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Abstract: Currently, most digital image watermarking schemes are affected by geometric attacks like
rotation, scaling, and translation (RST). In the watermark embedding process, a robust watermarking
scheme is proposed against RST attacks. In this paper, three-level discrete wavelet transform (DWT) is
applied to the original image. The three-level low frequency sub-band is decomposed by the singular
value decomposition (SVD), and its singular values matrix is extracted for watermarking embedding.
Before the watermarking extraction, the keypoints are selected by scale-invariant feature transform
(SIFT) in the original image and attacked image. By matching the keypoints in two images, the RST
attacks can be precisely corrected and the better performance can be obtained. The experimental
results show that the proposed scheme achieves good performance of imperceptibility and robustness
against common image processing and malicious attacks, especially geometric attacks.

Keywords: image watermarking; scale-invariant feature transform (SIFT); discrete wavelet transform
(DWT); singular value decomposition (SVD); geometric attacks

1. Introduction

With the tremendous growth in information industry recently, as one of the most essential
methods to convey the information from one side to the other, digital images can be easily tampered,
which can consequently result in security problems with copyright issues. Thus, the scheme for
the authenticity and integrity of image protection becomes essential and meaningful. To solve this
problem, digital signatures [1,2] and digital image watermarking [3] are proposed. Because digital
signatures can only estimate whether images are tampered but cannot locate the tampered region,
the watermarking technique, an effective method to solve the copyright problem of image content,
is proposed. According to different characters, watermarking can be classified into three categories:
(i) robust watermarking used for copyright protection, which can resist all kinds of attacks; (ii) fragile
watermarking, which is sensitive to attacks including malicious tampering and common processing;
and (iii) semi-fragile watermarking used to distinguish malicious tampering from non-malicious
modification, which is a combination of advantages of robust and fragile watermarking. In addition,
both fragile watermarking methods and semi-fragile watermarking methods can be applied in image
tamper, location, and recovery.

From the perspective of the working domain where the watermark is embedded, this effective
technique can be divided into spatial domain and transform domain [4]. The spatial domain
methods modify the pixel value of the digital image directly to embed the watermark information.
The advantages of spatial watermarking method are easy implementation and low computational
complexity. However, this kind of method is fragile to the common image processing operation and
other attacks. In contrast, the watermark information is embedded into the host image by modifying
transform coefficients of the original image in the transform domain methods. Compared with spatial
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methods, methods based on mathematical transform have better imperceptibility and robustness.
Discrete cosine transform (DCT), discrete wavelet transform (DWT), discrete Fourier transform (DFT),
and singular value decomposition (SVD) [5] are the common transforms applied in the transform
domain watermarking.

Owing to its stable algebraic character, SVD is applied as a normal method for watermarking
scheme, especially for robust watermarking. Liu and Tan [6] firstly introduced the typical
watermarking algorithm based on SVD. In this method, singular values obtained by SVD are modified
for the purpose of embedding the watermarking into the host image. In the watermark embedding
process, the watermark information is embedded in the form of weighted sum with the help of the
scale factors. Different from Liu and Tan’s scheme, Chang et al. [7] proposed another SVD based
watermarking scheme, where the watermark is embedded by substituting the specific singular value
with the watermark value. In addition, Su et al. [8] introduced a blind dual color image watermarking
scheme based on SVD. By analyzing the orthogonal matrix U generated from the SVD, a similarity
correlation, in which elements in the second row first column and the third row first column have the
same sign and high normalized cross-correlation, is found between these two elements, which can be
used in watermarking embedding and extraction. Liu et al. [9] proposed quantized SVD (QSVD) based
blind watermarking method, which realized embedding of the watermark by modifying the quaternion
elements in U matrix. Worthy of mention is the quaternion, a type of hyper-complex number, consists
of one real component and three imaginary components, and an image can be encoded into the form of
quaternion. To obtain better performance of the watermarking algorithm, some hybrid schemes based
on SVD and other transforms have been proposed. In [10], Li et al. introduced a novel watermarking
algorithm based on SVD and DCT. Two bits of a watermark are being embedded into a 32 × 32
macro-block in the high frequency band of SVD-DCT blocks. This method does not require any
additional information except a key for extraction. Sverdlov et al. [11] embedded the watermark
after DCT into four quadrants/blocks performed by SVD, which DCT coefficients are mapped to,
and singular values of the watermark after DCT are embedded into each quadrant. Lai et al. [12]
proposed a DWT and SVD based watermarking scheme, embedding the watermark information
into singular values of the host image’s DWT sub-bands. In [13], with the help of directive contrast
operation as well as wavelet coefficients, Bhatnagar and Raman obtained the reference image and
embedded the watermark into a reference image based on SVD and DWT. Mishra et al. [14] proposed
an optimized image watermarking based on DWT-SVD and the Firefly algorithm. The singular value
of a binary watermark is embedded into the three-level low frequency sub-band, also known as LL
sub-band, by the use of optimized scaling factors. In [15], Narula et al. made an analysis on DWT
watermarking scheme and DWT-SVD watermarking scheme used in RGB images, concluding that the
hybrid DWT-SVD based scheme has better performance than the conventional DWT based scheme. D.
Singh and S. K. Singh [16] proposed a robust watermarking scheme based on DWT, SVD, and DCT
with Arnold encryption, solving the false positive problem. In [17], Ansari et al. proposed integer
wavelet transform (IWT) and SVD based watermarking, making use of these transforms properties
to solve the false positive problem. To optimize the scaling factor, the artificial bee colony (ABC)
algorithm is applied to improve the quality of watermarking.

