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Abstract: Accuracy improvement has been one of the most outstanding issues in the recommender
systems research community. Recently, multi-criteria recommender systems that use multiple
criteria ratings to estimate overall rating have been receiving considerable attention within the
recommender systems research domain. This paper proposes a neural network model for improving
the prediction accuracy of multi-criteria recommender systems. The neural network was trained
using simulated annealing algorithms and integrated with two samples of single-rating recommender
systems. The paper presents the experimental results for each of the two single-rating techniques
together with their corresponding neural network-based models. To analyze the performance of
the approach, we carried out a comparative analysis of the performance of each single rating-based
technique and the proposed multi-criteria model. The experimental findings revealed that the
proposed models have by far outperformed the existing techniques.

Keywords: recommender systems; artificial neural network; simulated annealing; slope one
algorithm; singular value decomposition

1. Introduction

Recommender systems (RSs) are software tools that have been widely used to predict users’
preferences and recommend useful items that might be interesting to them. The rapid growth of online
services such as e-commerce, e-learning, e-government, along with others, in conjunction with the
large volume of items in their databases makes RSs become important instruments for recommending
interesting items that are not yet seen by users. RSs are usually categorized based on either the
techniques used to make the recommendation or the kind of services they provide to users. Various
techniques have been explored to develop RSs. The most commonly used techniques are collaborative
filtering, content-based, knowledge-based, and hybrid-based techniques [1,2]. Each of these techniques
has been applied in many RS applications, and they have worked with considerable success. However,
research has shown that these traditional recommendation techniques have their shortcomings, such as
sparsity and cold start problem, overspecialization, and so on [3,4]. More generally, using a single
rating to make predictions is considered by the recommender systems research community as one of
their great limitations [5]. Because the acceptability of the item recommended to the user may depend
on many utility-related attributes that the user might take into consideration when choosing the item.

Multi-criteria recommendation techniques extend the traditional approaches by increasing the
number of ratings to cover various attributes of the items and incorporate their ratings for improving
the prediction accuracy of the RSs. The criteria are the different attributes of items that can be put
together to describe the quality of items. For instance, in movie RSs, attributes of movies such as
visual effect, direction, story, and action of the movie can affect the choice of a given movie by a user.
Some users might prefer movies based on one or more attributes. The multi-criteria technique has
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been researched and proved to provide higher prediction accuracy than any of the single rating
approaches [5]. However, one of the most exciting research directions in multi-criteria RSs is focusing
on exploring statistical or machine learning techniques to model the criteria ratings for improving
their prediction accuracy. This area is relatively new, and there is much research that has not yet
been done extensively. One of the outstanding pieces of research comes in to answer the challenge
thrown to the RSs research community by Adomavicius et al. [5] to use more sophisticated machine
learning algorithms such as artificial neural networks and aggregation function approaches to analyze
the performance of multi-criteria RSs. The same challenge was repeated four years later [5], and to
date, no previous research has investigated the performance of multi-criteria RSs using artificial neural
networks. Among the initial attempts that explored some of the powerful machine learning techniques
is the work Jannach et al. [6], who used support vector regression (SVR) to model the criteria rating.
However, using such approaches can be problematic, as working with SVR requires the choice of
appropriate hyper parameters that would allow for sufficient generalization of performance, and also
as the SVR uses a kernel trick, choosing a suitable kernel function could be a problem as well [7].
This study follows these challenges to use feedforward neural networks trained with a simulated
annealing algorithm. Of course, various algorithms like gradient-based (e.g., backpropagation and
Levenberg–Marquardt algorithms), genetic algorithms, and so on can be used to train feedforward
networks. However, most of these techniques have some weaknesses, such as the tendency to get
trapped in local minima, slow convergence rate, long training times, etc. These drawbacks naturally
limit the relevance of some of the training algorithms for training neural networks [8]. We chose the
simulated annealing algorithm because it has a high tendency to escape local minima, low training
times, high convergence rates, and it can deal with chaotic and noisy data [9].

The central questions addressed by this research are: what is the performance level of multi-criteria
RSs when modeled by aggregation function approach and using artificial neural networks to predict
unknown ratings, and under what circumstances is the better performance achieved? This study has
answered the questions by proposing the use of two popular single rating recommendation algorithms
(singular value decomposition and slope one algorithms) and comparing their performance with
the proposed approach. This paper is composed of five themed sections, including this introduction
section. Section 2 gives a brief overview of related background. Section 3 is concerned with the research
methodology, and Section 4 presents the results and discussion of our findings. Finally, Section 5
contains the conclusion and future research directions.

2. Related Background

In this section, we briefly introduce the basic concepts of the related topics covered in this
paper. The section begins by laying out a short general explanation of RSs and collaborative filtering
techniques. Section 2.2 describes the extension of the traditional recommendation technique into
multi-criteria recommendations. The remaining two sections contain an overview of artificial neural
networks and simulated annealing algorithms, respectively.

2.1. Recommender Systems (RSs)

RSs belong to the subclass of information systems, whose popularity has rapidly increased in
recent years. Nowadays, a variety of application domains, such as e-commerce, e-learning, tourism
guide, and so on, are using RSs. The aim of RSs is to provide personalized recommendations of online
products and services to overcome the growing problems of information overload [10]. They use
machine learning algorithms and filtering techniques to predict the opinions of users on items and
recommend the most suitable ones among them to the users. Different filtering techniques such
as collaborative filtering, demographic filtering, content-based filtering, and hybrid filtering have
been widely used to characterize the functions of RSs [11]. Furthermore, recent surveys like the one
conducted by Yera and Martinez [12] have enlightened us on the use of fuzzy techniques for supporting
RSs. Moreover, as these traditional techniques have some shortcomings, several approaches such as
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incorporating trust statements into online RSs have been proposed to improve the accuracy of the
systems [1,13].

