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Abstract: This study proposes a front-end readout circuit as an encoder chip for magneto-resistance
(MR) linear scales. A typical MR sensor consists of two major parts: one is its base structure, also
called the magnetic scale, which is embedded with multiple grid MR electrodes, while another is
an “MR reader” stage with magnets inside and moving on the rails of the base. As the stage is in
motion, the magnetic interaction between the moving stage and the base causes the variation of the
magneto-resistances of the grid electrodes. In this study, a front-end readout IC chip is successfully
designed and realized to acquire temporally-varying resistances in electrical signals as the stage is in
motions. The acquired signals are in fact sinusoids and co-sinusoids, which are further deciphered
by the front-end readout circuit via newly-designed programmable gain amplifiers (PGAs) and
analog-to-digital converters (ADCs). The PGA is particularly designed to amplify the signals up to
full dynamic ranges and up to 1 MHz. A 12-bit successive approximation register (SAR) ADC for
analog-to-digital conversion is designed with linearity performance of ±1 in the least significant
bit (LSB) over the input range of 0.5–2.5 V from peak to peak. The chip was fabricated by the
Taiwan Semiconductor Manufacturing Company (TSMC) 0.35-micron complementary metal oxide
semiconductor (CMOS) technology for verification with a chip size of 6.61 mm2, while the power
consumption is 56 mW from a 5-V power supply. The measured integral non-linearity (INL) is
−0.79–0.95 LSB while the differential non-linearity (DNL) is −0.68–0.72 LSB. The effective number
of bits (ENOB) of the designed ADC is validated as 10.86 for converting the input analog signal to
digital counterparts. Experimental validation was conducted. A digital decoder is orchestrated to
decipher the harmonic outputs from the ADC via interpolation to the position of the moving stage.
It was found that the displacement measurement error is within ±15 µm for a measuring range of
10 mm.

Keywords: magnetic linear scales; encoder readout IC; programmable gain amplifiers (PGAs);
successive approximation register (SAR) analog-to-digital converters (ADCs)

1. Introduction

The developments of precise measurement and positioning devices have been applied to
manufacture processing and testing equipment in the fields of electronic and semiconductor industries.
In these devices, linear scale encoders are widely used to detect angular and/or translational positions
of the moving part in high-precision machines and robots as the most common position sensors [1–13].
However, the frequency response of the conventional encoders is limited; thus, they cannot be used
in the case of high-speed motions. This problem can be mitigated with a high-resolution linear scale
equipped with a high-speed front-end readout and signal processing chip, which can output harmonic
signals to obtain greater accuracy and higher resolution. Among different scales, it is known that
magneto-resistance (MR) scales, as compared to other scales, especially optical scales [2–10], have the
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advantages of low cost, high speed, accuracy and adequate precision. In comparison of the accuracies
offered by MR and optical scales, the optical scale using the reflection principle could achieve a
resolution higher than the MR scale, but the MR scale requires much lower costs for components and
manufacturing. Much effort was recently made by researchers [4–8] to design successfully and to
fabricate an MR scale with a new MR electrode layout and material, aiming to increase the sensing
range and resolution of the magnetic scale to the level compatible with the optical scale.

A typical MR sensor is shown in Figure 1, which consists of two major parts: one is its base
structure, also called the magnetic scale, which is embedded with multiple S and N magnets, while
another is an “MR reader” stage with multiple MR grid electrodes and moving on the rails of the
base. With the stage in motion, the magnetic interaction between the moving reader and the scale base
causes the variation of the magneto-resistances of the grid electrodes. The electrodes are designed in a
particular way, as shown in Figure 2b, to generate sinusoids and co-sinusoids at outputs A± and B±
that are proportional to the resistance variations through a Wheatstone bridge, as shown in Figure 2a.
The resulted sinusoids and co-sinusoids in Figure 2b can next be deciphered by a succeeding readout
chip to acquire the moving distance of the reader [2–11]. In fact, in addition to the design of MR
electrodes, another critical technology involved in magnetic scales is the readout IC, which needs to be
capable of converting the resistance variations of MR electrodes to digits in a high signal-to-noise ratio
and then deciphering the resulting digital harmonics to reader positions. Based on the principles of
the IC circuit design, the performance of the readout circuit for sensing reader position in real time
highly depends on the accuracy and speed of the front-end readout. In the front-end readout, the
input harmonic signals from the MR scale need to be amplified to full dynamic range, with zero offsets
and no phase error between sinusoids and co-sinusoids [5–12] before entering the analog-to-digital
converter ADC for high accuracy. Furthermore, the processing speed of the ADC has to be high enough
to cope with the high moving speeds of the reader as opposed to the MR scale base.