Although SVD is applied in the watermarking scheme because of its stability, robustness of
schemes based on SVD and other transforms to geometrical attacks is not satisfying. Rotation, scaling,
and translation (RST) [18] are common geometrical attacks in image processing. Because of RST
attacks on the host image, the watermark cannot be detected and extracted as normal. It is urgent to
research and propose the watermark method with the resistance to the RST attacks [19]. To solve this
problem, the scale-invariant feature transform (SIFT) [20] is applied in image watermarking, which
is a type of efficient method for interesting points detection and extraction, as well as local feature
description. Due to its significant function, SIFT is widely applied in computer vision field, such as
image matching and image object recognitions. There are some characters in SIFT, including invariant
character to RST and robustness against affine transform. Thus, SIFT can be applied in various kinds
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of fields such as object recognition, image indexing, segmentation, registration, and data hiding [21].
In recent years, SIFT is applied extensively in watermarking. Lee et al. [22] proposed a novel image
watermarking scheme using local invariant features, as well as embedding the watermark into the
patches in circle shapes generated by SIFT. To deal with the synchronization errors, Luo et al. [23]
proposed an adaptive watermarking scheme based on DFT and SIFT. In this method, DFT is performed
on the sub-image selected from the host image for watermark embedding. In [24], Lyu et al. proposed
image watermarking scheme based on SIFT and DWT, where they applied the DWT on the selected
SIFT areas. Thorat and Jadhav [25] proposed an anti-geometrical attacks watermarking scheme based
on IWT and SIFT. This scheme applied SIFT on the red components of the image, extracted the feature
points and performed IWT on the blue and green components to extract low-frequency coefficients for
watermark embedding. Pham et al. [26] proposed a robust watermarking scheme based on SIFT and
DCT, embedding the watermark into the selected feature region after DCT. In [27], Zhang and Tang
proposed a watermarking algorithm based on SVD and SIFT to solve the synchronization problem. The
SIFT is used for watermarking resynchronization. The embedding of watermark is done using SVD
technique, and SIFT algorithm is used to find feature points, which is further used for watermarking
detection. Besides that, for geometric invariance of the watermarking schemes, the moments transform
domain has attracted the watermarking community as an alternative transform domain to embed
the watermark recently. In [28], Yuan and Pun introduced a geometric invariant watermarking based
on SIFT and Zernike moments, where SIFT is applied to obtain the circular region as well as the
Zernike moment performed on binary regions, and magnitudes of local Zernike moments altered
for watermark embedding. In [29], Wang et al. proposed a geometrically invariant watermarking
scheme using radial harmonic Fourier moments to embed the watermark into their magnitudes by
quantization. Tsougenis et al. [30] made great efforts to analyze advantages and disadvantages of
watermarking methods based on moment theory, and achieved comparative study on performance of
moment-based watermarking scheme. Due to the efficiency of SIFT for image matching and image
features, it is becoming an innovative option for the image watermarking method in recent years.
The basic theory of the SIFT will be illustrated later in Section 2.

In this paper, a new robust watermarking scheme based on SVD, DWT, and SIFT is proposed.
Firstly, the host image is performed by DWT for three times, and the LL3 sub-band is selected for SVD
operation. Then, the watermark is embedded into the three-level LL3 sub-band. The SIFT keypoints,
also known as feature points, are saved as keys for correcting the RST attacks. In the extraction process,
the capability of attack resistance can be attained owing to the SIFT feature matching. Experimental
results show that, with the excellent imperceptibility, the proposed scheme is resilient to both common
image processing and various attacks, e.g., Gaussian noise, salt and pepper noise, RST, cropping, etc.

The rest of this paper is organized as follows. In Section 2, we present the SIFT algorithm. Section 3
addresses the concrete watermark embedding and extraction procedures. Section 4 gives experimental
evaluation of robustness and imperceptibility compared with previous schemes, and demonstrates the
advantage of the proposed scheme. Conclusions and the future works are given finally in Section 5.

2. SIFT Algorithm

Lowe [20] proposed to extract the local scale-invariant feature keypoints of descriptors, and use
these descriptors for the matching of two related images. Generating steps of SIFT feature descriptor
are described, which contains four parts in total.

2.1. Scale-Space Peak Selection

The basic theory of the scale-space approach [31] is to introduce a scale parameter in the
visual information processing model and obtain visual processing information on different scales
by continuously changing scale parameters. Then, the information is integrated to explore essential
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characteristics of the image. For achieving the scale transformation, Gaussian convolution kernel [32]
is the only linear kernel applied. The scale-space kernel fout can be defined as Equation (1):

fout = Kn ∗ fin, (1)

where Kn is the kernel, fin is the input signal, and ∗ represents the convolutional calculation.
The scale-space S(x, y, σ) of the image I(x, y) is shown as Equation (2):

S(x, y, σ) = G(x, y, σ) ∗ I(x, y), G(x, y, σ) =
1

2πσ2 e−(x2+y2)/2σ2
, (2)

where G(x, y, σ) is the scale variable Gaussian function, (x, y) is the spatial coordinates, and σ is
the scale-space factor, which decides the smoothness of the image. The large value of σ represents
smoother image overview features of large scales, and the small value of σ describes the abundant
image detailed features of small scales.