Collaborative Filtering

Collaborative filtering (CF) techniques are the most widely used recommendation techniques that
use ratings provided by many users to predict the preferences of the current user and make useful
recommendations [13]. The central idea behind CF methods is that they compute similarities between
the current user and other users of the systems who previously co-rated some items. The CF techniques
are divided into neighborhood-based and model-based techniques. The neighborhood-based methods
are sometimes referred to as memory-based. Here, the rating matrices between user–item pairs are
stored in in the systems and used directly to estimate ratings for items that are not yet rated by
users. The predictions can be made by computing either similarities between users (user-based) or
similarities between items (item-based). On the other hand, model-based techniques used machine
learning algorithms such as decision tree, Bayesian classifiers, support vector machine, regression
model, singular value decomposition, and so on to build predictive models [14]. The rest of this section
summarizes the two CF RSs used to undertake our experiments.

• Singular value decomposition (SVD): SVD is a latent factor model that aims to uncover latent
features that determine the observed rating. The field of information retrieval usually applies
SVD technique for identifying latent semantic factors. Koren and Bell explained the concept of
SVD in [15] using a movie recommendation scenario. Similarly, we studied the Koren SVD [15]
and used it to implement a traditional RS. The Koren SVD uses two vectors U and V in IRd with d
as the dimension of the latent factor space so that each item i is associated with vector Vi and the
user u is associated with Uu. The resulting dot product VT

i Uu represents the interaction between
u and i. To estimate the final predicted rating of u on i, a baseline predictor that depends on
item or user (r + bu + bi) needs to be added to have the relation in (1), where r is the overall
average rating.

R̂ui = r + bu + bi + VT
i Uu (1)

The model parameters (VT , U, bu, and bi) can be learned by regularized squared error
minimization as min

V,U,b
∑

(u,i)∈S
(Rui − r− bu − bi −VTU) + η(b2

i + b2
u+ ‖ Vi ‖2 + ‖ Uu ‖2), where S

is the set of pairs (u, i) for which the ratings of i given by u is known and η is the regularization
constant that controls the scope of the regularization and is normally obtained through
cross-validation. The well-known popular gradient descent algorithm (GDA) [16] or alternating
least squares optimization techniques [17] can typically be used to perform this minimization.
Applying stochastic GDA for each rating Rui, the predicted rating R̂ui is obtained and the relative
error εui = Rui − R̂ui is measured, then the GDA computes the parameters as:

Vi → Vi + δ(εui − ηVi)

Uu → Uu + δ(εui − ηUu)

bi → bi + δ(εui − ηbi)

bu → bu + δ(εui − ηbu)

The parameters η and δ can be assigned small positive real numbers such as 0.005 and 0.02,
respectively [18].

• Slope one algorithm: The slope one is a model-based CF algorithm proposed by D. Lemire et al. [19],
which was derived from item-based CF technique. It was named slope one algorithm and was
proposed to overcome some of the issues encountered in CF-based RSs. Several experiments
confirmed its efficiency, and it is easy to implement and maintain, which made it popular and
attracted the attentions of the RSs community [20]. It approximates unknown ratings of users on
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items based on the differences between ratings of the user and those of similar users. In other
words, the algorithm uses users who rated the same item or other items rated by the same user.
The first of the two steps used for making predictions is to compute the mean deviation of two
items as follows. For any two items ij and ik in the training set, slope one algorithm uses (2) to
compute the mean deviation Mdjk between them, where ruj− ruk is the difference between ratings
of ij and ik by the same user u and |Ujk(S)| 6= 0 is the number of users who rated ij and ik, and S
is the set of all users. The target rating r̂vj of the user v on item j will be obtained finally from (3),
where rvc is the rating of v to other items c, and the total number of the user’s ratings |rvc| 6= 0.
The recommendation follows the top-N technique.

Mdjk = ∑
u∈Ujk(S)

ruj − ruk

|Ujk(S)|
(2)

r̂vj =
1
|rvc|∑c

(rvc + Mdjc) (3)

2.2. Multi-Criteria Recommender Systems (MCRSs)

Traditionally, RSs solve recommendation problems by assuming that there exist two sets: Users
and Items, representing the set of all users of the system and the set of all prospective items that can be
recommended to users, respectively. Their utility functions f: Users × Items→ r measure the likelihood
of recommending items to users. The users’ preferences given by r take a real number (r ∈ IR) within
some interval (e.g., between 1 and 5, 1 and 10, etc.) in some cases. Therefore, the main goal of the
system is ∀u ∈ Users to estimate the function f(u, i, r) for which r on i ∈ Items for u is not yet known,
and to recommend i’s according to the strength of their r [5].

In traditional RSs, f(u, i, r) estimates an overall rating ro defined as f: u × i → ro. However,
utility functions of MCRSs extend that of traditional techniques by increasing the number of ratings
from 1 to n (r1, r2, . . ., rn), covering n attributes of the items. This could assist in enhancing the
recommendation accuracy since more complex user preferences could be represented by multiple
criteria ratings (see (4)).

f (u, i)→ ro × r1 × r2 × r3 × ...× rn (4)

Considering the difference between traditional RSs and MCRSs, additional techniques are required
to integrate the criteria ratings when developing the systems. Different approaches have been proposed
to estimate ρi for i = 1, 2, ..., n, and these modeled to predict the value of ρo that represents the
preferences of the user. Heuristic-based and model-based approaches are commonly adopted methods
in many of the MCRS studies [5]. For this study, we explored the model-based approach because
of its several advantages over heuristic-based approaches. For instance, unlike the heuristic-based
approach, which can only work with similarity-based traditional collaborative filtering techniques,
the model-based approach can work with any traditional technique. The model-based approach
determines the unknown ri and the value of ro by building a predictive model that learns from the
observed data. These predictive models include the probabilistic modeling approach, support vector
regression approach, and an aggregation function approach which assumes ro to be an aggregation of
ri, as shown in (5). Among all these models, the aggregation function model is the most widely used
because it has the potential to work with several machine learning techniques (e.g., artificial neural
networks) to more accurately estimate user preferences.

ro = f (r1, r2, r3, ..., rn) (5)

Let km be a criterion for m = 1, 2, ..., n. The following steps summarize the aggregation function
approach for n criteria recommendation problems:
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1. Decompose the multi-criteria rating problem into single-rating problems.
2. For each km, use a single-rating technique to predict unknown rating r′i for each criterion separately.
3. Learn the relationship between ro and ri′s using the selected algorithms, such as artificial

neural networks.
4. Integrate steps 2 and 3 to predict r′o for r′1, r′2, ..., r′n.

