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Abstract: To gain a greater understanding of the spatial spillover effect of greenhouse gas
emissions and their influencing factors, this paper provides a spatial analysis of four gas pollutants
(CO2 emissions, SO2 emissions, NOx emissions, and dust emissions). Focusing on China, the paper
also explores whether the four gas pollutants are influenced by the emissions of neighboring regions
and other possible sources. The paper uses a global spatial autocorrelation analysis, local spatial
association analysis and spatial lag model for empirical work. The results suggest that CO2, SO2,
and NOx emissions show significant positive results for both the spatial correlation and space cluster
effect in provincial space distribution.CO2 and NOx emissions have a significant positive spillover
effect, while the SO2 emissions’ spatial spillover effect is positive but not significant. Economic
growth and urbanization are the key determinants of CO2, dust, and NOx emissions, while energy
efficiency and industrialization do not appear to play a role. This raises questions about the method
of examining the spatial relationship between gas pollution, economic growth and urbanization in
the future.

Keywords: spatial correlation; greenhouse gas; carbon dioxide (CO2) emissions; sulfur dioxide
emissions; spatial lag modeling

1. Introduction

Social production and living are becoming increasingly dependent on the use of natural resources.
Greenhouse gas emissions (GHGS) are of concern due to their adverse effects on global climate change
and human sustainable development. The use of natural resources accelerates the production of
greenhouse gas emissions, including CO2 (carbon dioxide emission), NOx (nitrogen oxide emission),
SO2 (sulfur dioxide emission) and dust emissions, which affect the balanced development of regional
economies and the sustainable use of natural resources. Cities are the social center of human life
and consumption and have become the primary source of energy consumption and greenhouse
gas emissions. Greenhouse gas emitted from cities account for 70% of the world’s greenhouse gas
emissions [1]. As governments and the general public have become more aware of environment
protection issues in urbanization, greenhouse gas emissions have become the focus of the world’s
attention [2]. Accordingly, GHGs spatial distribution in periods of economic growth and urbanization
has become a compelling topic in the field of environment management and economics.

With rapid economic development and urbanization under carbon reduction target by 2020, China
faces the threat of not only traditional carbon dioxide pollutants but also emerging SO2, NOx and
dust emissions. However, on the whole, the focus on China’s emerging SO2, NOx and dust emission
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regional spatial analysis is rather limited. The existing studies on China’s regional emissions mostly
focus on CO2 emissions. Few studies have examined the aforementioned types of GHGs from a
provincial perspective. In terms of methodology, few studies have conducted a spatial correlation.

China is suffering from air pollution and is becoming the center of the increasing concerns
regarding GHG emissions; therefore, this study aims to address the regional disparity and discuss
implications. This paper analyzes the regional GHG emissions pattern and correlated effects for policy
decision. The policy implications would improve the efficiency of the policy implementation.

With the above background, this empirically-grounded study examines the relationship between
economic factors and air pollutants (CO2, SO2, NOx and dust) through a space analysis and further
discusses the regional disparity and effects. In this paper, we introduce a spatial vector to the GHG
emissions ordinary least squares estimation model and compare the errors and predicting accuracy of
the two models. The objective of this study is to find an approach with the spatial factor and provide
applicable policy meanings by considering the spatial correlations.

The research in this paper is structured as follows. First, this paper examines CO2, SO2, NOx,
and dust spatial relationships by employing a global spatial autocorrelation method using Moran’s I
index to find whether the four gas emissions are positive correlated with the neighboring province’s
emissions. Additionally, a local indicator of spatial association (LISA) method is used to examine the
GHGs’ clustering effect. Finally, based on the above test, the first model is the ordinary least squares
estimation model, and the second model is the spatial lag model, which was developed by adding the
spatial dimension. We compare the four gas pollutants emissions determinants, which significantly
affect the CO2, SO2, NOx emissions and dust in a spatially correlated condition.

The remainder of the paper is structured as follows: Section 2 provides a theoretical background
and suggests hypotheses; Section 3 discusses the model for the spatial econometric methodology and
data; Section 4 discusses the data; Section 5 provides results, and Section 6 concludes.

2. Literature Review and Hypothesis

A growing body of literature on economic growth and GHG emissions has examined the impact
of the factors of economic development on GHGs, such as “pollution heaven,” “race to the bottom”
and “Environmental Kuznets curve (EKC) theory and hypothesis.” Among the possible economic
development factors, the environmental Kuznets curve has become the mainstream method and is
used in the current study. Grossman (1991) used an inverted U-curve EKC to describe the relationship
between environmental quality and per capita income. Selden and Song (1994) found that four types
of pollutants (suspended particulate matter, sulfur dioxide, nitrogen oxide and carbon monoxide)
and per capita GDP had an inverted U-curve relationship [3]. Roberts and Grimes (1997) found
there is an inverted U-shaped relationship between CO2 emission intensity and economic growth [4].
Dinda (2005) and Verbeke (2006) examined the homogeneity of the EKC hypothesis [5,6]. Meanwhile,
studies (M, Wagner, 2008) on the EKC heterogeneity of different regions and different pollutants were
conducted [7]. A weakness of this part of the literature has always been the binary link between
GHGs and economic growth or urbanization in time series approach. A smaller body of literature
has therefore attempted to examine the spatial distribution of GHG emissions, mostly focusing on
pollution from CO2 emissions [8,9].

