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Abstract: Technological advances have led to the emergence of wireless sensor nodes in 

wireless networks. Sensor nodes are usually battery powered and hence have strict energy 

constraints. As a result, energy conservation is very important in the wireless sensor 

network protocol design and the limited power resources are the biggest challenge in 

wireless network channels. Link adaptation techniques improve the link quality by 

adjusting medium access control (MAC) parameters such as frame size, data rate, and sleep 

time, thereby improving energy efficiency. In this paper we present an adaptive packet size 

strategy for energy efficient wireless sensor networks. The main goal is to reduce power 

consumption and extend the whole network life. In order to achieve this goal, the paper 

introduces the concept of a bounded MAB to find the optimal packet size to transfer by 

formulating different packet sizes for different arms under the channel condition. At the 

same time, in achieve fast convergence, we consider the bandwidth evaluation according to 

ACK. The experiment shows that the packet size is adaptive when the channel quality 

changes and our algorithm can obtain the optimal packet size. We observe that the MAB 

packet size adaptation scheme achieves the best energy efficiency across the whole 

simulation duration in comparison with the fixed frame size scheme, the random packet 

size and the extended Kalman filter (EKF). 
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1. Introduction 

Sensing, processing and communication are integrated into a tiny wireless sensor network (WSN) 

device. They are used in inaccessible environments and maintenance is typically inconvenient or 

impossible because wireless sensor networks are robust and distributed. WSNs are widely used in 

residential, industrial, and environmental monitoring. WSNs are being more and more used in outdoor 

environments to monitor weather conditions, the natural habitat, the scene of disasters, ecological 

systems, nuclear accident sites, etc. Compared to traditional wired networks, WSNs are relatively 

simple and inexpensive. In addition, such networks can be easily extended by simply adding more 

devices without reworking and reconfiguring the whole network. The most direct application of sensor 

networks is in remote environmental monitoring. For example, large numbers of sensors can be 

deployed in a remote forest area to immediately report any incident such as a fire. Ideally, the sensor 

node of a set of batteries can run for a year. Considering the cost of sensor nodes (SNs), discarding 

sensor nodes without electricity is not feasible, and it may be impossible to replace the batteries of 

SNs. Therefore, there is a huge demand for an energy conservation scheme to reduce energy 

consumption and prolong the lifetime of wireless sensor nodes [1,2]. 

At present, wireless microsensor nodes are about the size of a quarter dollar. Meeting the energy 

demands is the biggest challenge in WSNs. Therefore, the sensor network platform must provide an 

energy-efficient protocol to greatly reduce power consumption. The energy efficiency is defined as the 

ratio between the number of data transmissions and the energy consumption. Table 1 shows the power 

measurement of a typical sensor node in an active, sleep, transmit, and receive modes [3]. 

Table 1. Power measurements of a sensor node [3]. 

State Energy Consumptions 

Transmit 
10.8 mA (radio) 

8 mA (cpu) 

Idle/Receive 
7.5 mA (radio) 

8 mA (cpu) 

Sleep 
1 uA (Radio) 
1 uA (cpu) 

The wireless network is time-varying. If a number of error packets are dropped at the receiving end, 

this will result in retransmissions resulting in a waste of bandwidth and finally lead to energy 

consumption. Therefore, reducing the number of retransmissions can help minimize the energy 

consumption. The main reason for his is framing errors. There are three main types: interference, slow 

fading and fast fading. Interference is due to white Gaussian noise or other users using the same 

frequency channel. The path loss and shadows are the main reason for slow fading. Fast fading is 
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mainly due to spread delays or Doppler frequency. As mentioned above, the retransmission is the main 

cause of wasted energy [4–6]. 

This paper presents a link adaptive mechanism to improve the energy efficiency and extend the 

whole network life. Our focus is to improve the MAC layer protocol. MAC is in charge of transmitting 

data over the physical channel. Because the frame error rate is dependent on the packet size, we need 

to revise the amount of data sent according to the channel quality at any time. We use variable frame 

sizes to replace the fixed frame size. Variable frame size can improve throughput; if the network state 

is good, sensor nodes can transmit big data packets. Otherwise, they transmit small data packets if the 

network state is bad. According to the channel quality we use a multi-armed bandit (MAB) model to 

optimize the frame size to improve the energy efficiency. We introduce bandwidth estimation based on 

ACK interval to evaluate the wireless channel quality and use the multi-armed bandit (MAB) model to 

find the optimal packet size for data transmissions. This paper proposes three important aspects: 

 The frame size adaptive adjustment replaces the fixed frame transmission according to the 

channel quality. 

 MAB is applied to predict the optimal frame size according to the channel quality. 

 Bandwidth estimation based on the ACK interval is used for tracking the wireless channel quality. 

 The MAB scheme is compared with the extended Kalman filter (EKF) [3], which is better in the 

current research of adaptive packet length. 

The rest of the paper is organized as follows: in Section 2, we discuss related work. Then, in  

Section 3, we formally describe the system model. Section 4 outlines MAB and the packet size 

adaption and then analyses its performance in Section 5. A simulation is described in Section 6. We 

comment on future work in Section 7. 

2.  Related Work 

2.1. Energy Efficiency 

There are many studies that have sought to solve the energy efficiency problem in wireless  

sensor networks. Gao et al. [7] formulated an optimal model to minimize the energy per bit for  

energy-efficient spectrum access of each single user. Chen and Zhao [8] considered the channel state 

and residual energy for MAC protocols.Wang et al. [9] and Yang et al. [10] proposed a realistic energy 

consumption model for sensor nodes to reduce the conditions in data transmissions. However, these 

studies were based on ordinary WSNs and they did not need to consider the time-varying and bursty 

wireless channel quality. A few recent papers integrate cognitive radio into the wireless sensor network. 

