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Abstract: This paper presents a mathematical linear expansion model for the probabilistic Multistage
Phasor Measurement Unit (PMU) Placement (MPP) in which zero-injection buses (ZIBs), as well as
communication channel limitations, are taken into consideration. From the linearization perspective,
presenting a model formulizing the probabilistic concept of observability while modelling the ZIB
is of great significance, and has been done in this paper for the first time. More importantly, the
proposed probabilistic MPP utilizes a technique disregarding the prevalent subsidiary optimizations
for each planning stage. Although this technique, in turn, increases the problem complexity with
manifold variables, it guarantees the global optimal solution in a wider and thorough search space;
while in the prevalent methods, some parts of the search space might be missed. Furthermore, the
proposed model indicates more realistic aspects of the MPP where system operators are allowed to
follow their intention about the importance of buses such as strategic ones based on monitoring the
priority principles. In addition, the model is capable of considering the network topology changes due
to long-term expansions over the planning horizon. Finally, in order to demonstrate the effectiveness
of the proposed formulation, the model is conducted on the IEEE 57-bus standard test system and
the large scale 2383-bus Polish power system.

Keywords: channel limitation; increased search space; linear expansion; Phasor Measurement Unit
(PMU); probabilistic multi-stage PMU placement; probability of observability; zero-injection bus (ZIB)

1. Introduction

In recent years, a system named Wide Area Monitoring Protection and Control (WAMPC) has
been introduced to power systems covering supervisory control and data acquisition (SCADA)’s
shortfalls, in which Phasor Measurement Units (PMUs) are the main components of this system,
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providing synchronized real-time signals with the aim of making the network observable [1]. Data
obtained from PMUs have revolutionized the power system analysis. In [2,3], event locations are
estimated online using the data gathered by PMUs. Utilizing the benefits of real-time PMU data, early
warning to the angle instability is possible which can protect the power system against blackouts.
In this respect, a model has been presented in [4] to produce a very quick and efficient response to
angle instability. Similarly, taking advantage of the PMU’s accurate data, the network voltages can
be monitored closely to have a more reliable system from the instability point of view. This issue has
been addressed by authors of [5–8]. Controlled islanding as another strategy to prevent cascading
blackouts was mainly investigated from the aspect of either optimal splitting surface determination
or the start-up criterion; by increasing the penetration of PMUs in power systems, a more efficient
method has been developed to include both aspects [9].

The previously stated benefits can be derived without any necessity to install PMUs at all network
buses. This is because a PMU can make its neighboring buses observable by measuring accurate and
online current and voltage phasors. On the other hand, the device requires suitable infrastructure such
as communication links, which are sometimes cost-intensive, to be prepared. Here the problem of
Optimal PMU Placement (OPP) arises to achieve the objectives using the minimum possible PMUs
installed. In [10–14], the problem of OPP has been carried out attempting to observe the whole
network. In addition to this goal, the authors in [15] have proposed an OPP scheme more suitable for
the state estimation and post-estimation. Through this method, the matter of bad date detection can
be significantly improved by fixing the extra PMUs at strategic buses. Similarly, a new OPP with the
aim of improving the state estimation has been investigated in [16] using the Genetic Algorithm (GA).
Therein, considering the Zero Injection bus (ZIB) in the observability rules introduces nonlinearity to the
problem [10,12]. Though utilizing an evolutionary algorithm can handle the nonlinear problem [12],
mathematical linearization techniques have always been the preference due to their considerable
advantages [13,14,17–19]. In this regard, modeling the ZIBs in the OPP problem beside the redundant
PMU placement has been addressed in the framework of Integer Linear Programming (ILP) [19].
In recent years, PMU placement studies have given more practical considerations. Due to presence
of conventional power flow and injection measurements in the power system, an OPP model has
been solved considering such devices [14,20]. In reality, PMUs come with the limited number of
communication channels that restrict them to measure all entering branches. To consider this limitation,
several studies have been carried out to assign the PMU channels to specific transmission lines [11,21].
Moreover, thanks to the valuable experiences from a real-life project, Rather et al. in [22] have
considered some major hidden costs in the OPP problem to propose a realistic cost-efficient model
instead of widely used OPP that minimizes the number of PMUs. Based on this study, the four major
factors which impose a considerable financial burden to a PMU installation project, next to the PMU
cost, are the costs related to instrument transformers, shutdown during installation, communication
infrastructure and building suitable foundations.

Apart from the methodologies used to model the OPP and the abovementioned considerations,
there are two distinct viewpoints in terms of observability, that is, deterministic and probabilistic. From
the deterministic point of view, a PMU can make a bus either observable or not. Under this broader
definition, the exact description of the complete and incomplete observability as well as the concept
of the depth of unobservability has been addressed in [23]. So far, the OPP is usually investigated
from the deterministic viewpoint [10–12,17,19–26]. However, the probabilistic concept of observability
provides more realistic insight. Indeed, not only does the probabilistic definition of observability
include the effects of PMUs on its own, but also considers some more related practical aspects such as
the impacts of availability of lines, PMUs and their communication links on the observability of a bus.
In [27], a probabilistic version of the observability is defined to include the mentioned factors while
ignoring the presence of ZIBs. In spite of the deterministic contingency-constrained PMU placement
model [10,13,14,17,21] which considers the N-1 security criterion on lines and PMUs, the probability of
line and PMU failures, derived from the history of the system and equipment, are taken into account
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in the probabilistic model [28]. In [18], a multi-objective OPP has been studied considering a similar
concept of observability in a probabilistic framework, attempting to maximize and minimize the
expected value of system observability and the number of PMUs, respectively.