Regarding the research on urbanization and GHG emissions, most studies are based on
the theory of the urbanization logistic curve, and one of the most important methods is the
Northam’s type curve [10]. There are three types of influential frameworks used to examine the
impact of the urbanization level on greenhouse gas emissions: direct causality, indirect causal
relationship, and regulation of causality [11]. In the indirect impact framework, urbanization affects
population migration, and population migration affects carbon emissions. Urbanization development
causes population migration and changes the industrial structure, lifestyle and population spatial
distribution [12]; the heat island effect is an example.
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In the empirical research, many scholars [13] adopted the Granger causality test and time series
method, which focuses on the VCR model, ECM model and STIRPAT to examine the relationship
between urbanization and GHGs [14,15]. Most of the studies show that urbanization level had a
positive impact on greenhouse gas emissions [14,16]. Some studies found no significance [17], but
others showed a more complex relationship: the development of urbanization promoting the optimal
allocation of energy resources and agglomeration effects to reduce greenhouse gas emissions [18].
Other research proves the existence of urbanization with the environmental Kuznets curve as an
inverted U-shaped curve [14,19].

With the classic emission model, Kaya (1990) established an equation identifying the relationship
between human economics, social activities and greenhouse gas emissions [20]. This equation, based
on factorization methods, decomposed carbon emissions into four factors affecting greenhouse gas
emissions: energy efficiency, energy intensity, economic development and population. The existing
research on greenhouse gas emissions are mostly developed on the basis of the Kaya equation.

The above study did not consider the spatial relationship of greenhouse gas emissions. In the
regional economic system, the environmental performance of a region is affected not only by the
internal economic development but also by greenhouse gas emissions in the surrounding area in the
presence of economic growth and urbanization. At the micro level, Maddison (2006)’s research on the
basis of spatial lag and the spatial error model introduced the adjacent area’s variables to examine
the effects of economic growth on pollutant emissions, and the results proved that one country’s
pollutants are actually affected by the influence of the neighboring countries [21]. Albu (2007) also
proved the above conclusion in the spatial distribution of European space [22]. Later, the classical
OLS, spatial error and spatial lag models were used to prove that the United States sample does not
support the EKC curve relationship, where the spatial lag model is optimal [23]. Wang (2013) used a
spatial econometric analysis to prove that the environmental indicators of the local area are affected
by other regions [24]. Cirilli (2014), on the basis of the spatial analysis of Italian samples, proved the
spatial correlation of city development and carbon emissions [25]. At the micro level, Cole (2013)
found that Japanese companies were affected by adjacent enterprise carbon emissions, reflecting the
spatial correlation [26].

Spatial approaches of GHGS analysis have been used to analyze the spatial effects of GHGs,
particularly CO2 emissions. Dong, L et al. (2014) conducted a spatial analysis of SO2, NOx, and
PM2.5 emissions. The results suggest that there was an evident cluster effect for CO2 emissions [27].
Ma, J. J. et al. (2009) investigated the CO2 emission levels of 30 provinces in China from 2000 to
2006 [28]. Chuai, X. W. et al. (2012) analyzed the spatial autocorrelation of carbon emissions and
the spatial regression analysis between carbon emissions and their influencing factors. The spatial
regression results show that the carbon GDP and population were the two main factors that had
strengthened the spatial autocorrelation of carbon emissions [29]. Tang, Z. et al. (2013) estimate the
amount of carbon dioxide emissions and its spatial variation in the tourism sector. The results show
that the carbon dioxide emissions from tourist accommodations in coastal areas are generally greater
than those in inland areas [30]. Videras, J. (2014) explored the relationship between emissions of
carbon dioxide with population, affluence, and technology. The results show strong evidence of spatial
heterogeneity [31]. Liu, Y. et al. (2014) applied the Durbin model and Regression on Population,
Affluence and Technology (STIRPAT) model and found the spatial relationship between emissions and
the all factors except energy prices [32]. Zhao, X. T. et al. (2014) investigated the influential factors of
carbon dioxide emission intensity. The results suggest that energy prices have no effect on emission
intensity; per-capita, province-level GDP and population density had a negative effect on CO2 emission
intensity; energy consumption and the transportation sector had a positive effect on CO2 emission
intensity [33]. We give a literature summary of the factors in Table 1.
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Table 1. Comparison of Spatial Approach and Factors.