In this study, a magneto-resistive (MR) linear scale sensor realized by planar electrodes of MR
material is designed for the front-end readout circuit. The MR electrodes in the sensor are connected
as in a structure of a Wheatstone bridge, as shown in Figure 2a. Succeeding the MR Wheatstone bridge
is a front-end readout circuit proposed to extract the sine/cosine signals from the MR sensor and
then converted to digital values by a newly-designed 12-bit hybrid successive approximation register
(SAR) ADC. The chip was fabricated by the Taiwan Semiconductor Manufacturing Company—TSMC
(Hsinchu, Taiwan) and corresponds to the TSMC 0.35-micron CMOS technology, which was used for
verification purposes. A digital decoder is orchestrated and implemented by field programmable gate
array (FPGA) codes to decipher the harmonic outputs from the ADC via the technique of interpolation
to the actual position of the moving reader stage in real time. It was found that the displacement
measurement error is within ±15 µm for a measuring range of 10 mm as compared to the measurement
by a precision laser displacement sensor.
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Figure 2. (a) Wheatstone bridge; (b) electrode layout and resulting harmonic resistance variation. 
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The rest of the paper is organized as follows. Section 2 describes the design concept and
architecture of the circuit. Section 3 shows the experiment results. Conclusions are given in Section 4.

2. Chip Architecture Design

The readout chip for MR sensors proposed in this study consists of two programmable gain
amplifiers (PGAs) with common-mode feedbacks for zero DC offset, two 12-bit analog-to-digital
converters (ADCs) and a comparator circuit. The readout chip is aimed to extract signals from an MR
sensor and then processing it to accurate digital displacement of the moving reader stage in 12 bits.

2.1. Programmable Gain Amplifier

The MR sensor provides two output signals for varying MR resistances. One is sinusoid, while
another is the associated co-sinusoids expected to be in a phase difference of 90◦ relative to the sinusoid.
The resistances of the MR sensor are small around 100 kΩ, even with the material of boron mixed in the
magneto-resistive material. Thus, in the readout, a programmable gain amplifier (PGA) of input high
impedance and adequate gain is first designed [13–17]. The gain of this amplifier is expected to amplify
the incoming sinusoids and co-sinusoids to the full dynamic range for the maximum signal-to-noise
ratio (SNR) and also zeroing the DC offset. The proposed PGA is shown in Figure 3, which is in a
topology of a differential instrumentation amplifier (IA) for large gain tuning ranges. This PGA in fact
consists of three operational amplifiers (OPs), which are two identical single-input op-amps and one
fully-differential folded cascade. The overall gain of this IA is:

Vout

Vin
= (1 +

2R1

RX
)×

Ry

R2
(1)

where Rx and Ry are realized by on-chip resistor arrays of MOS switches, as illustrated in Figure 4,
to realize tunable gains with the aim to reach full dynamic range at the outputs for sinusoid and the
associated co-sinusoids. Rx is tunable in two digital bits and responsible for coarse tuning, while Ry is
in four bits and responsible for fine tuning. Ry is automatically adjusted in an on-line fashion based on
the output, Vout±, while Rx is tuned externally by two bits given by an external FPGA module. As a
result, the differential output voltage is expected to be amplified successfully to full dynamic ranges
at Vout±.