In reality, large scale power systems usually generate a huge financial burden because of the
costs related to PMUs, preparing the infrastructure, and installation. Moreover, technical restrictions
avoid installing all the needed PMUs over a short period of time. Thus, the PMU installation is
done over separate planning stages for a specific timetable as a Multistage PMU Placement (MPP)
optimization problem [24]. In the deterministic framework, the MPP has been investigated with various
objectives such as maximizing the network observability over the time horizons [25], maximizing
tie-line observability by means of the analytic hierarchy process method [26], and phasing PMUs in
order of precedence at sparse locations [29]. Furthermore, the delivery costs for PMUs’ relocation is
investigated in the MPP context in [30]. Authors in [31] have included communication infrastructure
costs as well as the installation cost. On the other hand, the probabilistic MPP has not been much
focused thus far. In this regard, Ref. [27] has proposed a probabilistic model for MPP introducing an
index for the system. It is worth noting that in all the above-mentioned MPP studies, the methods of
MPP mainly used are the same. That is to say, firstly, the PMU placement of the initial stage is carried
out. At the next stage, another optimization is performed under a condition that those buses obtained
from the results of the first optimization are put aside from the search space. In other words, the input
for the second optimization is limited, leading to a smaller search space.

This paper aims at improving the power system monitoring during the planning stage by
presenting a comprehensive linear model for the probabilistic MPP while practical issues are considered.
The main contributions of the paper are listed below.

• Proposing a linear expansion model for the probabilistic MPP to consider ZIBs, for the first
time: Modeling the ZIB has been always a great challenge in terms of the linearization. This is
why previous research has used evolutionary algorithms such as Particle Swarm Optimization
(PSO) [32,33], Imperialist Algorithm [34] or non-linear programing [35,36]. But, among all
optimization methods, linear programming is in preference to others due to two main superiorities;
assuring the global optimum of a problem in convex models and the capability to be implemented
in large scale cases.

• In the probabilistic framework, a linear technique is used for MPP in search of the global optimum
solution in the complete search space with the help of manifold auxiliary variables, all by
performing one optimization run. Finally, the model is strengthened so as to consider the channel
capacity of the PMUs and the network topology changes resulted from the expansion planning in
power systems.

• Providing a realistic context of the MPP scheme desirable for system operators: In order to implement
a practical MPP, the proposed model is able to utilize inputs gathered by system operators; and to
install PMUs at buses, which are of highest importance based on a pre-determined policy, earlier than
other nodes. Indeed, this model allows the system operators to weigh the network buses’ importance
according to their preferences to monitor the critical areas of the network such as dynamic suspected
areas, power plants, tie lines or any other strategic nodes in earlier stages of the MPP.

The remainder of the paper is organized as follows. The motivation of presenting this paper is
discussed in the Section 2. In this section the primary difference between the proposed MPP method
and the conventional method is thoroughly described. The proposed linear expansion is formulated in
the Section 3. Section 4 suggests the numerical results, including a comparative case study. Finally,
Section 5 points to several conclusions of the research work presented.

2. Motivation-Limited Search Space of the Conventional MPP

Before presenting the proposed dynamic strategy, it is necessary to describe the blind spots of the
conventional Linear Programming (LP) method based on the MPP. In the conventional linear based
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MPP [24,25,27], firstly, the final year’s optimal PMU locations are predetermined at the beginning of
the scheduling. Then, in order to install the PMUs on these preset locations during the time stages, the
MPP starts utilizing a subsidiary LP optimization for the first planning stage aimed at maximizing the
network observability. Afterwards, by omitting the solutions of the first stage from the preset locations,
the PMU placement for the second time stage is done via another subsidiary optimization. Serially,
this strategy will be continued by several independent subsidiaries LP optimizations for subsequent
stages. Therefore, this method can be known as non-dynamic strategy. In this condition, the best
possible solution may not be reached. This is because the prevailing non-dynamic strategies may lead
to a limited search space. This fact may be due to the two following reasons.

• The prevalent strategy, which sequentially maximizes the network observability from the first
stage to the final stage, does not consider a part of the search space. Here, an example is presented
to show the importance of the above issue. Assume that in a given 50-bus network it has been
scheduled to install 15 PMUs on a set of predetermined 15 buses after three planning stages.
Also, assume that after solving the conventional MPP, the optimal solution obtained leads to the
observability of 25, 40, and 50 network buses from the first stage to the third stage, respectively.
It is believed that some better possible solutions may exist which are not in the prevalent method’s
search space. For instance, a solution leading to observing 24, 43 and 50 buses for the first to the
third stages, respectively, is far more desirable compared to the previous situation. Notice that the
cumulative network observability during the planning horizon for the second condition is more
than the first one. Obviously, the latter solution cannot be reached by the prevalent non-dynamic
strategy because the conventional approach tries to maximize the network observability for the
first stage at the first step. Thus, it reaches its optimal solution for the first stage as 25 buses are
observable. As a result, the path to better possible solutions (like 24, 43, and 50 observable buses)
is missing.

• Another reason relates to the nature of the LP solvers. Most of the researchers have proposed their
MPP model based on the LP technique in several subsidiary optimizations. It is very likely for
each subsidiary problem to have several alternative optimal solutions, while LP solvers employed
in the optimization software (Like CPLEX [37] in GAMS [38]) can reach just one of them in
multiple runs. Also, the existing possibility of alternative optimal solutions has not been checked.
Hence, it is possible that a global optimal solution is not reached through several LP subsidiary
problems. In other words, the problem’s search space in conventional techniques is decreased
because the paths through the unreached alternative optimal solutions are not investigated.

In fact, beside proposing a linear formulation for the probabilistic MPP, covering the two
aforementioned gaps is considered one of the outstanding points of this work. For this reason,
this paper utilizes a method to achieve the optimal solution in a larger search space. To this end, unlike
the prevalent strategy, the PMU placement for all intermediate stages is simultaneously performed in
one optimization problem known as the dynamic strategy.

3. Problem Formulation

The probabilistic definition deployed in this paper is similar to that presented in [27]. However,
the most significant point drawing a distinction between that introduced in [27] and the one presented
in this paper is that the latter has been strengthened with the capability of the ZIB modeling. In the
following, first the proposed probabilistic index is introduced in Section 3.1 and the dynamic multi-stage
PMU placement formulation is presented (Section 3.2). Afterwards, in Section 3.3, the mathematical
linear expansion is scrutinized.



