.
The control system is tested by a PUMA 6-DOF serial mechanism with revolute joints. In [42], a hybrid
iterative learning control system for a 4-DOF robot mechanism that is used in CNC machine tools is
developed. The control system consists of a nonlinear saturated PID with desired gravity compensation
and PD-based iterative learning control. The purpose of the PID system is to maintain local stability
of the robot mechanism, and the purpose of the PD-based iterative learning control system is to
provide robustness to parameter variations and dynamic uncertainties. The system is proved stable
by employing the Lyapunov approach. In [43], an iterative learning control system is designed on
the basis of PD control and a switching type control system for the purpose of the repetitive control
of robotic mechanisms with only revolute joints. The proposed control system is developed with no
a priori information of the dynamic parameters. However, the control structure is quite complex and
also the control parameters contain a sign function. In [44], the authors investigate nonlinear iterative
learning control with sampled-data feedback for robotic mechanisms. This control system can be used
in a robotic mechanism that has more than 6-DOF due to the existence of a sampled-data feedback
system. The stability of the control system is also studied.
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It is noted that in classical iterative learning control, some postulates are required, although recently,
some iterative learning control algorithms are reported so that these postulates can be relaxed. Details can
be referred to in [45].

3.2. Repetitive Learning Control and Its Variants

In [46], a repetitive control method is developed, and in it, the manipulated variables are able
to follow the cyclic reference instructions through pinpointing the generator for cyclic signals in the
closed-loop. The error convergence condition for linear systems is determined based on the small
gain theorem and a synthesized algorithm based on the Kalman Filter is illustrated. The designed
control system is proved as stable by employing the passivity theorem, and finally, the proposed
control system is tested on the trajectory control for a simple three-linkage robotic manipulator. In [47],
a modified version of the learning control system in [8,9] is designed through modifying the input
based on the position error to address the problem that the measured signals of the velocity and
acceleration variables can be easily subject to a noise effect. It is observed that through employing
the modified learning control strategy here, the robot motion is able to approach the desired one and
experiments also demonstrated that the robotic mechanism is able to polish the curved surface of
an object. The modified learning approach can be applied to the force control of robotic mechanisms.

In [48], a discrete learning control algorithm which uses the error of state variables of the system
that comprises the position and velocity error for manipulating robotic manipulators is designed and
illustrated. The condition for position convergence is then determined, and the proposed control system
is tested by a PUMA-560 robot and the end results demonstrate the effectiveness of the designed control
system. In [49], an algorithm utilizes path following errors for improving feedforward commands
to a robot. The strategy in robot learning is formed on the basis of explicit modeling of the robotic
system and employs an inverse of the robotic system model as one learning operator that handles the
trajectory errors. Through experimental studies, it is observed that an accurate robotic system model
betters the path learning performance, and the learning algorithm does not make a dent on reducing
the need for an accurate model in robotic system control.

In [50], an adaptive learning principle that is used for the purpose of identification and controlling
the robot manipulators is proposed. The function estimate is produced through combining the product
of a predefined kernel with an influence function approximate. The learning principle updates the
function approximate through updating the influence function approximate. The goal is to determine
and compensate for a nonlinear disturbance function. The designed control system is proved as stable
under certain assumptions. In [51], task level learning (i.e., a technique to learn via practice) is briefly
discussed. The author programs a robotic system to juggle a ball through hitting it up with a paddle.
The robotic system employs a binary vision to trace the ball. The task level learning has a model of
performance errors at the task level in the process of practice, and employs this model to process the
task-level orders. Its study sets a foundation for memory-based approaches for task level learning.