Akan et al. [11] and Goh et al.[12] introduced the main advantages and challenges of the CRSN. 

Vijayand et al. [13] provided a framework of cognition in sensor networks. Zhang et al. [14] and 

Maleki et al. [15]  proposed reliable and energy efficient techniques for CRSNs. Liang et al. [16] 

analyzed the CRSN delay and supports time-varying channel. Tian et al. [17] and Zhu et al. [18] 

developed a novel algorithm with power allocation, which maximizes channel utilization and 

minimizes power consumption. He et al.[19] minimized the cost function, and consider both the 

energy consumption and the packet loss rate. Naqvi et al. [20] and Sankarasubramaniam et al. [21] 

explored packet optimization and a fixed frame size. Mastronarde et al. [22] and Woo et al. [23] 
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proposed adaptive data transmission rate for WSNs. Ci et al. [24,25] proposed the Kalman filter for 

predicting the optimal frame size wireless networks. The objective of this research is to adapt  

time-varying wireless networks, but it is difficult to get the instantaneous quality of the channel.  

2.2. Multi-Armed Bandits 

Multi-armed bandits model is composed of an M arms machine. Each arm can get rewards when 

drawing the arm, and the arm pulling distribution is unknown. The arm is drawn and gets a reward at 

each time step. Choosing which of these arms to draw and maximize the sum of the rewards is the 

target. Ho et al. [26] and Bubeck et al. [27,28] proposed that it didn’t initially know the reward value 

before pulling a arm and it must to learn by observation. The goal is to maximize returns and select 

different actions through the amount of order. Auer et al. [29] proposed that the goal is to find the arm 

as early as possible and keep using it to reach the highest reward. However, the MAB model shows an 

incomplete description, which is an agent of sequential decision-making problems in many real worlds. 

To this end, all kinds of related models have recently been studied by Beygelzimer et al. [30],  

In particular, within budget-limited MABs, each action has a different reward and is constrained by the 

total energy. To solve this problem, Tran-Thanh et al. [31] proposed some efficient algorithms which 

are the unbounded ε-first and KUBE. As we will explain later, the bounded ε-first method depends on 

the highest rewards in the exploration phase, However, we will discuss in theory and in practice the 

uniform exploration phase.  

3. System Model 

Figure 1 illustrates a wireless transmission system. We consider a point to point system with a 

single user which includes a transmitter and receiver. It transmits data from the finite buffer queue over 

a time-varying channel. At the same time, the transmission time is divided into equal time slots Δt, and 

the discrete time interval is represented as [nΔt, (n+1)Δt] (n is the time slot). We assume that the 

system state is time-varying in each time slot. According to the delay feedback, the receiver can obtain 

the throughput and channel state information, and the transmitter can adaptively adjust the 

transmission rate and transmission power [32]. 

Stochastic optimizer

Buffer
Data 

source

Delay
Throughput

Channel state

 Rate
and

Power control

Demodulate 

Channel 
estimation

AWGNTransmitter ReceiverGain

 
(a) 

Figure 1. Cont. 
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(b) 

Figure 1. (a) Wireless transmission system; (b) Logical Reliable Channel. 

3.1. Network Configuration 

Figure 2 shows the scenario where the primary user (PU) and the cognitive radio sensor network 

(CRSN) coexist in the same area. We assume that the transmission power of the primary user is very 

high when it is in the static or mobile condition. Sensors are very little mobile in the range of a cluster. 

The sensor and PU transmission should not cause any interference. This can be achieved by power 

control of the sensors, which is beyond the scope of this paper. Also, the sensor should immediately 

stop the transmission data when PU signals are detected. An ad hoc CRSN has two disadvantages. 

First of all, it is energy constrained, thereby limiting the transmission range of the sensor. Second, it 

plays an essential role in the network-wide common control channel of a general CRSN. However low 

power consumption and a large environment area are not feasible. As such, we propose a  

multi-channel cognitive radio sensor network structure. The structure includes a cluster head (CH) and 

a set of cluster members (CMs). The CH is an high energy source with a high performance sensor. 

CMs are regular low-power sensors. The CH performs spectrum sensing and allocation. To make the 

spectrum allocation decisions, the parameters of the PU are estimated based on the sample sequence. 

Then, the CH makes a decision on the packet size and channel assignment based on the estimation  

results [33–35]. 

 

Figure 2. A cognitive radio sensor networks with the primary user. 
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3.2. Physical Layer Model 

We consider the Rayleigh fading channel model which is a discrete time block with additive white 

Gauss noise. Its power spectrum density is N0/2 .The wireless channel bandwidth is W. In this paper, 

we use a Finite State Markov Channel (FSMC) in order to describe the wireless channel. As shown  

in Figure 3, there are k channel states and each can be transfered to its adjacent states with 

corresponding probabilities. 

1

ph(1,2)

ph(2,1)

ph(2,3)

ph(3,2)

ph(k-1,k)

ph(k,k-1)

ph(1,1) ph(2,2) ph(k,k)

2 k

 

Figure 3. FSMC model. 

The signal-to-noise ratio (SNR) φ is received instantaneously and exponentially distributed in the 

Rayleigh fading channel. The probability density function is: 
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where φ0 = E[φ] is the average gain of the channel. If the received SNR is in the interval [φk, φk + 1], the 

channel is in state hk. N(φ) is the level crossing rate (LCR). It is given by: 
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where, fd is the maximum Doppler frequency. Hence, the state transition probability can be obtained by 

the following formula: 
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where, the steady state probability πk is given by:  
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3.3. MAC Layer Model 

In Figure 4, the transmission buffer is a first in first out (FIFO) queue. The transmitter receives and 

stores ln packets in the finite buffer ,then sends some packets from the buffer in the n-th time slot,. We 

assume that the traffic arrival distribution follows an independent and identical distribution (i.i.d) 

during each slot and the packets arrival follows a Poisson process with rate λ. Hence, when one packet 

arrives, the probability density is denoted as: 
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Figure 4. Buffer timing diagram. 