Energies 2018, 11, 1429 5 of 17

3.1. Probabilistic Observability Concept

Based on Kirchhoff’s Current Law (KCL), between a ZIB and its neighboring buses, if all buses
are observable except one, that unobservable bus can be met by applying the KCL at the ZIB [13,14].
Accordingly, the probabilistic observability function of the bus i at stage t can be formulated as below:

POt
i = 1−∏j∈Ω

(
1− At

ijx
t
j

)
. (1)

where xj is a binary decision variable showing the presence and the absence of the PMU at bus j
when this value takes 1 and 0, respectively. Set Ω indicates all network buses. Also, Aij represents the
probability of the observability of the bus i because of the presence of a PMU at bus j. This constant
value has been defined as:

Aij = aij·AVm
j ·ACm

ij ·A
PMU
j ·ALink

j ·ALine
ij . (2)

where ACm
ij and AVm

j are the availability of the PMU current measurement at the line i–j and the

availability of PMU voltage measurement at the bus j, respectively. Moreover, APMU
j and ALink

j are
given and show the availability of the successful operation for PMU at bus j, and its communication
link, respectively. Furthermore, ALine

ij represents the availability of line i–j. In (2), aij represents the
connectivity of buses i and j. That is to say, if buses i and j are connected, aij is equal to 1, otherwise
this parameter would be zero.

In order to model ZIBs, the product term
(
1− A′ jzjyi,j

)
is employed. In this term, yi,j is an

auxiliary binary variable that is equal to 1 if the bus i can be observed by the effect of the zero-injection
at bus j; otherwise 0. Also, zj is a binary parameter that is equal to 1 if the bus j is a ZIB; otherwise 0.
Thus, the observability function of the bus i would be equal to 1 if the bus i can be observed either by
installing the PMU at this bus or neighboring buses through

(
1− Aijxj

)
, or by the effect of ZIB through(

1− A′ jzjyi,j
)
. Parameter A′ j is the product of probabilities of all factors that the zero-injection bus j

makes either one of its neighboring buses or itself observable.

A′ j = ∏
∀k∈Ω

akj·AVm
k ·A

Cm
kj ·A

PMU
k ·ALink

k ·ALine
kj . (3)

Here, the probabilistic index at stage t for a network comprising N buses can be defined as the
Average of the Probabilistic Observability (APO) as below:

APOt =
1
N ∑

i∈Ω
POt

i . (4)

3.2. Probabilistic Multi-Stage PMU Placement with Incremental Search Space

Unlike common methods used for the MPP dedicating several separate optimizations corresponding
to each planning stage [24–27], this paper takes the advantage of the method used in [39], known as
the dynamic MPP. The method searches for the optimal solution in the whole search space in just one
optimization run, while in traditional approaches, specific buses are firstly chosen to be equipped with
PMUs for the first stage by means of an optimization problem. Afterwards, these buses are put aside
from all candidate buses and another optimization is performed for the second stage. The steps continue
for all stages through several optimization runs. This procedure sometimes leads to missing some parts
of the search space, as discussed in [39].

In order to install a specific number of PMUs at the pre-determined buses (e.g., set Ωpmu), over M
planning stages, the proposed MPP is as follows:

max Fit =
M−1

∑
t=1

APOt. (5)
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subject to:

∑
i∈Ωpmu

xt
i =

t

∑
k=1

nk; ∀t ∈ {1, 2, . . . , M− 1}. (6)

xt+1
i ≥ xt

i ; ∀i ∈ Ω, ∀t ∈ {1, 2, . . . , M− 2}. (7)

xt
j = 0; ∀j ∈

{
Ω−Ωpmu

}
, ∀t ∈ {1, 2, . . . , M− 1}. (8)

∑i∈Ω at
ijy

t
i,j = zj; ∀j ∈ Ω, ∀t ∈ {1, 2, . . . , M− 1} (9)

Expressions (6)–(9) represent the problem constraints. In (5), APOt is the system probability
index at stage t. Equation (6) points to the scheduling table of each stage. Indeed, nt shows that how
many PMUs should be installed at stage t which must be in accordance with the pre-defined planning
timetable. It is apparent that if a PMU is located at bus i at stage t, this bus remains observable for
the upcoming stages. In this respect, inequality (7) is utilized. Equation (8) guarantees that the PMUs
are chosen just from the set Ωpmu. Moreover, constraint (9) is added in order to complete the ZIBs’
modeling. This constraint ensures that one of the buses which are incident to a ZIB, or the ZIB itself,
can be observed by the effect of the ZIB through KCL. This claim can be obviously proved by the
following deduction. When bus j is a ZIB, the right hand side of (9) is equal to 1. Hence, exactly one
auxiliary variable of buses which are incident to bus j or the auxiliary variable of bus j, would be equal
to 1. Otherwise, the right hand side of this equality is zero. Therefore, all auxiliary variables of buses
which are incident to the bus would be equal to 0.

3.3. Mathematical Linear Expansion for the Problem

It is obvious that the objective function (5) is nonlinear since it includes some product terms.
Indeed, this nonlinearity stems from th variables mentioned in (1). It should be noticed that the
nonlinearity, and therefore the complexity, existing in (11) is much more intense than that stated in [27],
because of the added product term related to the ZIB. In the following, a proof for linear version of the
POt

i (Equation (1)) and the objective function (5) is presented.
It is simple to understand that the product term of (1) is defined as the unobservability function

(POt
i = 1− PUt

i ) where its expanded form is derived as:

PUt
i =

[
(1− xt

1·Ai1)·(1− xt
2·Ai2) . . .

(1− xt
N ·AiN)

]
×
[

(1− yt
i,1·z1·A′1)·(1− yt

i,2·z2·A′2) . . .
(1− yt

i,N ·zN ·A′N)

]
;

∀i ∈ Ω, ∀t ∈ {1, 2, . . . , M− 1}.