Since the performance of this PGA mainly depends on op-amps, thus, high performance op-amps
are required, especially for OPout at the out stage of the IA, in Figure 4. For this OPout, a fully-differential
folded cascade is proposed and shown in Figure 5. A folded cascade op-amp uses cascading in the
output stage combined with a special implementation of differential amplifier to achieve favorable
input common-mode input range. This folded cascade op-amp is expected to offer self-compensation,
good input common-mode range and a large gain of a two-stage op-amp. To these aims, it is composed
of a p-channel differential input pair (M1, M2), followed by the common-gates stage (M5, M6) and
the current source (M3, M4). Bias voltages Vbias1–Vbias4 are provided to M3–M10 in order to meet
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the current specifications at the cascode stage, so as to keep all transistors in the saturation region.
The small-signal voltage gain of this circuit is then:

AV = Gm1Ro (2)

where Gm1 is the overall transconductance of the folded cascade amplifier in Figure 5; Ro is the output
resistance of the amplifier, which can be derived as:

Ro = [(gm5 + gmb5)ro5(ro1//ro3)]//[(gm7 + gmb)ro7ro9)] (3)
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Despite the previously-designed fully-differential circuit being implemented along with some
advantages, the common-mode (CM) loop gain from the external feedback loop around the
fully-differential op-amp is quite small, and the CM voltage is not precisely stably defined.
Without proper control, the output CM voltage tends to drift to the supply rails due to power
supply variations, process variation, offsets, etc. Thus, an additional continuous-time common-mode
feedback (CMFB) sub-circuit is applied herein to stabilize the common-mode voltage of the
amplifier in Figure 5. Note that the CMFB circuit is utilized in a fully-differential op-amp to
keep the op-amp outputs balanced around a known CM voltage VCM. In order to reduce power
consumption, a switched-capacitor common-mode feedback (SC-CMFB) [18–20] in conjunction with
the previously-designed folded cascade amplifier in Figure 5 is designed and shown in Figure 6.
The input stage, shown in a box, consists of a p-type metal-oxide-semiconductor (PMOS) differential
pair with the drains of PMOSs connected to the sources of n-type metal-oxide-semiconductors (NMOSs)
(M5, M6). The rest of the elements in Figure 5 constitute the SC-CMFB circuit. The main advantages of
SC-CMFB are that they impose no restrictions on the maximum allowable differential input signals, no
additional parasitic poles in the common mode loop and high linearity. For stability consideration,
substantial effort has been devoted to ensure fast enough common-mode detection in order to ensure
the stability of the whole amplifier. In addition, the CMFB amplifier is designed with adequate gain
to make sure good tracking between common mode voltage VCM and the detected common mode
voltage at the outputs. Finally, the voltages VBias4 and VBias4x determine all bias currents for the
SC-CMFB circuit.

Sensors 2016, 16, 1416 5 of 13 

 

Despite the previously-designed fully-differential circuit being implemented along with some 
advantages, the common-mode (CM) loop gain from the external feedback loop around the  
fully-differential op-amp is quite small, and the CM voltage is not precisely stably defined. Without 
proper control, the output CM voltage tends to drift to the supply rails due to power supply 
variations, process variation, offsets, etc. Thus, an additional continuous-time common-mode 
feedback (CMFB) sub-circuit is applied herein to stabilize the common-mode voltage of the amplifier 
in Figure 5. Note that the CMFB circuit is utilized in a fully-differential op-amp to keep the op-amp 
outputs balanced around a known CM voltage VCM. In order to reduce power consumption, a 
switched-capacitor common-mode feedback (SC-CMFB) [18–20] in conjunction with the  
previously-designed folded cascade amplifier in Figure 5 is designed and shown in Figure 6. The 
input stage, shown in a box, consists of a p-type metal-oxide-semiconductor (PMOS) differential pair 
with the drains of PMOSs connected to the sources of n-type metal-oxide-semiconductors (NMOSs) 
(M5, M6). The rest of the elements in Figure 5 constitute the SC-CMFB circuit. The main advantages 
of SC-CMFB are that they impose no restrictions on the maximum allowable differential input signals, 
no additional parasitic poles in the common mode loop and high linearity. For stability consideration, 
substantial effort has been devoted to ensure fast enough common-mode detection in order to ensure 
the stability of the whole amplifier. In addition, the CMFB amplifier is designed with adequate gain 
to make sure good tracking between common mode voltage VCM and the detected common mode 
voltage at the outputs. Finally, the voltages VBias4 and VBias4x determine all bias currents for the 
SC-CMFB circuit. 

MS4

M6

MS7

MS8MS2

MB1

MS3

VDD

M5

VBias4x

VBias4

VCMO VCMO

VBias4

Input
Stage

MS1

M3 M4

MS5

MS6

Vout1 Vout2

 

Figure 6. The switched-capacitor common mode feedback circuit. 