2.3. Artificial Neural Networks (ANNs)

In 1943, McCulloch and Pitts published a paper [21] in which they introduced the first model
of an ANN [22] based on a single-layer neural network. The ANN is a powerful class of machine
learning algorithms that learn complicated patterns from data using collections of simple trainable
mathematical functions. While a variety of definitions of ANNs have been suggested, this paper
follows the definition given by the inventor of one of the first neuro-computers [23] in 1989, who saw
it as “a computing system made up of a number of simple, highly interconnected processing elements,
which process information by their dynamic state response to external inputs”.

ANNs mimic the structure of the human brain, which consists of several processing units called
neurons. They are made up of two or more interconnected layers of neurons that take inputs from
the external environment through an input layer and send the results to the external environment
through an output layer as an output. In most cases, the input layer is connected to a hidden layer(s)
that is/are between the input and output layers. Neurons between layers are connected using a system
of weighted connections similar to synapses in the biological human brain.

2.4. Simulated Annealing Algorithm (SMA)

SMA is an optimization algorithm similar to the method of material physics for cooling substances
like metal from a high energy level to a lower level. Training ANNs with the SMA started as far back
as 1994, when Goffe et al. [24] tested the performance of SMA-based networks on four econometric
problems, and compared the results with the simplex, quasi-newton, and conjugate gradient-based
networks. The SMA-based network was found to outperform the networks trained with the other
training algorithms [25]. However, the efficiency of SMA over the usual gradient descent-based
backpropagation algorithm was not confirmed until five later, when Sexton et al. [25] researched
to investigate and compare the performance of the backpropagation algorithm with global search
algorithms, and SMA was found to be the superior training algorithm for ANNs.

The technique used in this study to implement and train the SMA-based network is similar to
that of [24,25]. The summary of the process is as follows: Let W be a vector of weights ωi, and E(W) be
the error function that computes the errors produced by the current elements of W, and let V be the
matrix of step length of W. E(W) is evaluated with the current weights in W, and the next weights
vector W ′ will be calculated for each i by varying its ω′i using (6), where vi ∈ V, and r is a randomly
generated real number between −1 and 1.

ω′i = ωi + r ∗ vi (6)

Accepting the W ′ instead of the current W will be decided based on the errors E(W ′) and E(W),
respectively. If E(W ′) is smaller than E(W), then W ′ is accepted directly as the current weights matrix.
Otherwise, the Metropolis [26] algorithm will be applied to test the likelihood of acceptance or rejection.
If the probability of acceptance is high, W ′ will be accepted, and W will be saved together with E(W)
to prevent loss of the better solution. The starting temperature will be reduced to T′ (see (7)), and k is
randomly generated between 0 and 1 exclusive.

T′ = T ∗ k (7)

The process continues until the stopping conditions such as the target error or the experiment
reach the maximum number of training circles.
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3. Experimental Methodology

This section presents the summary of how the research was carried out by discussing the
experimental framework of our proposed method together with how the system was modeled.
To begin with, the following subsection gives the detailed analysis of the datasets used to conduct the
experiments, and Section 3.2 explains the mechanism used to build the proposed MCRSs.

3.1. Analysis of the Dataset

The experiments were conducted using two multi-criteria datasets from two different domains.

3.1.1. Yahoo!Movie dataset

The Yahoo!movie dataset: It is a multi-criteria dataset where preference information on movies
was provided by users on the strength of four different movie attributes (criteria); namely, the direction
(k1), the action (k2), the story (k3), and the visual (k4) effect of the movie [27]. Ratings of each
criterion were measured on a 13-fold scale starting from F representing the lowest preference to
A+, which stands for the highest preference. In addition to the criteria ratings, an overall (ko) rating
that measures the final acceptability of users on movies was also included in the dataset. Table 1
displays the sample of the dataset used in the first experiment. The table is divided into two parts,
containing the form of the dataset extracted directly from Yahoo!Movies website in the first part.

Table 1. Numerical representation of the sample dataset.

User ID Movie ID Direction (k1) Action (k2) Story (k3) Visual (k4) Overall (ko)

101
1 A+ C C− B− C−

3 B B+ B+ A− B−

5 B− A− B+ A− A−

102
3 A+ A+ A+ A+ A+

5 C− C A+ A+ A+

6 C B C+ B− B−

101
1 13 6 5 8 5
3 9 10 10 11 8
5 8 11 10 11 11

102
3 13 13 13 13 13
5 5 6 13 13 13
6 6 9 7 8 8

However, for the model to process the data easily, the rating scale was transformed into
a numerical rating by changing F to 1 and A+ to 13 to represent the lowest and highest preference
values, respectively. The second part of the table contains the transformed data equivalent to that in
the first part.

Furthermore, to detect and remove inconsistencies from the dataset to improve its quality,
the dataset was cleaned to eliminate cases of missing ratings for at least one of the four criteria and
the overall ratings. Moreover, to ensure an adequate set of evaluated items for each user, the cleaning
process was again applied to remove users who rated less than five movies. At the end, the dataset
contained a total of 6078 users and 976 movies which give a total of 62,156 ratings in the dataset.
Nevertheless, to analyze the frequency of each rating value (1 through 13), the dataset was divided
into five separate portions (the four criteria and the overall) containing UserID, ItemID, Value, for each
criterion and the overall rating. Table 2 gives the basic statistics of the rating values by computing
the number of times each value appears in the dataset, the approximate percentage, and cumulative
percentage rounded to the nearest whole numbers. Though the tables for similar statistics for the other
four criteria are not presented in this paper, the same approach was followed to analyze all of them.
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The average rating for the direction, the action, the story, the visual, and the overall ratings in three
decimal points are 9.534, 9.567, 9.900, 10.092, and 9.522 respectively.