(10)

Now for linearization, the auxiliary variables wt
ij and vt

ij are employed. Assume that:

wt
i1 = (1− xt

1·Ai1);
wt

i2 = wt
i1(1− xt

2·Ai2);
... ∀i ∈ Ω, ∀t ∈ {1, 2, . . . , M− 1}.
wt

ij = wt
i(j−1)(1− xt

j ·Aij);
...
wt

iN = wt
i(N−1)(1− xt

N ·AiN);

(11)
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and 

vt
i1 = (1− yt

i,1·z1·A′1);
vt

i2 = vt
i1(1− yt

i,2·z2·A′2);
... ∀i ∈ Ω, ∀t ∈ {1, 2, . . . , M− 1}.
vt

ij = vt
i(j−1)(1− yt

i,j·zj·A′j);
...
vt

iN = vt
i(N−1)(1− yt

i,N ·zN ·A′N);

(12)

Thus, it can be concluded that:

Ui
t = wt

iN ·vt
iN ; ∀i ∈ Ω. (13)

According to (11) and (13), if a PMU is placed either at the bus i or its neighboring buses at stage t,
the auxiliary variable wt

iN becomes zero. Therefore, the unobservability function (PUt
i ) would be equal

to zero, subsequently. Moreover, according to (12) and (13), if the bus i at stage t becomes observable,
being affected by a ZIB, then, the auxiliary variable vt

iN becomes zero. Thus, the unobservability
function (PUt

i ) would be equal to zero, subsequently. Hence, the nonlinear expression wt
iN ·vt

iN used in
(13) could be converted into the linear version using the following constraints:

Ui
t = rt

iN = wt
iN ·vt

iN ; ∀i ∈ Ω ∀t ∈ {1, 2, . . . , M− 1}. (14)

rt
iN ≤ wt

iN ; ∀i ∈ Ω, ∀t ∈ {1, 2, . . . , M− 1}. (15)

rt
iN ≤ vt

iN ; ∀i ∈ Ω, ∀t ∈ {1, 2, . . . , M− 1}. (16)

rt
iN ≥ wt

iN + vt
iN − 1; ∀i ∈ Ω, ∀t ∈ {1, 2, . . . , M− 1}. (17)

So, in general, the linear form of the objective function (5) is formulated as (18):

max Fit =
1
N

M−1

∑
t=1

∑
i∈Ω

(
1− rt

iN
)
. (18)

where (15)–(17) and:
wt

ij ≤ wt
i(j−1) + xt

j ;

wt
ij ≥ wt

i(j−1) − xt
j ; ∀i ∈ Ω, ∀j ∈ {Ω− 1}, ∀t ∈ {1, 2, . . . , M− 1}.

wt
ij ≤ wt

i(j−1)(1− Aij) + (1− xt
j);

wt
ij ≥ wt

i(j−1)(1− Aij)− (1− xt
j);

(19)

wt
i1 = (1− xt

1·Ai1) ∀i ∈ Ω, ∀t ∈ {1, 2, . . . , M− 1}. (20)
vt

ij ≤ vt
i(j−1) + yt

i,j·zj;

vt
ij ≥ vt

i(j−1) − yt
i,j·zj; ∀i ∈ Ω, ∀j ∈ {Ω− 1}, ∀t ∈ {1, 2, . . . , M− 1}.

vt
ij ≤ vt

i(j−1)(1− A′j) + (1− yt
i,j·zj);

vt
ij ≥ vt

i(j−1)(1− A′j)− (1− yt
i,j·zj);

(21)

vt
i1 = (1− yt

i,1·zi·A′1); ∀i ∈ Ω, ∀t ∈ {1, 2, . . . , M− 1}. (22)

Constraints (19)–(20) and (21)–(22) are the linear equivalent form of (11) and (12), respectively.
The proof of these sets is similar. In the following, the proof for set (18) and (19) is presented. According
to (11), 0 ≤ wt

i1 ≤ 1 since xt
1 is either 1 or 0 and, Ai1 lies in [0, 1]; likewise, 0 ≤ wt

i2 ≤ 1 since it results
from the product of two terms which both lie in [0, 1]. In general 0≤ wt

ij ≤ 1; j ∈ Ω. In order to consider
the effect of the installed PMU at bus j on the probability of the unobservability index of the bus i
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(PUi), the third and the fourth inequalities of (19) are employed. In this case, wt
ij = wt

i(j−1)

(
1− Aij

)
.

This equality is exactly the same as the one seen in (11). Notice that, wt
ij and wt

i(j−1) lie in [0, 1], so,

−1 ≤ wt
ij − wt

i(j−1) ≤ 1; thus, the first and the second inequalities of (19) are complied. Similarly,

according to (11), if there is no PMU at bus j, wt
ij should be equal to wt

i(j−1) while the first and the
second inequalities of (19) guarantee this equality. In this case, the third and fourth inequalities would
be complied since −1 ≤ wt

ij − wt
i(j−1)

(
1− Aij

)
≤ 1.

Finally, in order to solve the proposed MPP, the integration of the objective function (18) and
constraints (6)–(9), (15)–(17) and (19)–(22) should be taken into consideration as a mixed integer
linear programming.

3.4. Power System Expansion Planning Consideration

Knowing the expansion scenario over the PMU installation horizon, changes in the network
topology can be considered by updating the network connectivity data for each stage. In this regard,
the binary connectivity parameter aij is replaced by at

ij. Parameter at
ij is defined as the binary parameter

associated with the connectivity of buses i and j at stage t. This modification is based on the assumption
that zero injection buses stay immutable and there are no changes in the generation or load bus over
the placement horizon.

3.5. PMU Channel Limit Consideration

In practice, a PMU has a limited number of communication channels to measure the current phasor
of the entering lines. Figure 1a demonstrates a schematic PMU with the unlimited communication
channel, while the PMU in Figure 1b is able to measure just two entering buses due to channel
limitation. The connectivity parameter aij used in the above formulation links bus i to all buses that
are connected to it based on the network graph. This definition of aij is suitable for a PMU having
unlimited channels. In other words, for Figure 1a, aij = aik = ail = aim = ain = 1. In Figure 1b,
although the buses j, k and n are connected to the bus i, according to network graph, the PMU does not
observe them. Hence, it is possible to model the PMU channel limits by applying the modification
in the connectivity matrix where a PMU is supposed to measure a limited entering lines’ current
phasor. To serve this purpose, parameter aij must be transformed into aij·βij. Parameter βij is a binary
parameter mentioning that the PMU placed at bus i has a channel forward bus j if it is equal to 1,
otherwise 0. In Figure 1b, βil = βim = 1 and βij = βik = βin = 0.