In [52], the authors demonstrate the exponential convergence for a group of learning control
algorithms of robotic mechanisms. The learning technique identifies the robotic inverse dynamic
function through making the robotic system perform tasks over and over again. Based on the functional
persistence of excitation and also functional uniform complete observability, it is observed that under
the situation where a training task is chosen for the robotic system that is persistently exciting,
the learning controls are globally and exponentially stable. In [53,54], iterative learning impedance
control is presented for robotic mechanisms. Through employing the developed learning control
technique, the learning performance can therefore be specified by a reference model and reference
trajectory. The learning control system can learn and then make the closed-loop dynamics to follow the
target impedance response when one repeats the actions. The developed learning impedance control
is tested by a SCARA (Selective Compliance Assembly Robot Arm) robot. In [55], adaptive learning
control is developed through introducing the learning control to an adaptive controller for the purpose
of coping with periodic uncertainties with known periods for a 2-DOF planar robot mechanism with
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time-varying uncertainties. Based on the Lyapunov technique, the proposed control system illustrated
that the tracking errors are able to be converged successfully.

In [56], the authors illustrate a frequency-domain technique to develop learning control systems in
order to reach the desired repetitive action in a robotic system. The technique employs two independent
filters for the purpose of generating a quick improvement in a specified bandwidth and at the same
time refraining potential destabilizing dynamic effects that could interfere with learning convergence.
The learning strategy is added in parallel to a feedback control system for the purpose of improving
the performance. The designed learning control system is tested for tracing repetitive trajectories of
robotic mechanisms, and through experiments, it is observed that the developed learning technique is
able to avoid the unstable occurrence. In [57], the authors propose a robust learning control method for
robotic mechanisms through synthesizing learning and robust controls. The nonlinear learning control
technique is applied to the structured system uncertainties and the variable structure control technique
(i.e., robust control technique) is applied to the unstructured uncertainties in order to guarantee that
the system is able to maintain a globally and asymptotically stable nature. Through combining the
learning and robust controls, the designed controller is able to achieve a certain performance to which
it is hard to achieve if one only employs learning control or only employs variable structure control.

In [58], a learning control scheme for robotic mechanisms is proposed by assuming that the
desired path trajectory is cyclic. The dynamic model of the robotic mechanism is treated as
uncertain and having additive disturbances. In the process of developing the learning control system,
the robust control segment presented in [59] is jointed with a nonlinear learning control segment for
the purpose of compensating for the uncertain dynamics of the robotic system. The direct Lyapunov
method is employed during the learning control system development to ensure that the tracking error
approach is zero. In [60], the authors utilize the (m, m)-Padé approximants in implementing repetitive
learning control for asymptotically tracing the joint position of robotic mechanisms that have uncertain
dynamics and cyclic position reference signals. The control design technique produces linear learning
control systems which generalizes the PID to the case of periodic references to the point where the
long-term instability problems in traditional repetitive learning control schemes because of disturbance
noises can be avoided. In [20], the authors investigate the tracking control issue for induction motor
servo drives with uncertainties. Through assuming that the reference profile of the rotor angle is
periodic of a known period, a robust adaptive learning control scheme that can be adaptive w.r.t. the
uncertain rotor resistance is developed to learn the periodic disturbance signal through determining
the truncated approximation Fourier coefficients.

In [22], the issue of developing an output error feedback-based adaptive learning control scheme
for robotic mechanisms that have revolute joints and also possess uncertain dynamics is studied.
The reference signals that are tracked are treated as smooth and periodic with a known period.
Based on the Fourier series expansion, an output error feedback learning control scheme is proposed
that can learn the input reference signals through determining the Fourier coefficients. In [61],
an adaptive switching learning PD control technique is put forward for path tracing for robotic
mechanisms in a repeat working mode. Since the designed learning control scheme is formed on the
basis of combining the feedback PD control scheme and the feedforward learning control scheme with
the input torque profile from the preceding iteration, the new developed learning control scheme is
able to offer an improved tracing performance when the iteration increases. The developed learning
control is proved as stable by employing the Lyapunov approach.