Afterwards, we define that the backlog is denoted by b∈[0, B] at the transmitter buffer. B is the 

capacity of the finite buffer. Each packet contains L bits.When the buffer is full, the arriving packets 
will be dropped. The packet zn will be sent in slot n at the transmitter, where zn∈{0, 1, …, B}.  

The packets are affeced by the Bit Error Ratio (BER) and smaller than zn, i.e., fn(BERn, zn)≤zn  

when received at the receiver. fn is represented by a binomial distribution when packet losses  

are independent: 

)1,(),|( nnnnn
f PERzbinzBERfp −=  (6)

where PER is the packet error ratio, which meets nl
nn BERPER )1(1 −−=  bint is the initial buffer 

state. bn is the buffer state at the n-th slot. Therefore, the buffer state can evolve recursively at the 

transmitter as follows:  
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3.4. Dynamic Power Management Model 

We assume that the wireless card can switch to a low-power state to reduce power consumption. 
The card has two power management states, i.e., X∈{on, idle}. Furthermore, the power state can be 

switched between on and idle by the corresponding actions which is in the set Y={s_on, s_idle}. The 

corresponding power overheads are defined as Pon and Pidle in the on and idle states, respectively. 

When the state transitions from on to idle or vice versa, Ptr is the power consumption. In the n-th slot, 

the packet throughput is z, and the required power is as follows: 

, , _

([ , ], , , ) ( , , ) , , _

,

idle n n

n n n n n on tx n n n n n

tr

P if x idle y s idle

h x BER y z P P h BER z if x on y s on

P otherwise

ρ
= =

= + = =



 
(8)

where xn is the power management state, yn is the power management action, Ptx is the transmission 

power, hn is the channel state. u is the number of symbols per slot. The transmission power is given by: 
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We assume that the delay of the power state switching from one state to another is negligibly small 

when the power management operation is implemented. Let Px(y) = [p(x’|x, y)]x,x’ represent the 

transition probability matrix. It means that the power state is switched from x to x’ when the power 

management action is y. In Figure 5, the power management states can be modeled as a constrained 

Markov chain with transition probabilities. 

on

pon,idle

pidle,on

pon,on pon,off

idle

 

Figure 5. State diagram of the power model. 

3.5. Energy Consumption Model 

As shown in Figure 6, the system has L + 1 time slots in each frame. It contains an access control 

slot and L data transmission slots. The duration is T units. CH and CM control information is 

exchanged through access control slots. A packet need a frame transmission, so the packet size is  

B × T × L. The cluster operation determines B and T. In order to efficiently utilize the battery of each 

sensor, L is adaptable according to the time-varying channel conditions. The CMs transmit data 

packets according to control information in data transmission slot [36–38]. 

 

Figure 6. the frame time-slotted structure. 

Since the CH has a long-duration power supply, it is not subject to energy constraints. This paper 

considers only the energy consumption of CMs when they exchange control message and transfer data. 

Each sensor has the same initial energy Ein which is obtained from a non-rechargeable battery in a 

cluster. Our work is only concerned about the impact of dynamic spectrum access protocol for energy 

efficiency, so that the communication channel only considers the impact of the path loss. The energy 
consumption is + αεcir iE d  in data transmission. ɛ is power amplifier at the receiving end. The distance 
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between the cluster head and the cluster members is d. Ecir is the energy consumption of the circuit.  

Ecir and ɛ are computed by per bit. α is the path loss coefficient. Its value depends on the channel 

quality. L represents the continuous transmission data of the number of slots [39]. Hence, the total 

energy consumption is: 
2( ) ( )tr

i cir iE l E d B T lε= + × × ×  (10)

where Ecir is nJ/bit. ɛ is in pJ/bit/m2, B is the transmission rate (bit/s), T is the slot length (seconds). 

Since CMs receive the CH messages, reception energy consumption also needs to be considered. The 

expression is as follows: 

( ) = × × ×TV
i cirE l E B T l  (11)

4. The Model of Packet Size Adaptation Using Bounded Multi-Armed Bandits 

This section introduces the bounded multi-armed bandits model, then describes the packet size 

adaptation problem. Finally, we show how to map packet size adaptation to MAB by exploration  

and exploitation. 

4.1. Bounded Multi-Armed Bandits 

The MAB proposed is composed of K arms, represented as 1,2, , N . An arm is chosen from a  

non-empty subset S(t) {1,2, , }⊆  N   to draw at each time step, and we pay a drawing cost ci. The cost 

budget is B. It means that the total cost is no more than this budget constraint B. When a nonnegative 

return is received, its distribution is associated with a particular arm. We assume that each arm support 

has a limited return distribution, because the reward value is usually restricted in an actual application. 

When the arm i is drawn, the agent receives the mean value of the reward μi. Maximizing the total of 

the rewards that one gets from drawing the arm is the goal, but the agent does not have the original 

knowledge μi of each arm, so it is necessary to learn these values to select a strategy to maximize total 

return. In view of this, the goal is to find the arm whose rewards is the most to draw, whose total 

reward can achieve the maximum expectation, no more than B [31]. 