To detect stable points in scale-space effectively, Lowe [20] proposed the difference of Gaussian
(DOG) scale-space presented as Equation (3):

D(x, y, σ) = [G(x, y, kσ)− G(x, y, σ)] ∗ I(x, y) = S(x, y, kσ)− S(x, y, σ), (3)

where I(x, y) is the input image and k is the multiple between two neighboring scale-spaces.
With the help of DOG scale-space image, all extreme points can be detected as keypoints in the

candidate points.

2.2. Keypoints Location

The next step is to locate keypoints, aiming at orientating the location of keypoints precisely. In
this way, a large number of extreme points are obtained. However, not all the extreme points are
keypoints, and there should be a method to eliminate some points. There are two steps for point
elimination: rough picking and fine picking. Rough picking is mainly to pick those candidate keypoints
with low contrast and marginalized candidate keypoints. Due to fact that the DOG operator has a
strong response for image edges, fine picking is adopted in the way of edge response to further
eliminate the keypoints. Thus, the procedure of keypoint location has been completed.

2.3. Direction Matching

The next step is the keypoint orientation assignment, and the purpose is to achieve the SIFT
features of rotation invariance. For scaling smoothed image IL, which means that the image IL has
been performed by keypoint elimination, we compute the central derivative of IL at every keypoints.
Further scale and orientation at every keypoint (x, y) can be calculated by Equation (4):{

θ(x, y) = arctan2{[IL(x, y + 1)− IL(x, y− 1)]/[IL(x + 1, y)− IL(x− 1, y)]}
g(x, y) =

√
[IL(x + 1, y)− IL(x− 1, y)]2 + [IL(x, y + 1)− IL(x, y− 1)]2

, (4)

where θ(x, y) is the direction of the gradient and g(x, y) is the gradient modulus value.
After obtaining the gradient direction and amplitude, the gradient direction of the keypoints

can be determined by a gradient direction histogram. The maximum/peak value of the histogram
represents the direction of gradient at the neighbor of this keypoint. The peak value of histogram
is set as the main direction of this keypoint, and when there is another peak with the value of the
main peak’s 80%, this direction is expected to be recorded as the auxiliary direction of this keypoint to
improve the robustness. The direction matching has been completed with the location, orientation,
and scale.
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2.4. Keypoint Description

The keypoint description is to find the local image descriptor of the keypoints. Lowe [20] chose
the gradient direction histograms to describe the keypoints. The specific procedures of keypoint
description can be concluded with three steps:

Step 1 The scale and orientation are computed in the 16 × 16 neighbor of keypoints.
Step 2 The 16× 16 neighborhood is divided into 4× 4 blocks. Thus, there are 16 blocks in the neighbor

of every keypoint as well as eight orientations in the central point of every 4 × 4 block.
Step 3 128 orientations can be obtained as the keypoint feature in the vector with size of 1 × 128.

To simplify the analysis, suppose the 8× 8 neighbor of the keypoint is divided into 4× 4 blocks,
and there will be four sub-blocks. The diagram of keypoints directions are shown in Figure 1.
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So far, all of the steps of the SIFT algorithm are completed. In this paper, SIFT is applied to correct
the RST attacks to obtain better robustness of the watermarked image.

3. The Proposed Scheme

3.1. Watermark Embedding Process

The flow diagram of the watermark embedding process is shown in Figure 2.
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The concrete steps are described as follows:

Step 1 The original image I is transformed with DWT three times, and each level of DWT is performed
sequentially on the original image, LL1, and LL2. Finally, LL3 is obtained for the SVD transform
in Step 3. Due to the fact that the LL sub-band has sufficient information, the capacity of
watermark embedding is large in the LL sub-band, which can ensure the good imperceptibility
of the proposed method.
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Step 2 The watermark information is encrypted with the Arnold transform, and the scrambling time
is saved as key T.

Step 3 According to Equations (5) and (6), SVD is performed on the LL3 sub-band to get three
matrices: both U and V are orthogonal matrices, and S is the diagonal matrix of singular
values. After that, singular values of the LL3 sub-band are altered:

ILL3 = USVT, (5)

Sw = S + α×Wa, (6)

where α is the scaling factor, determining the performance of the watermarking scheme in
robustness and imperceptibility, and Wa is the watermark encrypted with Arnold transform.

Step 4 Owing to the fact that the watermark for embedding is an image matrix, Sw is not a diagonal
matrix after Equation (6), which can result in distortion in inverse SVD transform. Thus, SVD is
performed on the Sw again to obtain the watermarked diagonal matrix, which is illustrated by:

Sw = UwSwwVw
T. (7)

Step 5 The watermarked sub-band ILL3w is generated by Sww, U, and V, as shown in Equation (8):

ILL3w = USwwVT. (8)

Step 6 According to the concrete process in Step 1, three-level inverse DWT (IDWT) is performed
with other sub-bands to generate the watermarked image Iw.