It is worth noting that this parameter is obtained from the single stage OPP for the final year.
To explain in simple words, βij is the input of the MPP and it is already known.
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3.6. Monitoring Priority Consideration

Buses are not all of the same importance in power systems. A general classification distinguishes
the load buses from the voltage controlled buses where generators are connected. From the dynamic
point of view, monitoring the latter class, such as power plants, is of great significance compared to load
buses. On the hand, power system planners and operators may follow other principles with different
preferences. Thus, they may tend to observe the dynamic suspected areas more than other buses, or it
may be crucial to observe nodes having a decisive role in power system market. Accordingly, in order
to consider more technical aspects, the proposed MPP has been enhanced using a weight factor, wi,
allowing the system operators to weigh the network buses importance from their priorities. In this
respect, the objective function (5) is modified as Equation (23). It should be noted that the linear form
of Equation (5), that is, Equation (18), can be modified, similarly.

max Fit =
M−1

∑
t=1

(
1
N ∑

i∈Ω
wi × POt

i

)
. (23)

where wi is the mentioned weight factor associated with the bus i. Under such circumstances, the system
operators should compare the network nodes and weigh them in a proper way. As default, the factor is
equal to one for all nodes when they are of the same importance. Also, if the system operator decides to
observe a bus at the earlier stages of the proposed MPP, a big constant number should be devoted to the
related weight factor, it means wi � 1.

4. Numerical Studies

This section provides four different scenarios to demonstrate the efficiency of the proposed
approach. The first scenario focuses on the benefits of the incremental search space for the probabilistic
MPP through a comprehensive comparative case study, while in the second scenario the capability of
the proposed model in modeling the ZIB is investigated. In the third scenario, the channel limitation
is applied to the test system while the probabilistic MPP considering ZIBs is solved. Eventually,
the capability of the model to handle a large scale test system is examined in the fourth scenario
regarding monitoring priority issue. Moreover, while aimed at simulating the proposed MPP, the
model has been programmed in GAMS [38] optimization package environment using the CPLEX 12.2
solver. Configuration of the computer used for this programming is a 3.2-GHz CPU and 8 GB RAM.

4.1. First Scenario (A Comparative Study)

In order to show the advantage of the MPP with the incremental search space, the exact case
used in [27] has been chosen in order to compare the results obtained. Although the model presented
considers ZIBs, the effects of such buses are ignored in this scenario to draw a meaningful comparison
with the results of [27]. Note that ZIBs are not taken into consideration in [27].

In this regard, the IEEE 57-bus test system [40], which grows in three stages, requires 24 PMUs

at buses Ωpmu =

{
1, 3, 6, 8, 11, 12, 14, 18, 20, 22, 24, 28, 30,

32, 35, 38, 39, 40, 41, 45, 47, 51, 52, 54

}
to guarantee that the observability value

for each bus (PO3
i ) would be more than 0.985 after the planning. Figure 2 depicts this network as well

as the transmission expansion planning. As is clear, six lines are planned to be constructed over three
stages. Installing these PMUs during three stages is the optimization problem for which the proposed
probabilistic model has been presented in Section 3.2. The availability lines table, data related to the
probability availability of PMUs and their communication links as well as expansion planning are
considered the same as those in [27]. Considering the related execution time of 8.5 s, Table 1 illustrates
the obtained results of the proposed probabilistic MPP compared to those reported [27]. As can be
seen in Table 1, by installing eight PMUs during the first installation phase, 36 buses will be observed
by both methods. It should be noticed that the average probability index of the first stage, APO1,
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obtained from both methods are approximately equal in value. The detailed observability value of
each bus for the first stage is reported in Table 2.

According to Table 2, the buses which their POt
i quantities are indicated as non-zero value

are observable.
Over the second stage, the results from the proposed method exhibit an improvement in the power

system monitoring. In this stage, one more bus is observable in comparison with the conventional
MPP, showing that the proposed dynamic approach has searched for the solution in a bigger search
space. The results suggest that the studied IEEE 57-bus test system has more careful monitoring during
the second stage which normally lasts 2 to 3 years. According to Table 1, the average probability index
for this stage, APO2, is improved from 0.8867 (in [27]) to 0.9026 which is considered as a significant
enhancement from the probabilistic perspective. The observability values of the network buses for the
second stage, PO2

i , are illustrated in Table 3. As can be seen in this table, the number of unobservable
buses resulted from the proposed MPP, yellow cells, is five; which is one bus less than the number of
blue cells belonging to the conventional MPP.
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Finally, by installing all 24 PMUs at the end of the planning, the APO index for the third stage
would be equal to 0.9952, i.e., the initial target value. Obviously, the buses’ probability of observability
indexes for the final stage, PO3

i , are exactly similar for both methods, as represented in Table 4.
The test carried out in this scenario clearly shows the advantage of the proposed MPP over

the conventional MPP approach. To answer the question of why the conventional method cannot
necessarily guarantee the global optimum of the MPP problem, it would suffice to observe the results
of Table 1 more deliberately. As is stated in Section 2, the conventional MPP attempts to maximize the
observability of the stages hierarchically, from the first stage to the end, by performing an optimization
problem for each stage. In other words, the conventional MPP organizes the PMU locations for the first
stage so as to reach the maximum amount of APO1. As is presented in Table 1, this amount is 0.6231
subject to the installation of eight PMUs at buses 3, 8, 12, 24, 28, 32, 38 and 41. By fixing these buses
for the first stage solution and using other optimization procedures per each stage, the 16 remaining
PMUs will be dedicated to the 16 remaining buses, for the rest of the planning stages. On the other
hand, the aim of the proposed MPP is not maximizing the observability of the stages hierarchically,
but maximizing the cumulative observability of all stages. Therefore, by installing eight PMUs at
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buses 1, 6, 12, 24, 32, 38, 41 and 54 based on the proposed MPP (Table 1), the APO index associated
with the first stage would be 0.6230. Although the proposed MPP leads to an APO1 value that is a bit
less than 0.6231 resulted from conventional method and their difference is negligible, it guarantees
that the ∑ APOi is the maximum. Accordingly, it leads to the APO value for the second stage that is
considerably higher than that of the conventional one. Indeed, in the prevalent MPP, by specifying
several buses to be equipped with PMUs at the first stage, they are not allowed to participate in the
next stages’ placement, and a part of the problem’s search space may be missed.