Formally, A is the arm-pulling algorithm, which can get the finite sequence. NBi(A) is the random 

variable which is the number of the arm i pulled by A. B is the budget limit. NBi(A) is the random 

variable, because A depends on the reward is observed. Therefore, we have: 

i ( ) { ( )}B A

t

N A I i S t= ∈
 

(12)

where S (t)A  is the subset where the agent chooses the arm i to draw. { ( )}∈ AI i S t  is the indicator 

function. In order to ensure that the sequence of total cost is no more than B, we have: 

i
1

( ( ) ) 1
N

B
i

i

P N A c B
=

≤ =
 

(13)

where P (•) represents the probability. Furthermore, it assumes that the agents draw each arm number 

which is no more than Li. That is:  

ii: P( ( ) )=1B
iN A L∀ ≤ (14)
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Now, let G (A)B  be the total return which is got by using the A algorithm to draw the arms and the 

cost is no more than B. The expectation value of GB (A) is: 

i
1

E[G (A)]= [ ( )]
N

B B
i

i

E N A μ
=


 
(15)

Then, *A  represents the optimal algorithm. It maximizes the total return: 

*
i

1

arg max [ ( )]
N

B
i

A
i

A E N A μ
=

= 
 

(16)

In order to achieve the optimal algorithm A*, we have to understand in advance the value of μi, 

which is not saved in our case. Therefore, A* is on behalf of the theory of the optimization algorithm 

which could not be achieved. However, the regret is defined as the difference between the expected 

total return and the optimal value A* [40]. That is: 
*( ) [G (A )] [G (A)]B B BR A E E= −  (17)

Here the purpose is to get a sequence of arm pulls which minimizes the regret of the above 
definition. It is a bounded multi-armed bandits problem. Since we limit | S(t) | 1= ∞ =iL , we get the 

budget restricted MAB. Moreover, when setting = ∞B , we can obtain the standard MAB model. 

4.2. Packet Size Adaptation 

The nature of the wireless channel is time-varying. It is very inefficient when a fixed frame size is 

used. As previously discussed, a variable frame size minimizes the error caused by the frame rate of a 

large data packet transmission through a bad channel quality. If the channel quality is better, a large 

packet size is sent. The variable frame size reduces the number of retransmissions, increases the 

goodput of the system and saves energy. The paper finds the optimal size by MAB according to the 

different channel quality. The frame size is a local optimum, because the number of users and channel 

quality change, making the network environment change too [41–44].  

In order to make use of multi-armed bandits to find the optimal frame size according to the channel 

quality, we need to develop exploration and exploitation. Our goal is to maximize the goodput of the 

networks. The channel goodput considered for developing exploration and exploitation which depends 

on the packet size, collision rate, and data rate, the delay of the protocol and the quality of the channel. 

The following equation gives the relationship between throughput and the frame size [3]: 

( ) ( )(( )((1 ) ) ( )(((1 ) ) (1 ) ((1 ) * * ))MAC MAC ACK ACKL H L H L L
MAC error PHY protocol error error ACK error collision

LR

L H P N T D H O P N R ACK P O P R N L
ρ − + − + −=

+ − + + + + + − + + − + − +  
(18)

L: a frame size 

LACK: the acknowledgment frame length 

Lcollision: the average collision length 

R: the transmission of data rate 

HMAC: the MAC protocol of a frame header 

HPHY: the PHY layer of a frame header 

N: average collisions number between two renewal sensor  
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T: average backoff time slots under a certain channel 

D: Distributed Inter-frame Spacing(DIFS) 

Perror: bit error probability in the case of known channel quality 

OACK: the overhead of the acknowledgment 

Optotocol: the MAC and PHY protocol process delay overhead 

Firstly, from the PU behavior indicated in Equation (19), we find that the probability that the packet 

can successfully transmit is decreased as the packet size increases. The energy is wasted when the 

packet collides with PU packets. Secondly, if the packet size is reduced, the ratio of energy 

consumption in the data transmission slots of Figure 2 to the energy consumption in the access control 

slot is reduced, which also reduces the energy efficiency. There is a trade-off between the two 

conditions, and there may be exist an optimal packet size which leads to the best energy efficiency. 

Sensors could transmit as many packets as possible to improve energy efficiency during their lifetime. 

In this paper, the metric energy-per-bit(EPB) is used as denoting the ratio of the total energy 

consumption to the amount of data successfully transmitted. As introduced before, the protocol 

designed is to minimize the EPB for the network, not only based on an individual condition [45]: 

(idle for next Lslots | idlein theinitialslot)

(1 p )

success
j

L
j

P P=

= −
 

(19)

Every frame needs to consider the adaptation of the packet size because both the PU behavior and 

sensor activity are time-varying. A CM is awakened and transmits an accessing request message when 

data needs to be sent. The CH begins to determine the packet size of the data transmission of the 

current frame according to the sensor activity and the PU behavior when it receives the access request 

from the CMs. The total energy consumption in the network includes:  

♦ The energy consumed by the access control slot, which includes transmitted access request 

packets and the broadcast of access reply packets received. 

♦ The energy consumed of the data transmission slots.  

In this work, the star topology is used between each CM and the CH which has an equal distance d. 

The size of the access request packet is K1 bits. The size of the access reply packet is K2 bits. In the 

access control slot, the energy consumption of the whole network is as follows:  
co t 2

1 2( )n rol
cir cirE E d K E Kε= + × + ×  (20)

Data packet transmission refers to the frame structure in Figure 6. A complete data transmission 

occupies L slots. Eg: the CM i tries to transmit a packet whose length is L slots using channel j. The 
energy consumption is (L)trE . Let Pj(l) denote the transmission probability of the collision between 

the CM and PU. The CM only sends for L<l  slots on channel j. Pj(l) can be expressed as: 
1(l) (1 ) 1l

j j jP p p l L−= − ≤ ≤
 (21)

where pj is the transition probability from idle to busy. The successful transmission probability of a 
package with the length of L in the slots is (1 )= −success L

j jP p . According to the above equations, the 

anticipated energy consumption of the CM i transmitting data on the channel j is derived as follows:  
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( ) ( )
L

data tr l tr success
ij i j i j

l

E E l P E L P
=

= +
 

(22)

data
ijE  is not related to i because CM and CH is the same distance, so =data data

ij jE E . The probability 

of successful transmission only depends on the PU behavior, so the expected amount of successful 
transmissions in channel j is =data data

ij jE E . 