Step 7 After Step 6, SIFT is performed on the watermarked image Iw, and feature points are
extracted. Meanwhile, descriptors of the watermarked image are recorded as keys P for
the feature matching in the extraction process. To be more concrete, the coordinates, scales,
and orientations of the feature points in the watermarked image are obtained, which are used
for RST attack correction.

In the end, the watermark embedding process is finished.

3.2. Watermark Extraction Process

The extraction process can be implemented without the original image but feature keys, which
can be regarded as the semi-blind watermark scheme. The flow diagram of the watermark extraction
process is shown in Figure 3.
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The concrete steps are demonstrated as follows:

Step 1 The attacked image Ia is performed with SIFT, and the feature points Pa in the attacked image
can be obtained accordingly.

Step 2 In the embedding process, the feature points in watermarked image are recorded as keys P.
In this step, keys P should be stored in a matrix and transmitted along with the watermarked
image for feature matching with the feature points Pa.

As can be seen in Figure 4, two sets of feature points in two images are selected as matching
keypoints, and lines are drawn between two keypoints in two images separately.

Step 3 After the feature matching process finished, RST attacks can be corrected with the angle,
coordinates, and scales, which is illustrated concretely in Section 3.3. Then, the RST corrected
image Ic is obtained for watermark extraction.

Step 4 Three-level DWT is performed on the corrected image Ic, and then LL3, LH3, HL3, and HH3

bands are obtained. Similar to the embedding process, the LL3 sub-band I∗LL3w
is selected for

the SVD transform in the next step.
Step 5 SVD is performed on the corrected sub-band using Equation (9), and Sww

∗ is recorded for the
next step.

I∗LL3w
= U∗Sww

∗V∗T. (9)

Step 6 S∗w is retrieved back by Equation (10):

S∗w = UwS∗wwVw
T. (10)

Step 7 The extracted watermark is generated for the LL3 sub-band, which is shown in Equation (11):

W∗e = (S∗w − S)/α. (11)

Step 8 The extracted watermark is decrypted by the Arnold transform with key T recorded in the
embedding process.
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Figure 4. Scale-invariant feature transform (SIFT) feature matching.

So far, the watermark extraction process is finished.

3.3. RST Attack Correction Based on SIFT

As demonstrated in Sections 3.1 and 3.2, after that, the SIFT feature of the image is extracted, and
horizontal coordinates, vertical coordinates, scales, orientation factors, as well as the descriptors of
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keypoints can be obtained. Descriptors key of feature keypoints P saved in the embedding process
and descriptors key of feature points Pa are matched, and M pairs of matching points can be obtained
for the following correction.

3.3.1. Rotation Attack Correction

The image is rotated by a certain degree, resulting in information destruction and loss. The match
between rotated image and watermarked image is shown in Figure 5.
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Figure 5. Matching between rotated image and watermarked image: (a) rotated image (30◦);
(b) feature matching.

The two keypoints of watermarked image are set as iw and jw separately, and two keypoints of
rotated image are set as ir and jr. According to the basic mathematics, the vector can be obtained by
the calculation on coordinates between two points. Thus, the vector in the watermarked image and

rotated image can be set as
→

iw jw and
→

ir jr, respectively. For the correction, the rotation angle of the kth
matching point is recorded as φk. So far, the corrected angle of rotation can be given in Equation (12):

βc =
1
m

m

∑
k=1

φk, φk = arccos


→

iw jw ·
→

ir jr∣∣∣∣ →iw jw

∣∣∣∣∣∣∣∣ →ir jr

∣∣∣∣
, (12)

where m is the number of valid matching points. Equation (12) means that any two pairs of matching
points are picked out to calculate the rotation angle, and then the average value of the angles’ sum is
calculated. In this context, the corrected angle βc is obtained. Thus, the attacked image at the receiving
end should be rotated by the angle of βc for the rotation correction.

3.3.2. Scaling Attack Correction

Scaling attack is a type of tampering method that can change the size of one image, which can
result in the image distortion. The match between scaled image and watermarked image is shown
in Figure 6.

Owing to the SIFT characteristics, the scaling coefficient is equal to the size relationship between
scaled image and watermarked image. Thus, the scaling coefficient can be extracted from M pairs of
matching points. swk and ssk are the kth scale values of the matching points in watermarked image
and scaled image, respectively. The corrected scaling coefficient γ is shown as Equation (13):

γ =
1
M

M

∑
k=1

swk

ssk

. (13)
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Apparently, γ is the mean of ratios between swk and ssk . After obtaining the corrected
scaling coefficient, the received image should be scaled with the parameter γ to achieve the
rotation complementary.
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Figure 6. Matching between scaled image and watermarked image: (a) scaled image (0.5);
(b) feature matching.

3.3.3. Translation Attack Correction

The definition of the translation attack is that all points of one image are moved towards the
same linear direction for the same distance. The translation attack cannot change the shape and size
of the attacked image, but result in image information destruction. The match between horizontally
translated image (128 pixels) and watermarked image is shown in Figure 7.
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location of coordinates in the inverse direction to achieve the translation correction. 
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Figure 7. Matching between translated image and watermarked image: (a) horizontally translated
image (128 pixels); (b) feature matching.