Authors GHGs Type Methods Significant Factors Not Significant Factors

Albu, L. L. (2007) CO2
Three-Dimensional
Map;

Influence Economic
Growth -

Ma, J. J. et al. (2009) CO2
Spatial Autoregressive
Models

Energy Intensity;
Economic Development;
Population Growth

Urbanization is
not inevitable

Chuai, X. W. et al. (2012) Carbon Spatial Autocorrelation;
Spatial Regression GDP; Population -

Cole, M. A. et al. (2013) Carbon OLS; Spatial
Error Model

Size; Capital-Labor
Ratio; R&D Expenditure;
Exports; Concern

-

Dong, L. (2014) SO2; NOx; PM2.5; CO2

Spatial
Auto-Correlation;
Multi-Regression Model

Population; GDP;
Energy Consumption Energy- Intensity

Zhao, X. T. et al. (2014) CO2 Intensity Spatial Panel
Data Models

GDP; Population
Density(Negative);
Energy
Consumption(Positive)

Energy Prices

Liu, Y. et al. (2014) Carbon Spatial Durbin
Panel Model;

Population,
Urbanization, Economic
Development, Energy
Intensity, Industrial
Structure, Energy
Consumption Structure,
Openness

Energy Prices

Videras, J. (2014) Carbon Geographical
Weighted- Regression Spatial Heterogeneity -

Kang, Y. Q. et al. (2016) CO2
Spatial Panel
Data Model;

Urbanization, Coal
Combustion, Economic
Growth

Trade
Openness

Therefore, we propose the following hypotheses:

Hypothesis 1: Regional greenhouse gas emissions are spatial correlated and clustered.
Hypothesis 2: Urbanization and economic growth have a positive effect on greenhouse

gas emissions.
Hypothesis 3: Regional greenhouse gas emissions have a spatial spillover effect.

To summarize, there are some gaps in the study on greenhouse gas emissions: first, many studies
focus on the macro level or a specific industry, while research at the regional level is limited. Second,
existing models cannot better reflect the spatial relationship of a spatial reaction between regions.
For example, using time series data to examine the relationship between regional economic growth
and carbon emissions obviously cannot comprehensively reflect the spatial relationship between the
provinces, and the Granger causality analysis cannot solve the endogeneity problem. Furthermore,
the current research focuses on the two-dimensional relationship between the urbanization level,
economic growth, industrialization and carbon emissions and pays little attention to comprehensive
factors [17,34,35]. Although very few studies have conducted a spatial analysis of the four types
of GHGS, there have been several attempts to analyze CO2 pollutants and their effects [29,36,37].
Nevertheless, despite the various types of modeling methodologies available and continuous
refinement, all the numerical models suffered from an ignorance of spatial factors. To overcome these
shortcomings, the trend of using a spatial approach seems to be increasing because they outperform
the classical statistical approaches. Some approaches have been previously used for different purposes
in some studies on gas pollutants, particularly in carbon emissions modeling.

Compared to the above research, this paper—based on the spatial model—uses a spatial
econometrics analysis to examine the spatial relations between economic growth, urbanization, the
level of industrialization, energy efficiency and greenhouse gas emissions.
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3. Methods

3.1. Spatial Relationship Modeling

Spatial effect refers to the spatial interaction between regional economic and geographic behavior,
including spatial heterogeneity and spatial autocorrelation. The spatial correlation is decided by
absolute position and relative position. We mainly use the global spatial correlation test and local
spatial correlation test to test the spatial effect of China’s regional greenhouse gas emissions.

Spatial weight matrix W reflects the spatial relationship in spatial econometrics. In this paper, the
data samples are derived from the data of all provinces in China. Therefore, the spatial weight matrix
is the queen spatial weights, as seen in Equation (1).

W “

¨

˚

˚

˚

˚

˝

w11 w12 ¨ ¨ ¨ w1n
w21 w22 ¨ ¨ ¨ w2n

...
...

...
...

wm1 wm2 ¨ ¨ ¨ wmn

˛

‹

‹

‹

‹

‚

(1)

3.1.1. Global Spatial Autocorrelation Method

Global spatial auto correlation refers to the overall regional spatial characterization of the regional
GHG emission space distribution of clusters. This paper uses Moran’s I index method to verify the
global spatial correlation for GHG emissions. The global Moran’s I index is defined as follows:

Moran1sI “ r
n
ÿ

i“1

n
ÿ

j“1

wijpYi´Yqs{rS2
n
ÿ

i“1

n
ÿ

j“1

Wijs (2)

S2 “ 1{n
n
ÿ

i“1

pYi´Yq (3)

Y “ 1{n
n
ÿ

i“1

Yi (4)

where Yi represents the observed value of region i (greenhouse gas emissions), n is the total number
of provinces, and Wij represents distant space weight matrix. The global Moran’s I range from ´1
to 1. If the observed value of each region is spatially positively correlated, Moran’s I is larger. If the
observed value of each region is spatially negatively correlated, Moran’s I is smaller, which shows that
the difference of the spatial unit is larger; if the index is 0, the space is subject to a random distribution.