If the number of available channels is more than the number of active CMs, then less channels are 

selected to reducs the probability of collisions with other PUs during the data transmission, This is 

because when pj is less, these channels can easily remain idle if they feel idle in the first slot. Nactive is 

on behalf of selected the available channels. 
The optimal packet size in terms of number of slots is obtained by, 

min max[L ,L ]

arg min
∈

=opt
L

L EPB , minL  (the 

minimum packet size) depends on the MAC frame format of a specific network. maxL  (the maximum 

packet size) is generally selected as the maximum transmission unit (MTU) which is allowed by the 

network to avoid packet fragmentation. Because an active CM and the available channel change over 

time, packet size should be adaptive to change, to minimize the EPB used in the current frame of the 

network. The CH keeps tracking the changes of channel states by interval time between ACK and join 

by the residual energy balance from CMs to make a decision on the packet size at the beginning of 

each frame [46–48]. 

4.3. Uniform Exploration and Bounded Knapsack-Based Exploitation 

Recalling our setting, μi are known a priori. In view of this, the agent explores these values by 

repeatedly drawing a specific arm to get the expected return. However, the agent usually cannot 

maximize the total expected reward value if it is only focused on exploration, On the contrary, it may 

be unable to find the optimal arms to draw, if it stops exploring too fast. In view of this, the most 

important challenge of the bounded MABs is to find an effective balance between exploration and 

exploitation. We proposed a new algorithm, which can effectively balance exploration with 

exploitation in this section,. The intuition behind its significant difference is the setting of the ε value 

to control the degree of exploration. It is very useful for the theoretical analysis. In addition, the 

method was proved to be effective in many practical applications, relative to other bandits on the basis 

of methods such as UCB or ε- greedy. In the following, we first introduce the algorithm of the 

exploring stage, followed by its exploitation phase. 

4.3.1. Uniform Exploration 

We commit ε part of the budget B to get the expected return value of the arms in the exploration 

stage. At first, we draw all arms in the first 
1

ε

=

 
 
  N

ii

B

c
 time steps repeatedly. That is, 

1

( ) {1,..., } 1
ε

=

 
 = ≤ ≤
  N

ii

B
S t N if t

c
. Then, we can order the arms in ascending cost, and starting with the 

lowest arm cost, one after another draw the arm, until the next which will be more than the rest of the 
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budget, and then the algorithm repeats the last step, until there is no remaining budget to pull any arms. 
In view of this, if explore

ix  is the times of drawing machine arm in the exploration phase, then 

exp

1

ε

=

 
  ≤
  

lore
iN

ii

B
x

c
. For simplicity, we assume that exp≥ lore

i iL x . Otherwise, once Li is reached, we stop 

drawing arm i. The reason for choosing this method is that we don’t know that which one is the 

optimal arm in the exploitation stage, so all arms should be drawn equally in the exploration stage. 

4.3.2. The Exploitation Stage of the Bounded Knapsack  

In the section, we mainly introduce the development phase bounded ε-first algorithm. To do that, 

we first introduce the bounded knapsack problem that forms the basis of this phase of the method 

applied. Then, an efficient approximate way to solve the knapsack-based problem that used in the 

development state is introduced.The bounded knapsack-based problem is modeled as follows. In case 
of N types of elements, each type i has a length value iv , and weight iw . In another way, there is also a 

knapsack-based with capacity of weight C. A bounded knapsack-based problem selecting the type of 

integer unit knapsack to maximize the total value of goods, the total weight of such elements is no 
more than the capacity of the knapsack weight, but each element i can’t be selected not limited to iL  

times. Because the goal is to find the non-negative integers 1 2 3, , , , , nx x x x , that: 

i
1 1

max . . , 0
N N

i i i i i
i i

x v s t x v C i x L
= =

≤ ∀ ≤ ≤  ：
 

(23)

It is important to set each set 1=iL  then we obtain the standard model based on 0–1 knapsack. 

Because the limited of the knapsack is a typical NP-hard problem, the optimal solution method does 

not guarantee a lower cost. However, approximate optimal ways have been used to solve the problem, 

for example, a bounded greed algorithm. We use a simple effective approximation bounded greedy 

algorithm, whose computational complexity is O(NlogN) where N is the number of types. This 

selection reason is that it is used in addition to the efficiency of the theoretical analysis. 

The working principle of the bounded greedy algorithm is as follows: Let i

i

v
w  denote the density. 

In the early stages, we classify the item types by reducing the density. The computational complexity 

is O(NlogN). In the first round of the algorithm, we determine the highest density of the item type.  

In the capacity of no more than a knapsack or item limit Li, we select a viable item as more units.  

After that, we identify with the rest of the feasible elements which are still suitable for the remaining 

capacity of the knapsack. When it do not exceed the residual capacity of knapsack or the 

corresponding item, once again we choose as many units as is feasible. We do this step again and 

again, until no feasible project is left. Obviously, N is the maximum number of rounds. This algorithm 

is chosen because it can effectively use the theoretical analysis. 

Now, we use the bounded knapsack problem to reduce the exploitation stage of the task assignment 

problem. Let μ
∧

 represent the estimate value of μi after the exploration stage. The expected value 

should be calculated by the average samples of the received return of machine arm i. Given this, our 

goal is to settle the following integer problem: 
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N N
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i x L x

μ ε
∧
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(24)

where expoit
ix  is the decision variable. It represents the times arm i is drawn in the exploitation stage. In 

order to settle the problem, we apply the abovementioned bounded greedy algorithm. With every 
expoit
ix  value, the following exploitation algorithm is used now: In each time slot, if drawing arm i, and 

the number of times is no more than expoit
ix , we draw that arm at t time step. The pseudo code of the 

algorithm is described in Algorithm 1.  