Table 2. Rating matrix for multi-criteria RSs.

Value Frequency Percentage CumFreq

1 3395 5% 5%
2 1340 2% 8%
3 1522 2% 10%
4 1329 2% 12%
5 2051 3% 16%
6 2428 4% 19%
7 2489 4% 23%
8 3251 5% 29%
9 5586 9% 38%
10 7006 11% 49%
11 6702 11% 60%
12 12,153 20% 79%
13 12,904 21% 100%

3.1.2. TripAdvisor Dataset

The hotel rating dataset: The second experiment was carried out using a hotel booking dataset
extracted from TripAdvisor (https://www.tripadvisor.com/), for recommending hotels to users based
on six aspects (attributes) of the hotels. In addition to the Overall rating, the dataset contains Value
aspect rating, Rooms aspect rating, Location aspect rating, Cleanliness aspect rating, Check in/front desk
aspect rating, and Business Service aspect rating [28]. The ratings are presented on a scale of 7, ranging
from 0 to 5 stars, and−1 indicates this aspect rating is missing in the original dataset. Table 3 shows the
sample of the TripAdvisor dataset. The dataset contains 246,098 ratings of 148,183 users on 1851 hotels.
In addition to rating information, the dataset initially contained supplementary information such
as the date, contents, etc. To obtain the data in Table 3, we performed data cleaning to remove the
unwanted entries and all cases of having only the users’ and hotels’ IDs without giving ratings to at
least one aspect. Users with low counts were also excluded to reduce the costs of experimentation.

Table 3. Sample dataset for hotel rating.

User Hotel Value Rooms Location Cleanliness Check-in Desk Service Overall
ID ID (k1) (k2) (k3) (k4) (k5) (k6) (ko)

27 1 1 5 4 5 5 5 4
9 1 5 5 5 5 4 3 5

22 6 3 2 4 3 3 3 3
27 6 4 5 4 5 5 −1 4

Furthermore, we conducted basic statistics of the dataset to show the strength of correlations
between ratings of the six aspects and the overall ratings. Table 4 presents the approximation of the
correlations between criteria (aspect) ratings and the overall rating. Although the statistical analysis of
the table revealed that all the aspect ratings had positive correlations with the overall ratings, it can be
seen from the table that the location aspect has the highest influence in deciding the overall ratings.
However, the table also illustrates that the business service of the hotels had the least significance in
computing the overall ratings, compared to the other aspects. Column three of this table contains the
approximate correlations between the overall ratings and criteria ratings.

https://www.tripadvisor.com/
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Table 4. Pearson correlation matrix of the dataset.

Overall Value Rooms Location Cleanliness Check-in Desk Service

Overall 1.00 0.76 0.61 0.80 0.63 0.74 0.46
Value 0.76 1.00 0.55 0.91 0.54 0.90 0.40

Rooms 0.61 0.55 1.00 0.55 0.95 0.50 0.68
Location 0.80 0.91 0.55 1.00 0.56 0.88 0.42

Cleanliness 0.63 0.54 0.95 0.56 1.00 0.53 0.69
Check-in desk 0.74 0.90 0.50 0.88 0.53 1.00 0.39

Service 0.46 0.40 0.68 0.42 0.69 0.39 1.00

Bolded values indicate the correlations between the overall rating and the ratings of each criterion. They can
be read along the row or column.

3.2. Systems Implementations and Evaluations

In this section, the framework of the proposed model is summarized (Section 3.2.1) and details
of the implementation of the systems are discussed (Section 3.2.2). Finally, Section 3.2.3 explains the
evaluation metrics used in assessing the accuracy of the systems.

3.2.1. The Proposed MCRSs Framework

Building MCRSs using an aggregation function approach requires three-to-four important steps,
as enumerated in Section 2.2 when discussing MCRSs. It starts by decomposing the n-dimensional
rating problem into n single-rating problems, followed by choosing the preferred aggregation function
that can work on n-dimensional ratings to finally estimate the overall rating. This process combines
the proposed aggregation function with a traditional recommendation technique that can compute
individual criteria ratings to be used for the prediction of the overall ratings. Figure 1 summarizes the
basic idea behind the proposed technique and the steps required to provide top-N recommendations.

1. A multi-criteria rating dataset containing ro, r1, r2, ..., rn, User and Item ID

3. Known ratings
r1, r2, r3, ..., rn, with
user- and item-ID

3a. Decompose into
n separate single rating
problems ∀rj, j = 1, 2, ..n

3b. Predict r′j using:
i. SVD and

ii. Slope one RSs, ∀j

2. Known ratings
ro, r1, r2, ..., rn
without IDs

2a. Learn the relation
ro = f (r1, r2, ..., rn)

using the SMA-based
artificial neural network

Integrate 2a and 3b
to predict r′o based on

r′j, for j = 1, 2, ..., n

Provide the
list of Top-N

recommendations

Figure 1. The framework of the proposed multi-criteria recommender systems (MCRSs).
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As can be seen from the figure, the model starts by loading the multi-criteria dataset and dividing
it into two parts. One part contains only the ratings (ro to rn shown in step 2) to train the SMA-based
neural network for learning the relationship between the criteria ratings and the ro given in (5) at
page 4. However, this part did not require the user- and item-ID. The data in step 3 contains the criteria
ratings (r1, r2, r3, ..., rn), user-ID, and item-ID to learn the behavior of users relative to each attribute of
the items. Here, the overall rating is not needed. Similarly, The two traditional techniques (SVD and
slope one) learn and predict the criteria ratings for new items. Finally, the model predicts the overall
rating for new items by integrating the trained neural network and the single rating technique. Top N
items will be recommended to the user based on the strength of the corresponding r′o of the items.