In [62], a repetitive learning control for robotic mechanisms is illustrated. The trajectory
tracking performance is illustrated through employing the designed control scheme and the designed
repetitive learning control scheme is applied to a PUMA robotic system. The authors made
a comparison between the traditional PD control, computed torque control, and decentralized control.
It is found that the designed repetitive learning control generates a better tracking performance
and produces a minimum tracking error compared to the other controls. In [63], the authors gave
a demonstration on how a learning-based estimate is employed for the purpose of having asymptotic
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tracking under the situation where nonlinear disturbances exist. Since the learning-based controller
approximate produced from the Lyapunov stability analysis, the authors further illustrated how
Lyapunov-based design approaches are used to reject elements of the unknown and un-periodic
dynamics. More precisely, a hybrid adaptive learning control system is developed for the dynamics of
robotic mechanisms. Through the experiment on a two-link robotic mechanism, it is observed that the
performance of the link tracking is improved at every single period of the desired trajectory, and this is
all because of the learning estimate mitigating action.

In [64], the authors developed a quasi-sliding mode-based repetitive learning control technique
to handle robotic mechanisms that are MIMO (multiple-input multiple-output) nonlinear and
continuous-time with matching perturbations. The developed learning control scheme can reject
cyclic exogenous disturbances and can also track cyclic reference trajectories. Through conducting
the comparison with the traditional variable structure control for a planar 2-DOF mechanism with
revolute joints, it is observed that the quasi-sliding mode-based repetitive learning control technique is
able to avoid the chattering, whereas the traditional variable structure control approach cannot under
the situation of handling the cyclic exogenous disturbances. In [65], the authors illustrated the issues
in terms the stability conditions of the hybrid control system developed in [66], which is designed
through combining repetitive learning control and model-based adaptive control. For the purpose of
relaxing the stability conditions, an improved hybrid control scheme on the basis of the control system
is developed in [66]. The designed learning control system is proved as stable based on the Lyapunov
approach, and the proposed learning control system is applied to a two-link robotic mechanism.

In [67], an experiment is conducted to justify an adaptive dominant type hybrid adaptive and
learning control system for obtaining accurate path tracing of a cyclic desired trajectory for robotic
mechanisms. The learning control system is designed by combining the model-based adaptive,
repetitive learning, and PD controls. The designed control system employs only one vector to
approximate unknown parameters of the dynamics, and it does not require too much computational
power and is easy to use in real robotic mechanism applications. Through applying the control system
to a four-link robotic mechanism, it is observed that the position tracking error can reach zero. In [68],
adaptive learning PD control is proposed for serial mechanisms with only revolute joints for the
purpose of tracing a periodic output reference, but the limitation is that it is assumed that the robotic
parameter bounds are already known. The control structure contains a PD segment and a learning
segment, which is used to approximate the joint reference input. Similarly, in [69], adaptive nonlinear
PD learning control is developed for a 2-DOF serial robotic mechanism with revolute joints for
tracing trajectories. The control system has a PD system and a learning system. In [70], a type
of adaptive repetitive learning control scheme is developed for the trajectory tracking of uncertain
robot mechanisms. By introducing a Lyapunov-like function, the developed technique only needs
the system to start from the last stop position, and the initial repositioning is not needed anymore.
Through employing the saturated learning principle, zero-error tracking can be accomplished via
compensating for the repetitive disturbance torque. Also, it is observed that the iterative trajectories
will eventually approach the desired ones.

In [71], the author presents and discusses the differences among repetitive controls, betterment
learning methods, and adaptive learning methods on the basis of integral transforms. The stability
performances of adaptive learning algorithms on the basis of integral transforms are illustrated.

It is observed that most of the above studies employed a similar pattern. The difference is mainly
in the approach of illustrating stability, convergence, and performances.