Algorithm 1 Bounded ε-first algorithm 

1: Exploration stage: 
2: t = 1; exp lB Bε=  

3: while drawing  is feasible do 

4: draw each  arm; 
5: exp exp

1 1
l l N

t t k kB B cε+ == − ; t =t +1; 

6: end while 

7: while pulling is feasible do 
8: if  exp minl

t i iB c< then 

9: STOP! {pulling is not feasible} 

10: end if 

11: pull arm i(t), where i(t) =t mod N {choose the subsequent arm to pull}; 
12: exp exp

1 ( )l l
t t iB B c t+ = − ; t =t +1; 

13: end while 

14: Exploitation phase: 

5. Performance Analysis 

At first, the section originates the limit ε-first algorithm with an upper limit, then we demonstrate that 

by efficiently revising the value of ε for any given ε value. the upper bound to 
2

3( )O B  can be extracted. 

5.1. Regret Bounds of ε-First with Uniform Exploration Algorithm 

Recollect that both Auni and Agreedy together compose of sequence Aε-first, which is the strategy 

produced by the bounded ε-first algorithm. The sum of the expected performance of Auni and Agreedy 

can represent the expected reward of the strategy. This is: 
(1 )( ) ( ) ( )B B B

first uni greedyG A G A G Aε ε
ε

−
− = +  

Generally speaking, it is assumed that the reward probability distribution of each machine arm can 

meet with [0,1], at the same time drawing cost ci > 1 for each i. Let max arg max
μ

= j

j

i j
c

, Similarly, let 
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μ

= j

j

i j
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. Furthermore, max arg max
μ

= j

j

c j
c

, and min arg min
μ

= j

j

c j
c

. They are described  

as follows: 

Theorem 1. Let 0 < ε, β < 1. Assume that 
1

ε
=

≥N

jj
B c , the capability regret of the bounded ε-first 

method is the best with at least probability β 

max
1

min
maxmax

1
( ln )

22 2 ( )

N N

jj

i

B cc i
Bd N

c

β
μ ε

ε
=

−−
+ + +


 

(25)

where max max | |
μμ

≠= − ji
i j

i j

d
c c

. 

5.2. Regret Bounds of ε-First with the Successive Rejects Exploration Algorithm 

We recall that the capability of the exploitation stage mainly depends on how exactly the accurate 

ranking of the denseness of the arms can be computed. This stimulates the uniform distribution, which 

examines the entire same arm, so that the arm can effectively identify the rank of usage, but  as a result 

of the property of the limited greedy algorithm, in fact performance generally depends merely on the 

exploitation stage at the highest level arm, rather than a complete ordering, because we may run out of 

pre-budget as the arm reaches a low level. Therefore, it is not clear whether it should concentrate only 

on advanced machine arms and is not intended to identify the entire sorting. In view of this, the 

capability of the modified ε-first algorithm is analyzed, wherein the uniform exploration methods are 

replaced with other exploration methods not designed to estimate correctly the whole sort order. There 

are many algorithms for solving this problem. We replace the successive rejects for the uniform 

exploration method, in order to research whether the capability of bounded ε-first can be improved. In 

the following, we first describe how the successive rejects can adjust to our environment, then we 

provide a regret theory. 

6. Simulation and Results 

The simulation tool of the bandwidth estimation is the Network Simulator version 2 (NS2). Another 

is Matlab. The simulation scenarios are like a real time wireless sensor network. Firstly, we use an 

online method based on ACK interval which is used to probe the available bandwidth. Secondly, we 

utilize the multi-armed bandit algorithm to find the optimal packet size for achieve better energy 

efficiency and throughput. The algorithms were simulated for capability evaluation in different channel 

network states. 

6.1. Bandwidth Estimation Online Learning 

The sender monitors ACKs to estimate the bandwidth. More precisely, the sender uses the ACK 

reception rate and the information an ACK conveys regarding the amount of data. We assume that 
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sender receives the ACK at kt , 1−kt  is the time the previous ACK was received, kd bytes have been 

received at the receiver, so the bandwidth such is that: 

1

k
k

k k

d
b

t t −

=
−  

Due to the effect of the wireless transmission link attenuation or noise, individual ACK time 

intervals have a greater volatility. Filter logic, which can filter out the noise leading to ACK delay, is 

very necessary. The choice of filtering logic is very important. According to the experiments,  

the simple exponential filter cannot effectively filter out the high frequency part. We propose a  

discrete-time low-pass filter: 

1 1
1

1 1

2
1

ˆ ˆ
2 2

1 1

k k k k
k k

k k k k

t t b b
b b

t t t t

τ

τ τ
− −

−

− −

−
− += +

+ +
− −  

(26)

where, ˆ
kb  is the effective bandwidth. At kt , 

1

τ
 is the filtering threshold. This means that all frequency 

that are higher than 
1

τ
 will be filtered. According to the Nyquist sampling theorem, the sampling 

period must be less than or equal to 
2

τ
 when the bandwidth sampling is 

1

τ
. As shown in Figure 7, we 

insert virtual sample values 0 j 0,1, , n 1（ ）+ = = … −k jb , and when the ACK is not received at tk, and 

virtual sampling interval is (m 2)
τ ≥
m

, namely 1
ˆ ˆ τ

+ + +− =k j k jt t
m

, ˆ
+k jt  is the virtual sampling time, when 

an ACK arrival moment is +k nt , 
1

+
+

+ + −

=
−

k n
k n

k n k n

d
b

t t
 [49–51]. 

ˆ
kt

1k̂t + 1k̂ nt + − k nt +
 

Figure 7. inserting virtual sample. 