Therefore, following the architectural framework presented in Figure 1, the three models
implemented and used to conduct the experiments are enumerated below.

• An ANN was implemented and trained using SMA and the datasets to learn the relationship
between the criteria ratings and the overall rating.

• Two traditional RSs were built using two different techniques (slope one and SVD); each of them
can learn and predict the decomposed n-dimensional ratings separately from the dataset.

• Two MCRSs have been developed by integrating the SMA-based networks with the two traditional
techniques separately.

3.2.2. Implementation

Java was chosen as the programming language to implement all the systems used for this study.
The choice of the programming language follows several books [29] and papers [30] that we consulted
and obtained hints on how to implement the system in Java.

RSs are complex software tools that gather many interacting components, starting from loading
the data into the memory, down to presenting the results to the users after performing some internal
computations. Their design and implementation entail understanding the type of users and the type of
data available to describe the items. The explanations given here may not be sufficient for a beginner
to learn the techniques for designing RSs, but the references above and the work of Picault et al. [31]
could give the required skills on how to get RSs out of the lab.

Nonetheless, regardless of the methods and techniques used to build RSs for research purposes,
the systems need to be evaluated experimentally using at least one of the following evaluation
techniques. The offline experiments: which require no mutual interaction with the real users. The second
evaluation method is the user study: where a group of users will be asked to use the system in
a particular controlled environment and give their feelings about the system. Thirdly, the systems can
be evaluated when used by many real users over an extended period, normally without prior thinking
of the experiment [32].

To evaluate our proposed systems, we followed offline experiments to simulate the interactions
of real users with the real systems, where the systems will predict the user preferences and make
recommendations. The users will then make corrections on the predictions of the systems and check
whether the recommendations made by the systems are useful. This interaction was simulated by
recording the interactions of users and the systems using datasets and hiding some of the interactions
(called test data) to practice how users would rate some items and what will be the acceptability of the
recommendations done by the systems.

There are several general rules for how the test data could be selected. These include the Pareto
principle [33], cross-validation [34], held-out method [35], and so on. Cross-validation is one of the
popular ways of selecting the test data, where the dataset will be split into some equal partitions,
and every partition will be used in turn as the test data. We chose cross-validation so that more data
in the ranking algorithm will be used, and the effect of variation in the training set will be taken into
consideration [32].



Appl. Sci. 2017, 7, 868 10 of 18

3.2.3. Evaluation Metrics

Moreover, to evaluate the accuracy of the systems, we used three main methods of measuring
prediction accuracy, as follows:

1. Rating prediction accuracy: Root mean square error (RMSE) in Equation (8) and mean average
error (MAE) in Equation (9) were used to measure rating prediction accuracy, where |Nt| is the
number of test sets, r̂ui and rui are the predicted and actual ratings from the test set, respectively.

RMSE =

√√√√ 1
|Nt| ∑

(u,i)∈Nt

(r̂ui − rui)2 (8)

MAE =
1
|Nt| ∑

(u,i)∈Nt

|r̂ui − rui| (9)

2. Usage prediction: A Precision which measures the segment of useful recommendations among
those predicted as useful by the systems (Equation (10)). A Recall, which is defined in a standard
way by Adomavicius et al. [36] as a metric for estimating part of useful recommendations out of
all the items acknowledged to be useful (Equation (11)). F-measure, which served as a harmonic
mean of the precision and recall (Equation (12)), which are the most useful measures of interest for
some number of recommendations were used in measuring usage predictions. In Equations (11)
and (12), the term #tp means the number of true positive, which indicates the number of useful
predictions. The # f n stands for the number of useful predictions that are not among the top-N
recommendation list, and # f p is the number of false positive that represents the total number of
non-useful predictions.

Precision =
#tp

#tp + # f p
(10)

Recall =
#tp

#tp + # f n
(11)

F−measure =
2Precision× Recall
Precision + Recall

(12)

3. Ranking accuracy: We used three evaluation metrics for measuring the ranking accuracy of RSs
to evaluate the systems. The area under the curve (AUC) of a receiver operating characteristics
(ROC) curve in Equation (13) for each user u, which measures how accurate the algorithms’
separate predictions into relevant and irrelevant by finding the area under the curve of the
sensitivity rate (recall) against the specificity. The rank+uk is the position of the kth relevant item
among the N recommended items.

AUCu =
1
N

[(
#tpu

∑
i=1

rank+ui

)
+

(
#tpu + 1

2

)]
(13)

The second ranking metric is the normalized discounted cumulative gain (NDCG), which is a ratio
between the discounted cumulative gain (DCG) and the ideal DCG (IDCG) (see Equation (14))
that also measures the performance of RSs based on the graded relevance of the recommended
entities. The DCG shows the correctness of the ranking. It takes a real number between 0 and
1, and the larger the DCG, the better the ranking accuracy of the algorithm. The IDCG is the
maximum DCG value for a given set of queries. The relk in the equation takes 1 if the item at
position k is relevant, and 0 otherwise.

NDCG =
DCG
IDCG

=

(
rel1 + ∑N

2
relk

log2k

)
(

rel1 + ∑
#tpu−1
2

relk
log2k

) (14)
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Similarly, the fraction of concordant pairs (FCP) in Equation (15) was also used to ensure the
correct measurement of the ranking accuracy. The nc represents the number of concordant pairs
defined as nc = ∑u∈U |(i, j)|{r̂ui > r̂uj ⇒ rui > ruj}, and nd is the corresponding number of
discordant pairs calculated as nd = ∑u∈U |(i, j)|{r̂ui > r̂uj ⇒ rui ≤ ruj}. This means that the
concordant pairs are predicted ratings r̂ui and r̂uj for some items i and j so that if r̂ui > r̂uj,
then their corresponding ratings rui and ruj from the dataset must satisfy the same condition
rui > ruj; otherwise, the items i and j are called discordant pairs.