3.3. Reinforcement Learning Control

In [72], the difference between centralized and decentralized reinforcement learning for the
learning control of a planar 2-DOF robotic mechanism with revolute joints is demonstrated. It is
observed that the decentralized reinforcement learning did not focus on the scalability issue. Also,
reinforcement learning updates presume perfect knowledge of the task model, which is usually
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unavailable in actual situations. In [73], a framework for learning about the operational space
control of robotic mechanisms is briefly presented, and the concept of reinforcement learning via
reward-weighted regression is also put forward. The developed learning control scheme is mainly used
for immediate reward problems, for example, locating an optimal result for determining redundancy
in the operational space control of robotic systems.

In [74], the tracking performance of reinforcement learning control for a two link robotic mechanism
that has parameter variations and external disturbances is studied. Robustness performances in the
aspect of error and control efforts are compared by employing different parameterized function estimators.
It is observed that using the continuous action in the fuzzy inference system is able to result in a better
performance when compared to the discrete action in neural network machine function estimators.

A comparison study of iterative learning control with reinforcement learning control and iterative
learning control with repetitive learning control can be referred to in [75,76], respectively. The authors
here will not reiterate it anymore.

A brief comparative table with the advantages and drawbacks of the above methods is illustrated
in Table 1.

Table 1. A brief comparative table.

Advantages Drawbacks Application in Robotics
and Its Characteristics

Reinforcement
learning control

More flexible
in terms of repetition

Usually requires strict
exploration mechanisms

Learning by trial & error. Involve
function approximation, and it has

curse of dimensionality.

Repetitive
Learning Control

Simple implementation and
little performance dependency

on system parameters

Usually needs
repetitive process Relying on the internal model.

Iterative
Learning Control

Be able to compensate for
exogenous signals

Usually needs repetitive
reference trajectory

Starting from the same initial
conditions at every iteration.

4. Conclusions

In this manuscript, the learning control in robotic manipulators is reviewed and discussed
and typical issues in learning control that are used in robotic manipulators are also illustrated.
Learning control for robotic manipulators has been developed over the past decade and to the best of
the authors’ knowledge, it is still in its early development stage. The authors believe that it is necessary
to conduct a complete review on the learning control for robotic manipulators, which can provide
general information and a guideline for the upcoming research in this field. It is observed that most
of the studies used a similar pattern. The difference is mainly in the approach of illustrating stability,
convergence, and performances. The authors also believe that combining learning control with the
artificial intelligence for robotic mechanisms will become one of the future research topics in the robotic
control area.

Since the most reliable and intelligent control system ever encountered is the human internal
control system, learning control design through simulating human internal control and nervous
systems for robot manipulators is worth exploring so as to make the control system more intelligent.
The authors believe the combination of the mechatronic design approach and learning control design
approach for robotic manipulators also has great potential for future enhancements. One of the
applications of the learning control approach could be addressing safety issues such as those found in
robotic-based manufacturing industries.

As an extra note, it is known that unmanned aerial vehicles (UAV) have been developed in the past
years and used in many areas, such as sporting shooting, search and rescue, farming, border patrol,
reconnaissance, and in the transportation of large objects, but there are still many issues that are waiting
to be solved. Factors such as speed, reliability, safety, navigation and mapping capability, and fully
autonomous capability are most of our concerns, and these are all directly or indirectly related with
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the synthesized control algorithm used in the flying robots. To the best of the authors’ knowledge,
learning control has not really been maturely used in the flying robots, and the authors believe that it
will be used in the flying robots in the near future. Most of the flying robots/drones use the adaptive
control algorithm, particularly the model reference adaptive control algorithm (MRAC) to control the
speed of the propellers in order to control the pitch, roll, and yaw motions, i.e., to control the voltage
of the motors of the propellers. The challenge that one faces in the control system is how to construct
a synthesized control algorithm that allows the flying drones to achieve the desired output and motions
while handling the unexpected disturbances from the environment, for example, gusts of wind or
payload variation situations if the drones are used to transport different objects. The applications and
issues of learning control in flying robots have yet to be explored and will hopefully be discovered in
the coming years.
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