Translation correction is implemented with the help of matching points’ coordinates. Similar
to scaling attack correction, coordinates of the watermarked image and translated image are set
as (xw, yw) and (xt, yt), and the size of the image is N × N. The corrected horizontal and vertical
coordinates, xc and yc, can be calculated by Equation (14):

xc =

{
xt − xw + N, xt < xw

xt − xw, otherwise
, yc =

{
yt − yw + N, yt < yw

yt − yw, otherwise
. (14)

After that, xc and yc are used to correct the attacked image on the horizontal and vertical location
of coordinates in the inverse direction to achieve the translation correction.

The corrections of RST attacks are demonstrated, respectively, as above all.
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4. Experimental Results and Analysis

In this section, performances in watermark robustness and imperceptibility of the proposed
method are given and analyzed. This scheme is tested on the image with size of 512 × 512, and the
watermark applied in this scheme is a binary image with size of 64 × 64. The scheme is tested on
MATLAB R2014a with an Intel (R) Core (TM), Santa Clara, TX, USA, i3-2100 3.10 GHz CPU, 6 GB
memory computer.

The proposed scheme is performed on a number of standard images, which are shown in Figure 8.
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Figure 8. Test images: (a) Airplane; (b) Lena; (c) Barbara; (d) Bank; (e) Announcer; (f) Fishing Boat;
(g) Milkdrop; (h) Baboon; (i) Boat; (j) Bridge; (k) Einstein; (l) Peppers; (m) Goldhill; (n) Model;
(o) Mountain; (p) Zelda.

The Lena and Barbara images are selected for representative in this scheme. Compared with the
Lena image, the Barbara image has more texture information. Similarly, considering symmetry and
asymmetry of watermarks, the English character and logo images of Shandong University, China, set
as w1 and w2, are applied in this scheme for representation. In addition, the character watermark is
embedded into the host image Lena, and the logo image watermark is embedded into the host image
Barbara.
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4.1. Evaluation of Imperceptibility

After the watermark embedding, compared with the original image, the quality of the
watermarked image will be reduced. Peak signal-to-noise ratio (PSNR) is the quality evaluation
index adopted in most watermarking schemes to evaluate the imperceptibility performance of the
algorithm. As for an image with size of N × N, the PSNR is defined as Equation (15):

PSNR = 10lg
2552

MSE
= 10lg

 2552N2

N−1
∑

i=0

N−1
∑

j=0
[I(i, j)− Iw(i, j)]2

(dB), (15)

where I(i, j) and Iw(i, j) are the pixel values on the coordinates of row i and column j in the host image
and the watermarked image separately.

Structural similarity index (SSIM) overcomes the disadvantage of PSNR, becoming a useful index
of the similarity detection, which is defined as Equation (16):

SSIM =
2µIµIw + C1

µI2 + µIw
2 + C1

2σIσIw + C2

σI2 + σIw
2 + C2

σI Iw + C3

σIσIw + C3
, (16)

where µI and µIw denote the mean of original image I and watermarked or restored image Iw,
respectively. Furthermore, σI and σIw are the variance of image I and Iw separately, while σI Iw is the
covariance between I and Iw. C1, C2, and C3 are positive parameters. The value of SSIM ranges from 0
to 1. When SSIM is equal to 1, I and Iw are exactly the same.

Figure 9 shows the good perceptual transparency of the watermarked image compared with
the original image. After SIFT is performed on Lena and Barbara images, 1233 keypoints and
1590 keypoints are extracted in these two watermarked images, respectively.
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where Iμ  and 
wIμ  denote the mean of original image I  and watermarked or restored image wI , 
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Figure 9. Imperceptibility of the watermark: (a) original Lena image; (b) original character 
watermark 1w ; (c) watermarked Lena; (d) original Barbara image; (e) original logo watermark 2w ; 
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Figure 9. Imperceptibility of the watermark: (a) original Lena image; (b) original character
watermark w1; (c) watermarked Lena; (d) original Barbara image; (e) original logo watermark w2;
(f) watermarked Barbara.
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4.2. Evaluation of Robustness

The normalized correlation (NC) is applied to calculate the similarity of two images and further
evaluate the robustness of the watermarking scheme, which is defined as Equation (17):

NC =

n−1
∑

i=0

n−1
∑

j=0
Wo(i, j)×We(i, j)

n−1
∑

i=0

n−1
∑

j=0
Wo(i, j)×Wo(i, j)

, (17)

where Wo is the original watermark and We is the extracted watermark. The size of the watermark
is n × n.

The watermark is embedded into host images with different scaling factors, as shown in Figure 10.
To resolve the trade-off between the robustness and invisibility of watermarking, the scaling factor is
set as 0.5.
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Figure 10. Structural similarity index (SSIM) and normalized correlation (NC) values of the proposed
method with different quantization steps.

Table 1 gives the results of test images in number of keypoints and NC value (host images are
tested with watermark 1).

Table 1. Experimental results on test images.