Table 1. Proposed Multistage PMU Placement (MPP) results for the IEEE 57-Bus System Compared to
the Ref. [27] (First Scenario).

Planning
Stages

No. of PMUs
to Be Installed

PMU Locations
(MPP Result)

No. of Observable
Buses APOi Index

Proposed
MPP Ref. [27] Proposed

MPP Ref. [27] Proposed
MPP Ref. [27]

Stage 1 8 1, 6, 12, 24, 32,
38, 41, 54

3, 8, 12, 24, 28,
32, 38, 41 36 36 0.6230 0.6231

Stage 2 8 3, 14, 20, 28, 35,
39, 51, 52

1, 6, 14, 20, 35,
47, 52, 54 52 51 0.9026 0.8867

Stage 3 8 8, 11, 18, 22, 30,
40, 45, 47

11, 18, 22, 30, 39,
40, 45, 52 57 57 0.9952 0.9952

Table 2. The Obtained Probability of Observability Index for the first stage, PO1
i , Compared to the

Ref. [27] (First Scenario).

Stage 1

Bus
No.

PO1
i PO1

i PO1
i PO1

i

Proposed
MPP

Ref.
[27]

Bus
No.

Proposed
MPP

Ref.
[27]

Bus
No.

Proposed
MPP

Ref.
[27]

Bus
No.

Proposed
MPP

Ref.
[27]

1 0.99016 0 16 0.99974 0.98457 31 0.98388 0.99973 46 0.98516 0.98516
2 0.98497 0.98338 17 0.99971 0.98190 32 0.99016 0.99016 47 0 0
3 0 0.99016 18 0 0 33 0.98101 0.98101 48 0 0
4 0.98150 0.98655 19 0 0 34 0.98309 0.98309 49 0.98328 0.98328
5 0.98704 0 20 0 0 35 0 0 50 0.98506 0.98506
6 0.99016 0.98556 21 0 0 36 0 0 51 0 0
7 0.98190 0.98684 22 0.98684 0.98684 37 0.98536 0.98536 52 0 0
8 0.98556 0.99016 23 0.98210 0.98210 38 0.99016 0.99016 53 0 0
9 0.98516 0.99975 24 0.99016 0.99016 39 0 0 54 0.98220 0

10 0.98516 0.98516 25 0.98556 0.98556 40 0 0 55 0.99016 0
11 0.98556 0.98556 26 0.98556 0.98556 41 0.99016 0.99016 56 0.98516 0
12 0.99016 0.99016 27 0 0.98546 42 0.98576 0.98576 57 0.98615 0.98615
13 0.98299 0.98299 28 0 0.99016 43 0.98289 0.98289
14 0 0 29 0 0.98437 44 0.98170 0.98170
15 0.98665 0.98269 30 0 0 45 0 0

Table 3. The Obtained Probability of Observability Index for the second stage, PO2
i , Compared to the

Ref. [27] (First Scenario).

Stage 2

Bus
No.

PO2
i PO2

i PO2
i PO2

i

Proposed
MPP

Ref.
[27]

Bus
No.

Proposed
MPP

Ref.
[27]

Bus
No.

Proposed
MPP

Ref.
[27]

Bus
No.

Proposed
MPP

Ref.
[27]

1 0.99016 0.99016 15 0.99974 0.99974 31 0.98388 0.99973 46 0.98210 0.99969
2 0.99975 0.99975 17 0.99971 0.99971 32 0.99016 0.99016 47 0 0.99016
3 0.99016 0.99016 18 0 0 33 0.98101 0.98101 48 0.98328 0.99978
4 0.99975 0.99975 19 0.98378 0.98378 34 0.99967 0.99967 49 0.98506 0.98506
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Table 3. Cont.

Stage 2

Bus
No.

PO2
i PO2

i PO2
i PO2

i

Proposed
MPP

Ref.
[27]

Bus
No.

Proposed
MPP

Ref.
[27]

Bus
No.

Proposed
MPP

Ref.
[27]

Bus
No.

Proposed
MPP

Ref.
[27]

5 0.98704 0.98704 20 0.99016 0.99016 35 0.99016 0.99016 50 0.98121 0.98516
6 0.99016 0.99985 21 0.98516 0.98516 36 0.98566 0.98566 51 0.99016 0
7 0.98191 0.99976 22 0.98684 0.98684 37 0.99975 0.98536 52 0.99016 0.99016
8 0.98556 0.99985 23 0.98211 0.98210 38 0.99016 0.99016 53 0.99972 0.99972
9 0.98516 0.99975 24 0.99016 0.99016 39 0.99016 0 54 0.99016 0.99016

10 0.99981 0.98516 25 0.98556 0.98556 40 0 0 55 0.98516 0.98516
11 0.98556 0.98556 26 0.98556 0.98556 41 0.99016 0.99016 56 0.98615 0.98615
12 0.99016 0.99016 27 0.98546 0.98546 42 0.98576 0.98576 57 0.98717 0.98675
13 0.99976 0.99976 28 0.99016 0.99016 43 0.98289 0.98289
14 0.99016 0.99016 29 0.99975 0.99975 44 0.98170 0.98170
15 0.99999 0.99999 30 0 0 45 0 0

Table 4. The Obtained Probability of Observability Index for the third stage, PO3
i , Compared to the

Ref. [27] (First Scenario).