In order to analyze the response time interval and network congestion status, the simulation scenario 

is shown in Figure 8, where TCP-Learning and the two constant bit rate (CBR) model of UDP share a 

5 Mb bottleneck link. Buffer queue is set to 30 packets, and first come first served (FCFS) mode  

is used. 
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Figure 8. Network topology.  

To analyze the dynamic data model, the TCP–Learning continues to send data over the entire 

timeline, and the corresponding relation of time and UDP events is shown in Table 2. 

Table 2. The corresponding relation of time and events. 

Time Events 

0 s TCP–Learning send data 
25 s The first UDP link start sending 1 M constant data 
50 s The second UDP link start sending 1 M constant data 
75 s The second UDP link stop sending 

125 s The second UDP link restart 
175 s The second UDP link stop sending 
200 s The first UDP link stop sending 
300 s TCP-Learning stop sending 

The bottleneck bandwidth link is 5 Mb. Link delay is 35 ms. The overall simulation time is 300 s. 

The parameter settings of the simulation are shown in Table 3. 

Table 3. Parameter settings. 

Type Value Type Value 

Bottleneck bandwidth 5 Mb UDP Transfer rate 1 Mbps 
Bottleneck bandwidth delay 35 ms TCP Packet Size 1500 

UDP Packet Size 1500 Total transmission time 300 s 
Link error rates 0.0%   

The simulation results analysis is as follows: according to Table 2, during the 0~25 s, TCP-Learning 

only sends data in the link. As can be seen from Figures 9 and 10, when the bandwidth is 5 Mb, the 

time interval of ACK Keep is around 0.0023 s; during the 25~50 s, the first UDP link starts sending  

1 Mb constant data, and the bandwidth is 4 Mb, and the time interval of ACK extends about 0.004 s; 

during the 50~75 s period, the second UDP link starts sending 1 Mb constant data, and the bandwidth 

becomes 2 Mb, and the time interval of ACK extends about 0.0058 s. As can be seen from the entire 

simulation process, the ACK interval can better reflect the current situation of the link bandwidth. 



Sensors 2015, 15 9377 

 

 

 

Figure 9. Bandwidth estimation. 

 

Figure 10. The time interval of ACK. 

6.2. The Convergence of MAB 

The simulation is conducted within a cluster of a cognitive radio sensor network. Suppose the 

authorized users are in the network system, every channel has only two kinds of state S, which are 

named as two Gilbert-Elliott Markov chain values as shown in Table 4 and Figure 11. 

Table 4. Parameters of Gilbert-Elliott Markov chains. 

Type Description 

S = 1 the current channel free 
S = 0 the current state of busy 
λ0 the channel state transition probability from busy to idle 

1 − λ1 the channel state transition probability from idle to busy 
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Figure 11. G-E Channel Model. 

The whole wireless network simulation parameters are shown in Table 5. 

Table 5. all the parameters used in the simulation [52–55]. 

Parameters Value 

Number of sensors (N) 30 
Number of channels (M) 20 
Sensor active probability 0.3 

Channel transition probability (0.1) 
Slot duration (ts) 4 ms 

Data transmission rate (B) 40 kbps 
CM control packet size (L) 17 bytes 

CH broadcast packet size (L) 20 bytes 
CM data packet size (L) 20~128 bytes 

Sensor initial energy ( inE ) 1 J 
RF circuit energy consumption ( cirE ) 50 nJ/bit 
Amplifier energy required at CH (ε ) 100 PJ/bit 
Distance between sensor and CH (d) 25 m on average 

Because the frame error rate is dependent on the packet size, the number of data sent according to 

the channel quality at any time should be revised. In Figure 12, the channel quality is divided into good 

channel, normal channel and bad channel. When the wireless network quality is bad, the optimal 

packet size is 40 bytes. When the channel quality is normal, the optimal packet size is 60 bytes. When 

the channel quality is good, the optimal packet size is 100 bytes. When the optimal packet size is 

transmitting and receiving, the energy consumption is the least. It can be concluded that there is always 

the optimal packet size for any channel state. 
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Figure12. The optimal packet size in the different channel states. 
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The paper maps packet size adaptation to the different arms. When the channel transmission 

probability is unknown, the challenge of searching the optimal packet size strategy is that the arm is 

infinite. In order to solve this problem, this paper makes use of sender monitoring ACKs to estimate 

the bandwidth. When the channel quality is bad, the packet size is between 20 and 50. When the 

channel quality is normal, the packet size is between 50 and 90. When the channel quality is good, the 

packet size is between 90 and 120. Figure 13 shows he capability of all arms with the normal wireless 

network quality for the multi-armed bandits algorithm.  
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Figure 13. The optimal arm for the same wireless network quality. 
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Figure 14. The optimal arm for the different wireless network quality. 

The arm 60 is the optimal arm for the wireless network quality, and arm 60 is chosen to reach to 

100% with increasing implementation time, otherwise the other arm chosen reaches 0%. The same 

method can obtain the corresponding optimal arm under the good and bad wireless network quality 

conditions . As shown in Figure 14, the convergence of the corresponding optimal arm can be obtained 

with different wireless network quality. As seen in the figure, as the implement time increases, the 

optimal arm was chosen to run longer then gradually reaches 100%. 
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6.3. Packet Size Adaption Performance 

The proposed packet size adaptation scheme is examined by comparing it with the random packet 

size, the fixed packet size and the EKF. Figure 15 shows the comparison results. It is the accumulative 

network energy efficiency. The network energy efficiency is characterized in terms of energy-per-bit 

(EPB) which denotes the ratio of the total energy consumption and the amount of data successfully 

sent. We observe that the MAB packet size adaptation scheme achieves the best energy efficiency 

across the whole duration of the simulation. The proposed packet size adaptation scheme keeps its 

energy-per-bit at the lowest level among all packet-sizing schemes. The blue horizontal line represents 

the MAB adaptive packet size. The EPB is 0.246 mJ/bit. The amount of data successfully sent is  

122 Mb. The red line represents the fixed packet sizing scheme, whose energy-per-bit value first 

decreases, and then it keeps increasing as the packet size increases. The optimal packet size of the 

fixed scheme is 60 bytes. The energy-per-bit is 0.253 mJ/bit. The amount of data successfully sent is 

119 Mb. The purple line represents the random packet sizing scheme, which is still worse than the 

adaptive packet size performance since the packet size adaptation scheme dynamically tracks the 

channel behavior . The MAB adaptive packet size is clearly better than the EKF scheme. 
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Figure 15. The energy consumption comparison for the different packet size schemes. 