FCP =
nc

nc + nd
(15)

The percentage correlations between predicted ratings and the actual ratings were calculated using
Pearson correlation coefficient to establish how close the predicted ratings of each of the techniques
are to the real ratings from the dataset.

4. Results and Discussion

To compare the proposed MCRSs approaches with the traditional single rating techniques,
we performed two separate experiments based on the domains of the extracted datasets. Therefore,
this section is subdivided into two subsections, and each subsection gives a summary of the
experimental findings.

4.1. Experiment One

Experiment one was conducted using the Yahoo!Movie dataset, and it was carried out five times
by changing the global recommendation settings, which include N-fold cross-validation with different
values of N∗ for splitting the dataset into training and test sets, and topN that was used by precision
and recall so as to find out under what circumstances (values of N∗ and N) the proposed aggregation
function-based MCRSs would provide better performance accuracy compared to their corresponding
single-rating traditional approaches. The experiments were divided into five stages with different
N∗–N values as 10–10, 5–10, 10–5, 5–5, and 5–4, where each case stands for N∗ f old− topN general
settings. The N∗ f old cross-validation breaks the dataset into N∗ sets of approximately the same size.
N∗ − 1 sets are to be used for training, and the remaining set as a test set. This process will be repeated
N∗ times, and the model provides the mean accuracy of each metric.

Although any single rating recommendation technique could be used to perform similar
experiments, we decided to use matrix factorization SVD and the slope one algorithm, whose better
prediction accuracy have been established by various studies in RSs [6]. As mentioned in Section 3.2,
we used MAE, RMSE, precision, recall, F-measure, AUC, NDCG, and FCP to investigate and analyze
the predictive performance of all four techniques. They are named as SVD to represents the matrix
factorization SVD, SlopeOne for the slope one algorithm, MC-SVD for the proposed MCRSs that
worked with the SVD, and MC-Slope for MCRSs that worked alongside the SlopeOne technique.
The outcomes of evaluating their predictive performance are presented in Table 5. The last part of the
table contains the average of each metric from the five categories of the experiments, which show the
improved accuracy of our proposed ANN-based models.

The resulting RMSE, MAE, AUC, and FCP presented in Table 5 confirmed that the proposed
aggregation function model integrated with SMA-based networks are by far more accurate than their
corresponding traditional single rating algorithms. Interestingly, even the MAE that does not deal
with larger errors as well as the RMSE metric, the proposed techniques show greater accuracy in all
the experiments than the single-rating-based techniques.

Tables 6 and 7 report the numerical differences in accuracies between the two ANN-based models
and the single rating techniques. The tables have shown the decrease in RMSE and MAE and also
increase in F-measure AUC, NDCG, and FCP, that highlight the positive performance of ANN-based
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MCRSs. The experimental results showed clear accuracy improvements over the ones observed in
earlier studies [6,27,37].

Table 5. Evaluation results.

Settings Algorithms RMSE MAE Precision Recall F-Measure AUC NDCG FCP

10–10

SVD 2.862 2.033 0.862 0.799 0.830 0.742 0.927 0.759
MC-SVD 1.374 0.932 0.879 0.857 0.868 0.904 0.996 0.904
SlopeOne 3.046 2.131 0.862 0.797 0.828 0.701 0.925 0.704
MC-Slope 1.651 1.171 0.869 0.856 0.863 0.897 0.995 0.859

5–10

SVD 2.863 2.033 0.865 0.794 0.828 0.713 0.905 0.749
MC-SVD 1.373 0.932 0.882 0.854 0.868 0.912 0.989 0.906
SlopeOne 3.034 2.123 0.865 0.797 0.830 0.675 0.898 0.717
MC-Slope 1.649 1.170 0.874 0.849 0.861 0.904 0.987 0.863

10–5

SVD 2.906 2.061 0.762 0.793 0.779 0.725 0.926 0.756
MC-SVD 1.374 0.931 0.776 0.855 0.814 0.919 0.996 0.912
SlopeOne 3.069 2.151 0.762 0.798 0.779 0.676 0.923 0.730
MC-Slope 1.653 1.171 0.770 0.840 0.803 0.884 0.994 0.856

5–5

SVD 2.904 2.06 0.767 0.785 0.776 0.726 0.903 0.740
MC-SVD 1.374 0.932 0.785 0.849 0.816 0.919 0.989 0.909
SlopeOne 3.076 2.154 0.766 0.790 0.778 0.690 0.897 0.705
MC-Slope 1.651 1.170 0.784 0.848 0.815 0.904 0.986 0.854

5–4

SVD 2.933 2.08 0.692 0.778 0.732 0.723 0.901 0.749
MC-SVD 1.373 0.932 0.710 0.846 0.772 0.908 0.987 0.904
SlopeOne 3.076 2.156 0.691 0.784 0.734 0.688 0.896 0.708
MC-Slope 1.656 1.172 0.709 0.844 0.771 0.903 0.986 0.861

Average

SVD 2.894 2.053 0.789 0.793 0.790 0.726 0.912 0.750
MC-SVD 1.373 * 0.932 * 0.806 * 0.853 * 0.827 * 0.912 * 0.991 * 0.907 *
SlopeOne 3.062 2.143 0.789 0.790 0.788 0.686 0.908 0.712
MC-Slope 1.652 1.171 0.801 0.848 0.822 0.898 0.988 0.859

Bold values indicate the highest accuracy attained in each experiment and Bolded * is the highest among
the average values. AUC: area under the curve; FCP: fraction of concordant pairs; MAE: mean absolute
error; MC-Slope: MCRSs that worked alongside the SlopeOne technique; MC-SVD: the proposed MCRSs
that worked with the SVD; NDCG: normalized discounted cumulative gain; RMSE: root mean square error;
SlopeOne: the slope one algorithm.