Images Number of Keypoints NC

Airplane 2037 0.9970
Lena 1233 0.9964

Barbara 1590 0.9969
Bank 948 0.9973

Announcer 973 0.9975
Fishing Boat 1943 0.9978

Milkdrop 272 0.9972
Baboon 3264 0.9976

Boat 2881 0.9971
Bridge 3813 0.9974

Einstein 812 0.9977
Peppers 780 0.9967
Goldhill 1947 0.9973
Model 593 0.9965

Mountain 2442 0.9964
Zelda 880 0.9969
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4.2.1. Common Attacks

In Figures 11–15, the extracting results under different image attacks are given, such as JPEG 100,
salt and pepper noise with densities of 0.01 and 0.05, Gaussian noise with mean 0, and variances of
0.01 and 0.05, center cropping on the 256 × 256 region, and median filter (3 × 3).

(1) JPEG (100).

Algorithms 2017, 10, 41 13 of 21 

4.2.1. Common Attacks 

In Figures 11–15, the extracting results under different image attacks are given, such as JPEG 
100, salt and pepper noise with densities of 0.01 and 0.05, Gaussian noise with mean 0, and variances 
of 0.01 and 0.05, center cropping on the 256 × 256 region, and median filter (3 × 3). 

(1) JPEG (100). 

 

 

 

 

(a) (b) (c) (d) 

Figure 11. Watermarked images and extracted watermarks under JPEG (100): (a) watermarked Lena; 
(b) extracted watermark 1w ; (c) watermarked Barbara; (d) extracted watermark 2w . 

(2) Salt and pepper noise (0.01 and 0.05). 

 

 

 

 

(a) (b) (c) (d) 

 

 

 

 

(e) (f) (g) (h) 

Figure 12. Watermarked images and extracted watermarks under salt and pepper noise:  
(a) watermarked Lena under salt and pepper noise (0.01); (b) extracted watermark 1w ;  
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(g) watermarked Barbara under salt and pepper noise (0.05); (h) extracted watermark 2w . 

  

Figure 11. Watermarked images and extracted watermarks under JPEG (100): (a) watermarked Lena;
(b) extracted watermark w1; (c) watermarked Barbara; (d) extracted watermark w2.

(2) Salt and pepper noise (0.01 and 0.05).

Algorithms 2017, 10, 41 13 of 21 

4.2.1. Common Attacks 

In Figures 11–15, the extracting results under different image attacks are given, such as JPEG 
100, salt and pepper noise with densities of 0.01 and 0.05, Gaussian noise with mean 0, and variances 
of 0.01 and 0.05, center cropping on the 256 × 256 region, and median filter (3 × 3). 

(1) JPEG (100). 

 

 

 

 

(a) (b) (c) (d) 

Figure 11. Watermarked images and extracted watermarks under JPEG (100): (a) watermarked Lena; 
(b) extracted watermark 1w ; (c) watermarked Barbara; (d) extracted watermark 2w . 

(2) Salt and pepper noise (0.01 and 0.05). 

 

 

 

 

(a) (b) (c) (d) 

 

 

 

 

(e) (f) (g) (h) 

Figure 12. Watermarked images and extracted watermarks under salt and pepper noise:  
(a) watermarked Lena under salt and pepper noise (0.01); (b) extracted watermark 1w ;  
(c) watermarked Barbara under salt and pepper noise (0.01); (d) extracted watermark 2w ;  
(e) watermarked Lena under salt and pepper noise (0.05); (f) extracted watermark 1w ;  
(g) watermarked Barbara under salt and pepper noise (0.05); (h) extracted watermark 2w . 

  

Figure 12. Watermarked images and extracted watermarks under salt and pepper noise:
(a) watermarked Lena under salt and pepper noise (0.01); (b) extracted watermark w1; (c) watermarked
Barbara under salt and pepper noise (0.01); (d) extracted watermark w2; (e) watermarked Lena under
salt and pepper noise (0.05); (f) extracted watermark w1; (g) watermarked Barbara under salt and
pepper noise (0.05); (h) extracted watermark w2.
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(3) Gaussian noise ((0, 0.01) and (0, 0.05)).
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Lena; (b) extracted watermark 1w ; (c) watermarked Barbara; (d) extracted watermark 2w . 
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(0, 0.05); (f) extracted watermark w1; (g) watermarked Barbara under Gaussian noise (0, 0.05);
(h) extracted watermark w2.
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(a) watermarked Lena; (b) extracted watermark w1; (c) watermarked Barbara; (d) extracted watermark
w2.
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(5) Median filter (3 × 3).
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Figure 15. Watermarked images and extracted watermarks under median filter (3× 3): (a) watermarked
Lena; (b) extracted watermark w1; (c) watermarked Barbara; (d) extracted watermark w2.