We use the asymptotic normal distribution test for the Moran’s I index test, as shown in
Equation (5):

Zpdq “
Moran1sI ´ EpMoran1sIq

a

VARpMoran1sIq
(5)

3.1.2. Local Spatial Association Method

Local indicators of spatial association (LISA) are used to examine local spatial relationships.
Anselin (1995) believed that local indicators of spatial association (LISA) could describe the spatial
clustering effect between one spatial unit and the surrounding units at a certain significance level [38].
This paper uses the local Moran’s I index to analyze the local spatial correlation, as shown in
Equation (6):

Moran1 s Ii “ Zi

n
ÿ

j“1

wijZj pi ‰ jq (6)

where i represent space unit i, Zi and Zj denote deviation, and Wij represents the space weight matrix.
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3.2. Traditional GHG Emissions Model

Kaya (1990) decomposes GHG (CO2) emissions into four factors related to human production and
living to explain the relationship between human activity and greenhouse gas emissions. The Kaya
equation is expressed as shown in Equation (7):

GHG “
GHG
TOE

ˆ
TOE
GDP

ˆ
GDP
POP

ˆ POP (7)

where GHG denotes greenhouse gas emission, TOE denotes energy use, GDP denotes gross domestic
product, and POP denotes population. The ratio of GHG to TOE represents greenhouse gas emission
per unit of energy use, which indicates the ability to use clean energy and the energy structure of this
region. The ratio of TOE to GDP is energy intensity (GHG emissions per unit of output), indicating
the industrialization level. The ratio of GDP to POP represents GDP per capital, which indicates the
economic growth. POP represents population, which indicates the quality of urbanization.

Based on the above Kaya equation, we can now consider GHG emissions in equilibrium, which is
defined as:

GHGi “ f pEEi, EIi, PGi, POPi, εiq (8)

where EEi represents energy efficiency, EIi represents energy intensity; PGi represents GDP per capital,
and Ui represents population. To rule out the heteroscedasticity problem, we adopt the natural
logarithm for the variables in Equations (7) and (9):

LnGHGi “ ai` β1iLnEEi ` β2iLnEIi ` β3iPGi ` β4iPOPi ` εi (9)

where β1i represents the elasticity coefficient of the energy consumption structure, β2i represents the
elastic coefficient of the industrialization level, β3i represents the elastic coefficient of economic growth,
and β4i represents the elastic coefficient of the urbanization level.

3.3. Spatial GHG Emission Model

The above is a classic emission model, but the classic emission model ignores the spatial correlation.
If the classical OLS estimation results show the regional greenhouse gas emissions and economic
growth, the development of urbanization has a positive relationship. However, the index test proves
that the classical regression error has a spatial correlation, which indicates the influence of geographical
location on the regional environmental pollution index.

To consider the other regional greenhouse gas emissions spatial spillover effects, we establish the
space lag model by adding the space dimension in Equation (10):

GHGit “ f pEEit, EIit, PGit, POPit, OGHGit, εitq (10)

OGHG “
n
ÿ

j“1

wjGHGEj (11)

where n denotes the number of adjacent regions in the spatial weight matrix, Wij denotes the spatial
weight, GHGEj is the GDP of the adjacent j region, and OGHG denotes the greenhouse gas emissions
of adjacent regions.

4. Data

In this paper, carbon emissions are calculated based on the IPCC method according to the “IPCC
national greenhouse gas inventory guide,” as seen in Equations (12) and (13):

CE “
n
ÿ

i“1

Ni ˆ δi (12)



Sustainability 2016, 8, 462 7 of 16

δi “ Cˆ CEFˆ CORˆ CCF (13)

where CE represents the total carbon emissions, I denote the energy consumption type; N represents the
total consumption of energy yi (104 tons standard coal), δi represents the carbon emission coefficient,
C represents the low calorific value, CEF represents the carbon emission factors, CO represents the
carbon oxidation rate, and CCF represents the carbon conversion coefficient.

Data for other greenhouse gases, such as nitrogen oxides emissions (NOx), sulfur dioxide
emissions (SO2) and dust emissions, are obtained from China’s Bureau of Statistics website. The
regional GDP data and energy use data are from the China Energy Statistical Yearbook [39]. The gross
domestic product (GDP) uses 1990 as the base year, and the unit is billion Yuan.

The spatial weight matrix is provided by the National Geographic Information System Web using
Geoda software (Luc Anselin, Tempe, AZ, USA). The Moran’s I scatter plot is drawn by the spatial
statistical analysis software Geoda [40].

5. Results and Discussions

5.1. Global Spatial Autocorrelation Test Results

The greenhouse gas emissions are reflected in the following spatial distribution characteristics.
Overall, high greenhouse gas emissions areas are clustered in the coastal areas of China, such as the
Bohai Sea area, the Pearl River Delta region, and the Yangtze River Delta region, which show spatial
clustering characteristics.

Specifically, there are three high emission clusters: North (Hebei, Shandong, Henan, Liaoning,
Inner Mongolia), East (Shanghai, Jiangsu, Zhejiang cluster) and South (Pearl River Delta).The mid-level
emission clusters are North (Heilongjiang), South (Hunan, Hubei, Anhui), and Southwest (Sichuan,
Guizhou).The lower emission clusters are Northwest (Tibet, Qinghai, Gansu, Ningxia), Southwest
(Chongqing), Southeast (Jiangxi), and South (Hainan).

From the empirical results of Table 2, the global Moran’s I index of CO2 emissions, NOx emissions,
SO2 emissions, and dust emissions are 0.3014, 0.2903, 0.1832, and 0.2227, respectively. After the Monte
Carlo simulation test, the Z values of all the above pollutants, except the SO2 global Moran’s I index,
are greater than 1.96, and their P values are less than 5%, which show significant positive spatial
autocorrelation. This test result indicates that all GHGs, except SO2 emissions, have spatial clustering
characteristics and are geographically spatial auto-correlated, as shown in Table 2.