Stage 3

Bus
No.

PO3
i Bus

No.

PO3
i Bus

No.

PO3
i Bus

No.

PO3
i Bus

No.

PO3
i Bus

No.

PO3
i

Both
Methods

Both
Methods

Both
Methods

Both
Methods

Both
Methods

Both
Methods

1 0.99016 11 0.99985 21 0.99980 31 0.99999 41 0.99985 51 0.99016
2 0.99975 12 0.99016 22 0.99987 32 0.99016 42 0.98576 52 0.99016
3 0.99016 13 0.99999 23 0.99970 33 0.99968 43 0.99969 53 0.99972
4 0.99999 14 0.99016 24 0.99016 34 0.99967 44 0.99971 54 0.99016
5 0.98704 15 0.99999 25 0.99999 35 0.99016 45 0.99016 55 0.98516
6 0.99985 15 0.99974 26 0.98556 36 0.99975 46 0.99969 56 0.99982
7 0.99976 17 0.99971 27 0.98546 37 0.99975 47 0.99016 57 0.99973
8 0.99985 18 0.99016 28 0.99016 38 0.99987 48 0.99978
9 0.99999 19 0.99969 29 0.99975 39 0.99016 49 0.98506
10 0.99981 20 0.99016 30 0.99016 40 0.99016 50 0.99968

4.2. Second Scenario (Validating ZIBs Consideration)

The aim of this scenario is to investigate the capability of the proposed model in considering ZIBs
in the MPP and its validity. Since in the previous scenario the application of the proposed formulation
was well demonstrated in terms of the probabilistic MPP, we are allowed to examine the accuracy of
the model in the presence of ZIBs in the deterministic framework. In doing so, it would be sufficient to
set parameters AVm

j , ACm
ij , APMU

j , ALink
j and ALine

ij to “1”. In this respect, the model is applied to IEEE
57-bus test system and the obtained results are compared to the results of Ref. [39] in which a completely
different formulation is utilized for the deterministic MPP. In this case, the network comprises 15 ZIBs
and 11 PMUs at specific buses (shown in Table 5) that make the system observable [26]. Considering
this set of candidate buses, a three-stage PMU placement has been implemented with 4, 4 and 3 PMUs
budget for the first to third stages, respectively. Table 5 represents both results. It is apparent that the
results are the same as those obtained by different linear formulations. Indeed, it can be interpreted
that the proposed model is successful in modeling the effects of ZIBs.

Overall, regarding the results and discussions stated above from two scenarios, the proposed
linear formulation improves power system monitoring by searching for the optimal solution in a wider
search space, dynamically, as well as considering ZIBs in the probabilistic MPP, which has been done
for the first time in this paper.
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Table 5. Three-stage PMU Placement for IEEE 57-bus Test Systems Considering zero-injection bus (ZIB)
Effects (Second Scenario).

ZIBs Locations Planning Stages No. of PMUs to
Be Installed

PMU Locations
(MSPP Result)

No. of Observable
Buses

4, 7, 11, 21, 22, 24, 26, 34,
36, 37, 39, 40, 45, 46, 48

Stage 1 4 4, 13, 38, 56 29
Stage 2 4 1, 20, 25, 54 47
Stage 3 3 32, 51, 54 57

4.3. Third Scenario (Probabilistic MPP Considering the Channel Limitation)

This scenario considers the effect of channel limitation in the proposed MPP. The test has been
conducted on the IEEE 57-bus test system over three stages without expansion planning, while ZIBs
are taken into account. The location of PMUs targeted for the final planning year is derived from [11].
In this reference, the authors have proposed an approach for the OPP in which the used PMUs come
with limited channel. The results obtained for the IEEE 57-bus test system determine 14 PMUs for
installation where the channel capacity of each PMU is considered to be 2. The exact locations of
these PMUs and the detail of channel allocation for every PMU can be seen in Table 6. In addition,
the probability values are as used in the first scenario. Regarding the mentioned information as input
data of the proposed MPP, Tables 7 and 8 demonstrate the probabilistic MPP results. The execution time
in this case is 18.9 seconds, which is more than the first scenario due to adding constraints associated
with ZIBs. As it can be seen from Table 7, the number of observable buses increases as more PMUs
installed over stages. By installing all 14 PMUs, the network APO index becomes equal to 0.96935.

Furthermore, Table 8 illustrates the details of the POi index for the third stage. By carefully
investigating this table, it can be figured out that the PO indexes related to some buses are relatively
low compared to others; for instance buses 38 and 39. This is why these buses have become observable
due to the effect of ZIBs existing in the network; and, obviously, in order to make a bus observable in
such a way, the probability of all associated lines and PMUs must be taken into account. On the other
hand, from more practical aspects, a so-called ZIB is not a real zero-injection substation because of its
internal consumption, such as lighting and so on, that may vary over the following years. Also, there
is no guarantee that it will always remain a ZIB in future years. Overall, considering the theoretical
results from Table 8 as well as practical mentioned issues, it is sensible to consider the PMU placement,
both OPP and MPP, without considering ZIBs in realistic power systems.

Table 6. Optimal PMU Placement (OPP) results for the IEEE 57-bus Test Systems Considering ZIBs
and channel limitation [11] (Third Scenario).

No. of
PMUs

Channel
Capacity PMU Locations Channel Allocation

14 2
2, 5, 9, 12, 15, 20,
25, 28, 32, 41, 49,

51, 53, 56

2(2-1, 2-3), 5(5-4, 5-6), 9(9-8, 9-55), 12(12-16, 12-17), 15(15-14, 15-45),
20(20-19, 20-21), 25(25-24, 25-30), 28(28-27,28-29), 32(32-31, 32-33),
41(41-42, 41-43), 49(49-13, 49-48), 51(51-10, 51-50), 53(53-52, 53-54),

56(56-40, 56-57)

Table 7. The Obtained MPP Results for IEEE 57-bus Systems Considering ZIBs and Channel Limitation
(Third Scenario).