4.2.2. RST Attacks

In Figures 16–18, watermarked images and extracted watermarks of the proposed scheme are
shown under RST attacks with different parameters. For rotation, there are five cases of parameters
simulated in the scheme, which contain 2◦, 5◦, 10◦, 30◦, and 45◦. In the scaling attacks, four different
scales are performed to change the size of watermarked images, i.e., 0.25, 0.5, 0.9, and 1.2. In the
perspective of translation attacks, the translation of watermarked image is performed in horizontal
and vertical directions for 128 pixels, respectively.
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Lena; (b) extracted watermark 1w ; (c) watermarked Barbara; (d) extracted watermark 2w . 
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Figure 16. Watermarked images and extracted watermarks under rotation: (a) rotated Lena (2°); (b) 
extracted watermark 1w ; (c) rotated Barbara (2°); (d) extracted watermark 2w ; (e) rotated Lena (5°); 
(f) extracted watermark 1w ; (g) rotated Barbara (5°); (h) extracted watermark 2w ; (i) rotated Lena 
(10°); (j) extracted watermark 1w ; (k) rotated Barbara (10°); (l) extracted watermark 2w ; (m) rotated 
Lena (30°); (n) extracted watermark 1w ; (o) rotated Barbara (30°); (p) extracted watermark 2w ; (q) 
rotated Lena (45°); (r) extracted watermark 1w ; (s) rotated Barbara (45°); (t) extracted watermark 2w . 

  

Figure 16. Watermarked images and extracted watermarks under rotation: (a) rotated Lena (2◦);
(b) extracted watermark w1; (c) rotated Barbara (2◦); (d) extracted watermark w2; (e) rotated Lena (5◦);
(f) extracted watermark w1; (g) rotated Barbara (5◦); (h) extracted watermark w2; (i) rotated Lena (10◦);
(j) extracted watermark w1; (k) rotated Barbara (10◦); (l) extracted watermark w2; (m) rotated Lena
(30◦); (n) extracted watermark w1; (o) rotated Barbara (30◦); (p) extracted watermark w2; (q) rotated
Lena (45◦); (r) extracted watermark w1; (s) rotated Barbara (45◦); (t) extracted watermark w2.
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Figure 17. Watermarked images and extracted watermarks under scaling attacks: (a) scaled Lena 
(0.25); (b) extracted watermark 1w ; (c) scaled Barbara (0.25); (d) extracted watermark 2w ; (e) scaled 
Lena (0.5); (f) extracted watermark 1w ; (g) scaled Barbara (0.5); (h) extracted watermark 2w ; (i) 
scaled Lena (0.9); (j) extracted watermark 1w ; (k) scaled Barbara (0.9); (l) extracted watermark 2w ; 
(m) scaled Lena (1.2); (n) extracted watermark 1w ; (o) scaled Barbara (1.2); (p) extracted watermark 2w . 

  

Figure 17. Watermarked images and extracted watermarks under scaling attacks: (a) scaled Lena (0.25);
(b) extracted watermark w1; (c) scaled Barbara (0.25); (d) extracted watermark w2; (e) scaled Lena (0.5);
(f) extracted watermark w1; (g) scaled Barbara (0.5); (h) extracted watermark w2; (i) scaled Lena (0.9);
(j) extracted watermark w1; (k) scaled Barbara (0.9); (l) extracted watermark w2; (m) scaled Lena (1.2);
(n) extracted watermark w1; (o) scaled Barbara (1.2); (p) extracted watermark w2.
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Figure 18. Watermarked images and extracted watermarks under translation attacks: (a) horizontally 
translated Lena (128 pixels); (b) extracted watermark 1w ; (c) horizontally translated Barbara (128 
pixels); (d) extracted watermark 2w ; (e) vertically translated Lena (128 pixels); (f) extracted 
watermark 1w ; (g) vertically translated Barbara (128 pixels); (h) extracted watermark 2w . 

Table 2 gives the robustness performance of the proposed scheme on two sets of host images 
and watermarks. Lena image and character watermark are given in the first column, and Barbara 
image and logo watermark are given in the second column. The PSNR value of the proposed method 
is 54.6 dB, which expresses good imperceptibility of the watermarked image. 

Table 2. Robustness performance of the proposed scheme. 

Different Attacks Lena and W1 Barbara and W2 
Scaling (0.25) 0.9744 0.9713 
Scaling (0.5) 0.9919 0.9910 
Scaling (0.9) 0.9931 0.9731 
Scaling (1.2) 0.9906 0.9726 
Rotation (2°) 0.9741 0.9703 
Rotation (5°) 0.9813 0.9659 

Rotation (10°) 0.9861 0.9738 
Rotation (30°) 0.9861 0.9822 
Rotation (45°) 0.9828 0.9839 

Horizontal cycling translation (128 pixels) 0.9964 0.9962 
Vertical cycling translation (128 pixels) 0.9964 0.9962 

JPEG (100) 0.9966 0.9964 
Median filter (3 × 3) 0.9913 0.9848 

Center cropping (25%) 0.9179 0.8859 
Gaussian noise (0, 0.01) 0.9788 0.9799 
Gaussian noise (0, 0.05) 0.9509 0.9206 

Salt and pepper noise (0.01) 0.9758 0.9759 
Salt and pepper noise (0.05) 0.9644 0.9476 

Figure 18. Watermarked images and extracted watermarks under translation attacks: (a) horizontally
translated Lena (128 pixels); (b) extracted watermark w1; (c) horizontally translated Barbara (128 pixels);
(d) extracted watermark w2; (e) vertically translated Lena (128 pixels); (f) extracted watermark w1;
(g) vertically translated Barbara (128 pixels); (h) extracted watermark w2.

Table 2 gives the robustness performance of the proposed scheme on two sets of host images and
watermarks. Lena image and character watermark are given in the first column, and Barbara image
and logo watermark are given in the second column. The PSNR value of the proposed method is
54.6 dB, which expresses good imperceptibility of the watermarked image.