Table 2. The Moran’s I Statistics of China’s Greenhouse Gas Emissions.

GHGs Moran’s I
Statistics P-Value Expected

Value Mean Standard
Deviation Z

CO2 0.3014 0.006 * ´0.0345 ´0.0369 0.1081 3.1299
NOx 0.2903 0.004 * ´0.0345 ´0.0354 0.1096 2.9637
SO2 0.1832 0.059 ´0.0345 ´0.0290 0.1210 1.7544
Dust 0.2227 0.014 * ´0.0345 ´0.0354 0.1101 2.3457

Note: (1) Random test using the 9999permutation; (2) * 5% significance level.

Figure 1 is a scatter diagram of the four types of GHG emissions. It can be seen that China’s
provincial GHG emissions show spatial distribution characteristics in which CO2 emissions, NOx

emissions, and dust emissions have a significant positive autocorrelation. Most of the points are
located in Quadrant I and Quadrant II. These results are consistent with H1: The regional greenhouse
gas emissions are spatially correlated except for SO2 emission.
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Figure 1. The Moran’s I Scatter Plot of the Four greenhouse gas (GHG) Emissions in China’s Provinces
in 2012. (a) CO2 Moran’s I plot; (b) NOx Moran’s I plot; (c) SO2 Moran’s I plot; (d) Dust Moran’s I plot.

As Table 3 shows, Moran’s I index test of urbanization development, economic growth and the
industrialization level and energy efficiency are significantly positive. These results show a positive
spatial autocorrelation. Carbon dioxide (CO2) and nitrogen oxide (NOx) emissions are important
indicators of the degree of environmental development, representing the environmental impact of
economic activities’ frequency and intensity. As a result, there is a lag effect when GDP, population,
energy consumption and energy efficiency result in the diffusion and transfer of greenhouse gas
emissions between the provinces.

Table 3. The Moran’s I Statistics of gross domestic product (GDP), POP and Energy Efficiency.

Dependent
Variables

Moran’s I
Statistics P-Value Expected

Value Mean Standard
Deviation Z

GDP 0.2599 0.018 * ´0.0345 ´0.0260 0.1143 2.4663
TOE 0.1717 0.049 * ´0.0345 ´0.0347 0.1128 1.8300
POP 0.2127 0.002 * ´0.0345 ´0.0333 0.1152 2.4928

CO2EE 0.2827 0.004 * ´0.0345 ´0.0309 0.1180 2.6577
NOxEE 0.1672 0.048 * ´0.0345 ´0.0320 0.1097 1.7914

DUSTEE 0.1795 0.046 * ´0.0345 ´0.0377 0.1207 1.8009
EI 0.1250 0.040 * 0.0345 ´0.0348 0.0795 2.0103
PG 0.4152 0.001 * ´0.0345 ´0.3500 0.1189 3.7870

Note: (1) Matrix random test using the 9999permutation; (2) * 5% significance level.
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Figure 2 shows Moran’s I scatter plot of the other provincial factors, including GDP, population,
energy efficiency and energy intensity. Most of the points are located in Quadrant I and Quadrant II,
showing that the economic growth and urbanization of one region is spatially related.
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5.2. Local Spatial Association Test Results

To examine the characteristics of the clustering effect, we use local indicators of spatial association
(LISA) to evaluate the spatial patterns and characteristics of greenhouse gas emissions.
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As seen in Table 4, the results from CO2 emissions LISA test show that Henan, Shanxi, Shandong,
Anhui, and Sichuan pass the 5% significance level test, and Hebei is significant at 1%. Hebei, Henan,
Shandong, and Shanxi are distributed in the first quadrant (H-H), showing a spatial distribution of
the high carbon emissions region and a positive spatial correlation with the other provinces. Anhui is
located in the second quadrant (L-H), showing that it is a low carbon province surrounded by high
carbon emissions provinces. Sichuan and Xinjiang are located in the third quadrant (L-L) because they
are low carbon emissions provinces with a negative spatial correlation with the other provinces.

Table 4. Local Spatial Association Pattern Classification of Moran’s I Plot.

Quadrant Pattern CO2 NOx SO2 DUST

I H-H Hebei *, Henan *,
Shandong *, Shanxi *

Hebei *, Henan *,
Shandong *, Shanxi *,

Anhui *

Hebei *, Henan *,
Shandong *, Shanxi *,

Anhui *

Inner Mongolia *,
Liaoning *, Hebei *,

Shanxi *, Shandong *,
Henan *

II L-H Anhui *, Liaoning * Jilin *

III L-L Xinjiang *, Sichuan * Sichuan *

IV H-L

Note: (1) Matrix random test using the 9999 permutation; (2) * 5% significance level.

The above results further prove Hypothesis 1: Regional greenhouse gas emissions show a spatial
clustering effect.