Planning
Stages

No. of PMUs to
Be Installed PMU Locations with Assigned Channels No. of Observable

Buses APOi Index

Stage 1 5 15(15-14, 15-45), 20(20-19, 20-21), 25(25-24,
25-30), 28(28-27,28-29), 56(56-40, 56-57) 24 0.40804

Stage 2 5 2(2-1, 2-3), 5(5-4, 5-6), 9(9-8, 9-55), 41(41-42,
41-43), 49(49-13, 49-48) 44 0.74573

Stage 3 4 12(12-16, 12-17), 32(32-31, 32-33), 51(51-10,
51-50), 53(53-52, 53-54) 57 0.96935
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Table 8. The Obtained Probability of Observability Index for the third stage, PO3
i (Third Scenario).

Stage 3

Bus
No. PO3

i
Bus
No. PO3

i
Bus
No. PO3

i
Bus
No. PO3

i
Bus
No. PO3

i
Bus
No. PO3

i

1 0.98497 11 0.92966 21 0.98516 31 0.98388 41 0.99015 51 0.99015
2 0.99015 12 0.99015 22 0.96943 32 0.99015 42 0.98576 52 0.98427
3 0.98338 13 0.98427 23 0.92917 33 0.98101 43 0.98289 53 0.99015
4 0.98131 14 0.98249 24 0.98556 34 0.91945 44 0.96671 54 0.98220
5 0.99015 15 0.99015 25 0.99015 35 0.94173 45 0.98497 55 0.98605
6 0.98704 15 0.98457 26 0.96532 36 0.96933 46 0.81845 56 0.99015
7 0.94178 17 0.98190 27 0.98546 37 0.90653 47 0.84405 57 0.98625
8 0.98338 18 0.92097 28 0.99015 38 0.87838 48 0.98328 - -
9 0.99015 19 0.98378 29 0.98437 39 0.83798 49 0.99015 - -
10 0.98724 20 0.99015 30 0.98427 40 0.98704 50 0.98121 - -

4.4. Fourth Scenario (Large Scale Implementation Considering Monitoring Priority)

The applicability of the proposed MPP model to cover a large scale case study is the main goal of
this scenario. In this regard, a three-stage probabilistic MPP is applied to the 2383-bus Polish power
system [41] comprising 2896 lines. The network requires 746 PMUs to be fully observable without any
channel limitation. The probability values of the PMUs are the same as previous tests, however the line
availability values are assumed to be 0.9955 for all lines due to lack of exact information. Furthermore,
the monitoring priority issue presented in section 3.6 is considered in this test. In [42], 75 buses of the
2383-bus system are specified as critical nodes based on the system operator principles. Table 9 lists
these 75 critical buses that the system operators tend to monitor prior to other buses. The weighting
factors associated with these buses are set to “100”, which is far more than “1” dedicated to other buses.
Table 10 reports the related results for the three planning stages. Though, due to the space limit, the
location of the installed PMUs as well as POi index at each stage has not been reported, it is worth
noting that all 75 critical buses mentioned become observable at the first planning stage. Moreover,
the execution time in this case is 5.26 h, which is acceptable for problems in the planning mode.

Table 9. 75 Critical buses of the 2383-bus Polish power system [42] (Fourth Scenario).

Test System Critical Buses

2383-bus system

6, 18, 29, 133, 246, 309, 310, 321, 322, 353, 354, 361, 365, 366, 374, 425, 456, 494, 511, 525, 526, 527,
546, 556, 613, 644, 645, 679, 694, 717, 750, 754, 755, 796, 797, 870, 923, 944, 978, 979, 1050, 1096, 1120,
1138, 1190, 1201, 1212, 1213, 1216, 1217, 1245, 1483, 1504, 1524, 1647, 1664, 1669, 1680, 1761, 1822,

1882, 1883, 1885, 1919, 1920, 2112, 2113, 2166, 2195, 2196, 2235, 2258, 2261, 2274, 2323

Table 10. The Obtained MPP Results for 2383-bus Polish Power System (Fourth Scenario).

Planning Stages No. of PMUs to Be Installed No. of Observable Buses APOi Index

Stage 1 249 1340 0.5545
Stage 2 249 2030 0.8412
Stage 3 248 2383 0.9895

5. Conclusions

This work represented a linear model reflecting improvements in the probabilistic Multistage PMU
Placement (MPP) from several main aspects. On the one hand, a dynamic approach for installing PMUs
over time horizon is used by searching for the optimal solution in a complete search space resulting
in the global optimum of the problem. This technique has not been applied to the multistage PMU
installation before, aimed at maximizing the observability in the probabilistic framework. In order to
exhibit the effectiveness of the proposed approach compared to existing ones, a comparative test (the first
scenario) was carried out under the same conditions of an existing study. The results obtained show
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that by installing the same number of PMUs, the probability observability index has been improved.
On the other hand, Zero-Injection Bus ZIBs were taken into account in the probabilistic multistage
framework for the first time. For this purpose, the concept of probability of observability introduced
in [27] was expanded to a comprehensive model considering ZIB effects. Afterwards, the linearization
proof containing a heavy mathematical burden was presented. In this respect, a test has been designed
to install PMUs over the planning years, considering ZIBs and channel limits (the third scenario).
The probabilistic results obtained from this test suggested that the probability of observability of those
buses that become observable by means of the ZIB effect is relatively low in comparison to other
buses. Also, the optimization mainly tended to make them observable in the last stage. This conclusion
theoretically implies that, in reality, the PMU locations should be selected while ignoring the ZIBs effect.
However, the operators should take the advantage of ZIBs in minimizing errors in the state estimation by
providing additional data through the KCL. Finally, the performance of the formulation was validated
on a large scale power system. In the fourth scenario, 75 buses of the 2383-bus Polish power system have
been assumed to be critical, therefore, they have been given monitoring priority by system operators.
The model successfully solved such a large scale problem and made all critical buses observable at the
first stage of PMU installation.
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