Table 6. Level of accuracy improvement between MC-SVD and the single-rating techniques.

Algorithm 4RMSE * 4MAE * 4(F-M) ** 4AUC ** 4NDCG ** 4FCP **

SVD 1.520 (52.5%) 1.122 (54.6%) 0.038 (4.8%) 0.186 (25.7%) 0.079 (8.7%) 0.156 (20.8%)
SlopeOne 1.687 (55.1%) 1.211 (56.5%) 0.040 (4.9%) 0.226 (32.8%) 0.083 (9.2%) 0.194 (27.3%)

* The symbol4RMSE indicates decrease in RMSE and4MAE is the decrease in MAE between MC-Slope
and the two single ratings. ** The symbol4(F-M),4ROC,4NDCG, and4FCP indicate increase in usage
predictions and ranking accuracy between MC-SVD and the two single rating techniques. ROC: receiver
operating characteristic.

Table 7. Level of accuracy improvement between MC-Slope and the single rating techniques.

Algorithm 4RMSE * 4MAE * 4(F-M) ** 4AUC ** 4NDCG ** 4FCP **

SVD 1.242 (42.9%) 0.883 (43.0%) 0.033 (4.1%) 0.172 (23.7%) 0.077 (8.5%) 0.108 (14.4%)
SlopeOne 1.408 (46.0%) 0.972 (45.4%) 0.034 (4.3%) 0.212 (30.9%) 0.082 (9.0%) 0.146 (20.5%)

* The symbol4RMSE indicates decrease in RMSE and4MAE is the decrease in MAE between MC-Slope
and the two single ratings. ** The symbol4(F-M),4ROC,4NDCG, and4FCP indicate increase in usage
predictions and ranking accuracy between MC-Slope and the two single rating techniques.

Furthermore, to emphasize the good performance of our models, we conducted some statistical
analysis by extracting some of the predicted ratings of all the algorithms and comparing them with
the actual ratings from the dataset. Table 8 contains the percentage correlations between the actual
and predicted values for each of the four experimented techniques. As we have already seen when
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giving the basic statistics of the dataset in Table 2, the minimum and maximum ratings in the dataset
are 1 and 13, respectively. We also found the corresponding minimum and maximum values from the
predicted values of each of the techniques, and the result is also included in Table 8. However, the table
gives only numerical values to show the strength of the relationships that exist between the predicted
ratings and actual ratings. For instance, if there exist some deviations or outliers between the ratings,
the correlation in the table did not show the real behavior of each technique. It is therefore important
to further analyze the monotonic relationship between them. Figures 2–4 are graphs of actual vs.
MC-SVD, actual vs. SVD, and actual vs. the two techniques (MC-SVD and SVD), respectively.
Figure 4 shows several errors from single-rating SVD, where in many instances it did not move in
line with actual values from the dataset. It is apparent from the data in Figure 2 that most of the
predictions of the single-rating SVD are not even close to actual ratings. Strong evidence of these
inconsistencies can be observed in several places on the figure. For example, it predicted lower ratings
such as 4, 2, and 1 as 11, 9, and 3 respectively. Other surprising predictions observed from the graph
are several occasions where SVD could not accurately predict high ratings; it either predicted them to
be higher than the actual or in most cases, it predicted the ratings to be between 6 and 12. Turning
now to Figure 3, it can be seen that it is not surprising that in Table 5 through Table 8 the MC-SVD
had better performance than all the single-rating techniques. The figure shows significant correlations
between the two curves. Moreover, comparing the three curves in Figure 4, we can further see that the
same ratings by SVD as approximately 11, 9, and 3, instead of 4, 2, and 1, the MC-SVD approximates
them as 4, 3, and 3, respectively. The predictions of MC-SVD are almost similar to the actual values.
Although the MC-SVD is not always giving the correct predictions, even its incorrect predictions are
much better than that of the single-rating SVD.

Together, these results indicate that modeling MCRSs with artificial neural networks significantly
improved the accuracy of the systems.

Table 8. Correlations between actual and predicted ratings.

Measure MC-SV D MC-Slope SV D SlopeOne

Correlation (%) 95.6 85.7 59.0 54.3
Maximum 13.26 13.21 14.62 14.34
Minimum 0.90 1.70 0.96 0.67

Figure 2. Graph of Actual vs. MC-SVD predicted ratings.
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Figure 3. Graph of Actual vs. SVD predicted ratings.

Figure 4. Graph of Actual vs. MC-SVD and SVD predicted ratings.

4.2. Experiment Two

This experiment was conducted to evaluate potential biases by re-evaluating the proposed
approach with another dataset from a different domain (hotel rating dataset). We followed similar
methods to the ones applied in the previous experiment. However, in addition to the changes in
the dataset used for the two experiments, small changes have been made by increasing the number
of the network’s neurons to account for the two additional criteria ratings. Furthermore, since no
single situation was reported among the five experiments conducted in the previous section, where the
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change of training and recommendation settings affect the performance of the proposed techniques,
carrying out the experiment many times is no longer required to evaluate the accuracy of the systems.
Therefore, the current experiment was conducted only one time using a 10-fold cross-validation,
and the recommendation accuracy was assessed using top10 recommendations.

The empirical results obtained from the preliminary analysis of the accuracy of the systems are
presented in Table 9. As expected, despite the fact that the dataset used in this experiment was not
as clean as the Yahoo!Movie dataset as it contains −1 (indicating missing rating), the data shown in
the table have shown that the proposed techniques maintained the accuracy improvements over their
corresponding single-rating techniques.