5.3. Classical Spatial Weighting Method Evaluation

From the above spatial analysis, regional greenhouse gas emissions are shown to be widely
affected other provinces, so this paper examines the spatial spillover effect of greenhouse gas emissions.

As in Table 5, we use the classical spatial weighting method for the OLS estimation and find that
the impact of economic growth, urbanization and other factors on CO2, NOx and dust emissions is
significant at the 5% level. The results are consistent with H2: City development and economic growth
have a positive effect on all four greenhouse gas emissions.

Table 5. Spatial Weight of Ordinary Least Squares Estimation.

GHGS EE EI PG POP R2 LMLAG LMERR

CO2
1.0780

(0.0001 *)
1132.752

(0.0200 **)
0.6121

(0.0004 *)
0.9848

(0.0000 *) 0.8359 8.2622
(0.0041 **)

4.8055
(0.0284 **)

NOx
183.2002
(0.0003 *)

983.44
(0.0782 ***)

0.5643
(0.0024 **)

0.9786
(0.0000 *) 0.8205 4.0359

(0.0445 **)
4.0356

(0.0446 **)

SO2
268.95

(0.0000 *)
954.02

(0.1040)
0.7418

(0.0018 **)
1.0410

(0.0000 *) 0.8471 0.3868
(0.5340)

0.8638
(0.3528)

Dust 471.9864
(0.0000 *)

1180.69
(0.0201 **)

0.6505
(0.0008 *)

1.0862
(0.0000 *) 0.8952 6.8620

(0.0088 *)
0.7607

(0.3831)

Note: *, **, *** denotes 0.01, 0.05, 0.1 significance level.

The ordinary least squares estimation showed that CO2, NOx, and dust emissions have close
relationship with energy efficiency, energy intensity, GDP per capital and population.

The positive coefficient suggests that the influence of CO2, NOx, SO2, and dust emissions based
on energy efficiency energy intensity, GDP per capital and population is positive. The coefficient of
GDP per capital and the four pollutants (CO2, NOx, SO2, and dust) can describe the pull function for
emissions by GDP. The results confirm Hypothesis 2: urbanization and economic growth have positive
effects on greenhouse gas emissions.

The r-squared rate of the regression between dust and NOx emissions GDP is higher than that of
CO2 emissions. This suggests that with the development of economic growth and carbon reduction
policies, dust and NOx are starting to play an important role in gas pollute composition.
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5.4. Spatial Lag Model Evaluation

As seen in Table 6, aside from the SO2 emissions, the other three gas emissions’ LMLAG and
LMERR statistical values are significant at the 5% level. The LMLAG test is more significant than the
LMERR test, and the R-lMLAG test is more significant than the R-lMERR test. Thus, we could establish
a spatial lag model of CO2, NOx and dust.

Table 6. Coefficients of Spatial Lag Model Estimation.

Dependent
Variables W_GHGs EE EI PG POP R2

CO2 emission 0.0881
(0.0015 *)

0.5222
(0.5317)

713.56
(0.0625 ***)

0.4822
(0.0001 *)

0.8422
(0.0000 *) 0.8788

NOx emission 0.1455
(0.0386 *)

10384.05
(0.0130 **)

73887.2
(0.1363)

43.52
(0.0076 *)

60.19
(0.0000 *) 0.6711

DUST
emission

0.2469
(0.0021 *)

408.13
(0.0000 *)

875.20
(0.0248 **)

0.4392
(0.0039 **)

0.9212
(0.0000 *) 0.9217

Note: *, **, *** denotes 0.01, 0.05, 0.1 significance level.

As seen in Table 6, the results show that the coefficients of economic growth, city development,
industrialization, and energy intensity on carbon dioxide (CO2) and nitrogen oxide (NOx) pass the
10% level of significance test. The spatial correlation coefficient passes the 10% significance level test,
showing that the provincial GHG emissions have a spillover effect, proving Hypothesis 3: regional
greenhouse gas emissions have spatial spillover effects.

The contribution of GHG emissions from neighboring regions, population and economic growth to
carbon emissions increased, but the contribution of energy intensity decreased. The carbon emissions
spillover effect was aggravated due to the increase of economic growth and urbanization; thus,
economic growth and urbanization were the two main factors that had strengthened the spatial
autocorrelation of carbon emissions.

5.5. Comparison of Spatial Weighting Method and Spatial Lag Model

Comparing the results in Table 4 with Table 5, the estimated results of the spatial lag model are
better than the spatial weighted OLS results. After adopting the spatial lag model for theCO2 emissions,
all coefficients except energy efficiency pass the significance test; furthermore, the coefficients improve.
For NOx emission, all coefficients except that of energy efficiency pass the significance test. For dust,
all coefficients pass the significance test.

As discussed above, we make a comparison between the two models’ estimation results with a
better fitting effect, which can be measured with their main parameters and testing values, such as the
Log likelihood (LogL), Akaike information criterion (AIC) and Schwarta criterion (SC). A higher R2
represents a better regression effect, while lower AIC and SC values represent a better regression effect
(Chuai et al., 2012) [29]. Here, we take 2012 as an example to perform a spatial regression analysis
between all four GHG emissions, GDP per capital and population in the two models. The results are
compared in Table 6.