The whole network has a cluster head and sensor nodes. The sensor nodes periodically send their 

sensing data to the cluster head. The sensor nodes are battery operated. The cluster heads usually 

supply power. As mentioned, the energy can be optimized due to the optimal packet size. Figure 16 

shows the comparison of the energy consumption using in the MAB policy, the random packet size, 

the fixed packet size policy and the EKF policy. The blue horizontal line represents the MAB adaptive 

packet size. When the mobile node increases, the energy consumption almost does not increase. The 

red line represents the fixed packet sizing scheme. The energy consumption keeps increasing as the 

nodes increase. The purple line represents the random packet sizing scheme. The energy consumption 

is similar to that of the fixed packet sizing scheme. Due to the increasing number of mobile nodes, the 
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probability of conflict increases and the channel quality is poorer. Therefore, as the packet length 

increases, the energy consumption experiences a sharp rise. The green line represents the EKF scheme. 

The energy consumption increases slowly, and finally tends to be stable as the packet length increases. 

The MAB adaptive packet size is clearly better than the other three strategies as the number of mobile 

nodes increases. 
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Figure 16. The energy consumption comparison of the different packet size schemes per 

number of mobile nodes. 
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Figure 17. The comparison of the number of successfully transmitted data among different 

packet-sizing schemes as the packet size changing. 
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Figure 17 demonstrates the comparison of the amount of transmitted data in the MAB policy, the 

random packet size and the fixed packet size policy as the packet size is changing. The blue line 

represents the MAB adaptive packet size. When the channel quality is changed, the packet size is 

adaptive. In the beginning, the transmitted data is at the jitter stage, since it is searching for the optimal 

arm according to the MAB strategy at the learning stage, then the amount of transmitted data tends to a 

constant value once the optimal arm is found. It can be seen that the transmitted data of the MAB 

policy is significantly better than that of the random, the fixed packet size scheme and the EKF scheme. 

The reasons for this improvement can be attributed to the adaptive property of the MAC. When the 

wireless network quality is bad, it reduces the packet size, and reduces the retransmission frequency. In 

this way errors are reduced and the channel capacity utilization is increased. 

Figure 18 shows the comparison of the throughput with the MAB policy, the random packet size, 

the fixed packet size policy and the EKF policy as the number of mobile nodes is increasing. The blue 

line represents the MAB adaptive packet size. When the number of mobile nodes increases, the 

throughput slowly increases. The red line represents the fixed packet sizing scheme. The purple line 

represents the random packet sizing scheme. The throughput sharply declines as the nodes increase in 

number. Due to the increasing number of mobile nodes, the probability of conflicts increases and the 

channel quality is poorer, therefore, the throughput experiences a sharp drop. The green line represents 

the EKF. When using the EKF, the throughput slowly decreases as the number of mobile nodes 

increases.The throughput of the MAB adaptive packet size is clearly better than the other three 

strategies as the number of mobile nodes is increasing. 
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Figure 18. The comparison of the throughput among different packet-sizing schemes as 

the number of mobile nodes is increasing. 
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6.4. Residual Energy Balanceing Channel Assignment 

Another type of simulation result is the network residual energy balance. Figure 19 shows the 

comparison of the network lifetime with the MAB policy, the random scheme and the EKF. Figure 19 

verifies the design goal of the residual energy balancing channel assignment is met. The red line 

represents the random scheme. some nodes run out of battery power after 8.95 × 105 s. A considerable 

part of the nodes run out of battery after 9.075 × 105 s. Although some nodes still have power after 

9.075 × 105 s, since most of the nodes have run out of battery it means the whole network almost 

cannot run. The blue line represents the MAB adaptive packet size. Before 9.075 × 105 s, almost no 

nodes fail, and the entire network can run well. The death of sensors is distributed in a narrow time 

period. This is desirable because the total unused energy is reduced when the network dies. The MAB 

scheme can maintain the network residual energy balance. The green line represents the EKF. The 

EKF is slightly better than the random scheme regarding the network residual energy balance. The 

residual energy balancing effect of the MAB is clearly better than the random scheme and the EKF. 
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Figure 19. The comparison of the network lifetime between different packet-sizing schemes. 

7. Conclusions 

An adaptive packet size strategy for the energy efficiency of wireless sensor networks is proposed 

in this paper. The main goal is to reduce the power consumption and extend the whole network life. In 

order to reach this goal, the paper introduced the bounded MAB to find the optimal packet size to 

transfer through formulating different packet sizes for different arm under the channel condition.  

At the same time, in order to achieve fast convergence, we consider the bandwidth evaluation 

according to ACK. The simulation results demonstrate that the packet size is adaptive when the 

channel quality changes and the convergence of the corresponding optimal arm can obtain different 
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wireless network quality, as the implementation time increases; the optimal arm chosen to run longer 

then gradually reaches 100%. We observe that the goodput and energy consumption of the MAB 

algorithm is much better than the fix frame size and random frame size algorithms under different 

channel quality scenarios. At the same time it extends the whole network life. In the future, we will 

consider the cross layer and Partially Observable Markov model to improve the overall performance. 
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