Turning now to the experimental evidence on the level of accuracy improvements, Table 10
summarized the results of the differences and percentage improvements between MC-SVD and the two
single techniques. Similarly, Table 11 presents the results of comparing MC-Slope and the single rating
techniques. It is interesting to mention that this experiment did not detect any evidence that changing
the dataset and the dimension of the criteria ratings—which might lead to increasing/decreasing the
number of neurons in the neural network—could become a problem for the proposed techniques.

Finally, if we turn to the comparison between the two MCRSs (MC-SVD and MC-Slope),
the findings of the current experiment are consistent with the ones observed in Section 4.1, which show
that MC-SVD provides the highest accuracy over the MC-Slope. This is somewhat unsurprising, as
their corresponding single rating techniques also show similar differences. Following these findings,
the proper choice of a single-rating technique while modeling the criteria ratings could lead to
developing MCRSs that can provide higher prediction and recommendation accuracy. It is therefore
encouraging to say that these results provide further support to the hypothesis that using model-based
approaches such as aggregation function technique has high tendencies of providing systems with
higher accuracy than following heuristic-based approaches. The reason is due to the ability of the
model-based approaches to work with any collaborative filtering technique.

Table 9. Evaluation results for experiment two.

Algorithms RMSE MAE Precision Recall F-Measure AUC NDCG FCP

SVD 2.125 1.509 0.840 0.704 0.767 0.333 0.919 0.667
MC-SVD 1.110 0.860 0.879 0.731 0.795 0.500 0.976 0.89
SlopeOne 2.459 1.688 0.832 0.704 0.761 0.286 0.910 0.651
MC-Slope 1.355 0.921 0.861 0.728 0.786 0.400 0.961 0.850

Bold values indicate the highest accuracy attained.

Table 10. Level of accuracy improvement between MC-SVD and the single rating techniques.

Algorithm 4RMSE * 4MAE * 4(F-M) ** 4AUC ** 4NDCG ** 4FCP **

SVD 1.015 (47.8%) 0.649 (43.0%) 0.032 (4.2%) 0.167 (50.2%) 0.057 (6.2%) 0.223 (33.5%)
SlopeOne 1.349 (54.9%) 0.828 (49.0%) 0.038 (5.0%) 0.214 (75.0%) 0.066 (7.3%) 0.239 (36.6%)

* The symbol4RMSE indicates decrease in RMSE and4MAE is the decrease in MAE between MC-Slope
and the two single ratings. ** The symbol4(F-M),4ROC,4NDCG, and4FCP indicate increase in usage
predictions and ranking accuracy between MC-SVD and the two single rating techniques.

Table 11. Level of accuracy improvement between MC-Slope and the single rating techniques.

Algorithm 4RMSE * 4MAE * 4(F-M) ** 4AUC ** 4NDCG ** 4FCP **

SVD 0.769 (36.2%) 0.588 (39.0%) 0.023 (3.0%) 0.067 (20.12%) 0.042 (4.5%) 0.183 (27.5%)
SlopeOne 1.103 (44.9%) 0.767 (45.4%) 0.029 (3.8%) 0.114 (40.0%) 0.051 (5.6%) 0.199 (30.5%)

* The symbol4RMSE indicates decrease in RMSE, and4MAE is the decrease in MAE between MC-Slope
and the two single ratings. ** The symbol4(F-M),4ROC,4NDCG, and4FCP indicate increase in usage
predictions and ranking accuracy between MC-Slope and the two single rating techniques.
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5. Conclusions and Future Work

Traditional RSs have been recognized as systems that determine user preferences on items using
single-rating techniques. In contrast, MCRSs use multiple criteria ratings that cover several item’s
attributes to predict user preferences for a given user–item pair. A model-based approach is one of the
methods that learn the relationships between criteria ratings from an observed data to estimate the
unknown ratings by constructing a predictive model. Among such models are those that followed
an aggregation function technique, which intuitively assumes a relationship between the overall
and criteria ratings. The present study was designed to determine the impact of feedforward neural
networks trained with simulated annealing algorithms to build the predictive model for estimating
preferences of users on items that are not yet rated by the users. To achieve this, we built four RSs,
two of which are single rating RSs using singular value decomposition (SVD) and slope one algorithm,
respectively. The two MCRSs were built using neural networks integrated with SVD and slope one
algorithm called MC-SVD and MC-Slope, respectively. Several experiments were carried out with two
different datasets to investigate which of the RSs can provide better prediction accuracy over the other
and under which circumstances. The investigations have shown that in all the experiments conducted;
the proposed neural network-based approaches produced highest prediction accuracy compared to the
single rating techniques. The second significant finding was that the proposed techniques show higher
correlations with original data than their corresponding traditional techniques. The evidence from this
study suggests that using neural networks in conjunction with single-rating technique—especially
matrix factorization (SVD)—is the best way to model MCRSs. Furthermore, the techniques identified
in this paper have assisted in our understanding of the role of aggregation function approach and also
provide a promising alternative for modeling multiple criteria ratings.

The neural networks used in this study were three-layer (input layer, one hidden layer,
and an output layer) feedforward networks trained using simulated annealing algorithms, which have
higher prediction accuracy than quasi-Newton, conjugate gradient, and backpropagation algorithms.
Although it minimizes the error efficiently and does not require many iterations, the major weak point
of simulated annealing algorithms is the long running time, which could be improved by hybridizing
it with faster training algorithms such as a Levenberg–Marquardt algorithm. However, more research
on this topic needs to be undertaken to speed up the running time and also to try increasing the
size of the network by using techniques like deep belief networks or convolutional neural networks.
Exploring other sophisticated machine techniques such as Bayesian reasoning, random forest algorithm,
multidimensional scaling, neighborhood search, ant colony optimization, bee colony optimization, and
others into MCRSs modeling is also recommended for future research. Moreover, future studies on the
current topic that would use datasets from a social network recommendation framework that could
incorporate trust as an additional criterion or a hybrid of implicit trust-based ratings that determine
the trust based on each criterion and our proposed technique are therefore recommended.
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