In Table 7 for CO2 emissions, the R2 in the Spatial Lag Model Estimation is 0.8359. Each parameter
can meet the significance test; p meets the significance test at the 10% level; and the positive coefficient
means the influence of CO2 emissions from the adjacent provinces is positive. 1% growth of CO2

emissions from the adjacent provinces will introduce CO2 emissions of 0.0881% to the local province,
which means that the regional CO2 emissions can interact with each other, and an obvious spatial
dependency was seen. The p-value also meets the significance test at the 1% level, which can describe
the pull function of carbon emissions resulting from the GDP per capital, and shows that 1% growth of
the local GDP per capital will introduce 0.482% growth in the local carbon emissions in 2012.
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Table 7. Comparison of OLS Estimation and Spatial Lag Model (SLM) Estimation.

GHGs Model W_GHGs PG POP R2 logL AIC SC

CO2
OLS - 0.6121 (0.0004 *) 0.9848 (0.0000 *) 0.8359 ´3.8170 17.6341 24.6401
SLM 0.0881 (0.0015 *) 0.4822 (0.0001 *) 0.8422 (0.0000 *) 0.8788 0.7113 10.5772 18.9844

NOx
OLS - 0.5643 (0.0024 **) 0.9786 (0.0000 *) 0.8205 ´6.0971 22.1943 29.2003
SLM 0.1455 (0.0386 *) 0.4582 (0.0024 *) 0.8649 (0.0000 *) 0.6711 ´3.9896 19.9793 28.3865

SO2
OLS - 0.7418 (0.0018 **) 1.0410 (0.0000 *) 0.8471 ´8.9003 27.8006 34.8066
SLM 0.1798 (0.0315) 0.5787 (0.0029 **) 0.9215 (0.0000 *) 0.8684 ´6.7670 25.5341 33.9413

Dust OLS - 0.6505 (0.0008 *) 1.0862 (0.0000 *) 0.8952 ´5.1032 20.2065 27.2125
SLM 0.2469 (0.0021 *) 0.4392 (0.0039 **) 0.9212 (0.0000 *) 0.9217 ´0.9375 13.8752 22.2824

Note: *, **, *** denotes 0.01, 0.05, 0.1 significance level.

In Table 7 for SO2 and dust emissions, R2 in the Spatial Lag Model Estimation is 0.8694 and 0.9217,
respectively. Each parameter can meet the significance test, and p meets the significance test at the
10% level. The positive coefficient means the influence of SO2 and dust emissions brought by adjacent
provinces is positive, and a 1% growth of SO2 and dust emissions from the adjacent provinces will pull
0.1798% and 0.2469% of SO2 and dust emissions, respectively, to the local province, which means that
the regional SO2 and dust emissions can influence each other and that there was an obvious spatial
dependency. The p-value also meets the significance test at the 10% level, which can describe the pull
function of the SO2 and dust emissions resulting from the GDP per capita and shows that 1% growth
of local GDP per capita will introduce 0.5787% and 0.4392% growth of local SO2 and dust emissions
in 2012.

We give a comparison of the results with other relate references factors in Table 8.

Table 8. Comparison of Factors Influencing GHG Emissions.

Authors GHGs Type Significant Factors Not Significant Factors

Albu, L. L. (2007) CO2 Influence Economic Growth –

Ma, J. J. et al. (2009) CO2
Energy Intensity, Economic

Development, Population Growth Urbanization is not inevitable

Chuai, X. W. et al. (2012) Carbon GDP, Population –

Cole, M. A. et al. (2013) Carbon
Size, Capital-Labor Ratio, R&D

Expenditure, Exports, Concern For
Public Profile

–

Dong, L. (2014) SO2, NOx, PM2.5; CO2
Population, GDP, Energy

Consumption Energy- Intensity

Zhao, X. T. et al. (2014) CO2, Intensity
GDP, Population Density(Negative),

Structure of Energy
Consumption(Positive)

Energy Prices

Liu, Y. et al. (2014) Carbon

Population, Urbanization, Economic
Development, Energy Intensity,

Industrial Structure, Energy
Consumption Structure, Openness

Energy Prices

Videras, J. (2014) Carbon Spatial Heterogeneity –

Kang, Y. Q. et al. (2016) CO2
Urbanization, Coal Combustion,

Economic Growth Trade Openness

Li L. et al. (2016) CO2, NOx, SO2, dust Economic growth, Urbanization Industrialization, energy
efficiency

Comparing the two models, we find that for CO2, NOx, SO2, and dust emissions, both R2 and
LogL in SLM models are higher than in the ordinary OLS model. AIC and SC are both lower, suggesting
that the fitting effect of SLM model is better. By using SLM model, we performed a spatial regression
analysis between CO2, NOx, SO2, and dust emissions and the influencing factors, such as GDP per
capita, population, energy efficiency, and energy intensity, respectively. The results showed that the
fitting effect from SLM model is better for reflecting both spatial effects and other influencing factors.