Table 2. Robustness performance of the proposed scheme.

Different Attacks Lena and w1 Barbara and w2

Scaling (0.25) 0.9744 0.9713
Scaling (0.5) 0.9919 0.9910
Scaling (0.9) 0.9931 0.9731
Scaling (1.2) 0.9906 0.9726
Rotation (2◦) 0.9741 0.9703
Rotation (5◦) 0.9813 0.9659

Rotation (10◦) 0.9861 0.9738
Rotation (30◦) 0.9861 0.9822
Rotation (45◦) 0.9828 0.9839

Horizontal cycling translation (128 pixels) 0.9964 0.9962
Vertical cycling translation (128 pixels) 0.9964 0.9962

JPEG (100) 0.9966 0.9964
Median filter (3 × 3) 0.9913 0.9848

Center cropping (25%) 0.9179 0.8859
Gaussian noise (0, 0.01) 0.9788 0.9799
Gaussian noise (0, 0.05) 0.9509 0.9206

Salt and pepper noise (0.01) 0.9758 0.9759
Salt and pepper noise (0.05) 0.9644 0.9476
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To illustrate the robustness of the proposed algorithm against multiple attacks, Table 3 is given
for robustness performance, which suggests that the proposed scheme has a good ability for multiple
attacks’ resistance.

Table 3. Robustness performance on different combination of attacks.

Different Combination of Attacks Lena and w1 Barbara and w2

Rotation (10◦) and JPEG (100) 0.9964 0.9738
Rotation (10◦) and Gaussian noise (0, 0.05) 0.9644 0.9437

Rotation (10◦) and Salt and pepper noise (0.05) 0.9779 0.9592
Rotation (10◦) and Center cropping (25%) 0.9098 0.9165
Rotation (10◦) and Median filter (3 × 3) 0.9862 0.9729

Scaling (0.5) and JPEG (100) 0.9920 0.9616
Scaling (0.5) and Gaussian noise (0, 0.05) 0.9239 0.9165

Scaling (0.5) and Salt and pepper noise (0.05) 0.9331 0.9348
Scaling (0.5) and Center cropping (25%) 0.8170 0.8807
Scaling (0.5) and Median filter (3 × 3) 0.9861 0.9578

Horizontal translation and JPEG (100) 0.9966 0.9964
Horizontal translation and Gaussian noise (0, 0.05) 0.9068 0.9190

Horizontal translation and Salt and pepper noise (0.05) 0.9400 0.9455
Horizontal translation and Center cropping (25%) 0.8981 0.8724
Horizontal translation and Median filter (3 × 3) 0.9917 0.9846

Rotation (10◦) and Scaling (0.5) 0.9857 0.9669
Scaling (0.5) and Horizontal translation 0.9912 0.9646

Horizontal translation and Rotation (10◦) 0.9851 0.9677

4.3. Performance Comparison with Previous Schemes

To further evaluate the proposed scheme, our scheme is compared with two previous
schemes [6,24]. Because there is similarity between precious schemes and proposed scheme in
application of feature points and SVD separately. Table 4 compares the robustness against different
attacks among Liu et al.’s scheme [6], Lyu et al.’s scheme [24], and the proposed scheme. In Liu et
al.’s scheme with PSNR = 42.5 dB, the typical SVD based watermarking method was introduced, and
the watermark information was embedded into the singular value of the host image in a certain pixel
size, which explored a novel idea and method for copyright protection. However, if the host image is
cropped at the area of watermark embedding, this scheme cannot achieve the robustness performance.
Lyu et al. extracted the feature points by SIFT, and embedded the watermark information into the
circle DWT domain of SIFT feature area, where the PSNR value is up to 84.6 dB. Although this scheme
has great features of rotation and scaling, the robustness performance degrades with the angle increase
of the rotation attacks.

Table 4. Comparisons in watermark robustness aganist different attacks among Liu et al.’s scheme [6],
Lyu et al.’s scheme [24], and the proposed scheme.

Different Attacks Liu et al.’s Scheme [6] Lyu et al.’s Scheme [24] Proposed Scheme

Median filter (3 × 3) 0.5170 0.6450 0.9913
Center cropping (25%) 0.9822 0.9800 0.9179

JPEG (100) 0.9941 0.9820 0.9966
Rotation (2◦) 0.9687 0.9400 0.9741
Rotation (5◦) 0.9197 0.9310 0.9813

Rotation (10◦) 0.7825 0.8860 0.9861
Scaling (0.9) 0.9710 0.9560 0.9931
Scaling (1.2) 0.8709 0.9820 0.9906

5. Conclusions

In this paper, an RST resilient watermark scheme is proposed to obtain better imperceptibility
and robustness against RST attacks on the basis of DWT and SVD. In the proposed scheme, the binary
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watermark image is embedded into the singular values in the three-level DWT domain. With the help
of the SIFT, RST attacks on the host image can be corrected to promote the robustness. Experimental
results show that the proposed scheme is able to resist different attacks, including common image
processing and malicious attacks. Notably, compared with the previous scheme, the proposed scheme
achieves better imperceptibility and robustness against RST attacks. For future work, the novel
watermarking scheme applied to color images should be researched.
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