Our findings are of significance to region-based air pollutant control policy formation and
implementation when facing the following difficulties. Firstly, economic disparity in China as a
whole, and a reduction target of air pollution is designated for each province. Some poor provinces
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rely on heavy-polluting industries and are not able to attain these targets. Second, certain wealthy
regions may move heavy-polluting industries to other regions, regardless of the gas pollutant spillover
effect. Finally, there is no framework in which neighboring provinces can implement the reduction
policy cooperatively.

6. Conclusions and Policy Implication

The aim of this paper is to find the major influential factors of GHG emissions. The approach of
this study involved a statistical analysis on the basis of 30 provinces in China and used ArcGIS9.3 and
GeoDA9.5 as technical support to estimate GHGs more accurately with the development of economic
growth and urbanization. This paper performed a preliminary study on the spatially changing pattern
of GHG emissions at the regional level and performed a spatial autocorrelation analysis for GHG
emissions and a spatial regression analysis between GHG emissions and their influencing factors.

The results of Section 5 show that CO2, NOx and dust emissions significantly spatially correlated,
but SO2 is not. Economic growth, urbanization, industrialization level, and energy efficiency are
significantly spatially correlated. Meanwhile, the LISA analysis presents a few GHG emissions clusters.
Based on the above data, the results show that the urbanization and economic growth of CO2, NOx

and dust coefficients pass the significance test and show that urbanization and economic growth have
a positive effect on CO2, NOx and dust emissions. CO2 and NOx’s spatial correlation coefficients
are significant, showing that the three gas pollutants are spatially correlated between the provinces.
The results show that economic growth and urbanization are the two main driving factors for GHG
emissions, while the influence of energy efficiency and intensity is not a significant factor. The spatial
regression analysis results showed that the R2 from the spatial regression between dust emissions and
the four factors is higher than the CO2, NOx and SO2 emissions.

From the previous analysis, first, we can conclude that China’s GHGs (CO2, NOx, dust) present
characteristics of spatial auto-relation and local clustering effects, along with economic growth and
urbanization. Greenhouse gas spatial clusters are seen in highly economic developed and urbanization
areas, such as the Bohai Sea region, the Yangtze River Delta region, and the Pearl River Delta region.
This conclusion is consistent with the traditional EKC hypothesis and most of the subsequent research;
furthermore, the spatial analysis contributes spatial empirical work to this field. Second, the local
spatial analysis shows that the different gas pollutants also demonstrate spatial clustering and spillover
effect. Most of the gas pollution is highly concentrated, mainly in and around the Bohai Sea region.
Among them, the dust and nitrogen oxide geographical scope of the H-H mode is wider than that of
CO2 and SO2, which indicates that the provincial pollution spillover scope is from CO2, SO2, NOx to
dust and the geographic directions from north to south.

In addition, most of the province’s economic growth and urbanization development have a
significant impact on greenhouse gas emissions, which proves that China’s greenhouse gas emissions
greatly depend on economic growth and urbanization. However, some provinces have a decoupling
effect of greenhouse gas emissions and economic development, showing the effect of the ecological
spillover. Overall, the relationship between GHGs and economic development and the level of
urbanization is significantly positively correlated, while industrialization is not significant. When
China focus on industrial upgrades and approached the turning point of the Environmental Kuznets
curve, GHGs become less sensitive to industrialization.

This application of the spatial approach has policy implications. Gas pollution is presently
nationwide; however, the environment expenditures for reduction are from provinces and gains
are shared cross region. The above discussions mean that policy makers must consider the spatial
interaction effects when making environmental protection policy. Policy makers should account for
regional differences. These results provide sound policy implications for the improvement of urban
energy management and carbon emission abatement in China in addressing gas pollutants. Spatial
correlation and the spillover effect should be considered in formulating polices that aim at reducing
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GHG emissions. Currently, the GHG emissions reduction policy should move from industrialization
and energy management to controlling low-carbon economic development and urbanization.

To address these challenges, some measures are proposed: first, accelerate urbanization and
economic growth in western China and adjust the structure of urban development in eastern China
and the major cities. Second, to solve the regional disparity policy makers should compensate
central-eastern regions, to which high-polluting industries are relocated, for the damage done to the
environment. Finally, regions with high GHGs should take action to reduce gas pollutants within a
single framework rather than implementing policies alone for gas pollutant spillover effects.

In summary, spatial lag methods can be a useful approach to improve on the specifications of the
Kaya models and design low-carbon and environmental policies that are more efficient and fair when
trying to reduce the transmission of CO2, NOx, SO2 and dust emissions into the atmosphere.

Overall, our results shed light on the spatial analysis of gas pollutants and the impact of
urbanization. Future policy is critical in promoting an emission control policy. For future prospects,
greenhouse gas emissions are affected by environment, climate, and other factors. GHG spatial
research and methods of improving the coordinated development of economic growth, urbanization
and greenhouse gas emissions are worthy of further study.
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CO2: Carbon Dioxide Emission (CO2)
SO2: Sulfur Dioxide Emission
NOx: Nitrogen Oxide Emission
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EE: Energy Efficiency
CO2EE: Energy Efficiency of CO2

SO2EE: Energy Efficiency of SO2

NOx EE: Energy Efficiency of NOx

DUSTEE: Energy Efficiency of Dust
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