2.2. Switch Resistor Array and Decoder Block Circuit 

To facilitate digital gain control for the near full dynamic range at the out of the PGA in  
Figure 3, variable resistor arrays Rx and Ry’s are implemented using linear resistors in series with the 
MOSFET switches biased in the triode region, as shown in Figure 3. The variable resistors in the PGA 
acquire feedback from the analog-to-digital converter (ADC) output stage through digital feedback 
control to adjust gain and then automatically choose a suitable gain for varying voltage outputs from 
the considered MR sensor. The PGA, as mentioned in Section 2.2, is facilitated with an internal 
common-mode feedback (CMFB) circuit to stabilize the output voltage level before the signals reach 
the subsequent ADC. There are two modes for gain control: fine and coarse tunings. In fine tune 
mode, a four-bit decoder is designed to specify 16 gain levels for Ry. On the other hand, a two-bit 
decoder for coarse tune is adopted for Rx. The circuit for implementing tunable resistances Rx and 
Ry’s is shown in Figure 6. 

2.3. Hysteresis Comparator Design 

To generate transistor-transistor logic (TTL) signals for inputting into a digital block circuit to 
compute succeeding interpolation for deciphering reader stage position, two hysteresis comparator 
circuits accepting input sinusoids and co-sinusoids from the MR sensor are forged with  

Figure 6. The switched-capacitor common mode feedback circuit.

2.2. Switch Resistor Array and Decoder Block Circuit

To facilitate digital gain control for the near full dynamic range at the out of the PGA in Figure 3,
variable resistor arrays Rx and Ry’s are implemented using linear resistors in series with the MOSFET
switches biased in the triode region, as shown in Figure 3. The variable resistors in the PGA acquire
feedback from the analog-to-digital converter (ADC) output stage through digital feedback control
to adjust gain and then automatically choose a suitable gain for varying voltage outputs from
the considered MR sensor. The PGA, as mentioned in Section 2.2, is facilitated with an internal
common-mode feedback (CMFB) circuit to stabilize the output voltage level before the signals reach
the subsequent ADC. There are two modes for gain control: fine and coarse tunings. In fine tune mode,
a four-bit decoder is designed to specify 16 gain levels for Ry. On the other hand, a two-bit decoder for
coarse tune is adopted for Rx. The circuit for implementing tunable resistances Rx and Ry’s is shown
in Figure 6.
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2.3. Hysteresis Comparator Design

To generate transistor-transistor logic (TTL) signals for inputting into a digital block circuit
to compute succeeding interpolation for deciphering reader stage position, two hysteresis
comparator circuits accepting input sinusoids and co-sinusoids from the MR sensor are forged with
specially-designed pre-amplifiers inside for substantial noise reduction, both of which are in the same
topology as shown in Figure 7a. Hysteresis consideration is designed in many comparators [20–23].
The inherent hysteresis with pre-designated distinct positive and negative switching voltage levels
as illustrated by Figure 7b helps the comparator to avoid ripples at the output due to small amounts
of parasitic feedbacks and noises. A two-stage comparator is adopted herein with the first stage as
a low-gain pre-amplifier. The input pair MOSs are designed in small sizes and operated in a slow
slew rate to minimize kickback noise. The resulting positive and negative switching voltage can be
prescribed by the same equation as:

VTRP± = VGS2 − VGS1 =

√
2I2

β2
+ Vt2 −

√
2I1

β1
− Vt1 (4)

In Equation (4), when the differential input voltage (VGS2 − VGS1) is in an increase, M8 opens as
the current flowing through the MOS M1 (i1) becomes equal to the current through the MOS M6 (i6);
i.e., as positive trip point voltage (VGS2 − VGS1) ≥ VTRP+. On the other hand, when (VGS2 − VGS1)
keeps decreasing and then reaching a negative trip point voltage (VTRP−), the comparator changes
state. The current flows through these pairs of the MOSs (M2 and M4, M7 and M3, M6 and M1) are off.
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2.4. Successive Approximation Register ADC

The output signal from the PGA is connected to an analog-to-digital (ADC) block to convert
analog-to-digital signals before being analyzed in a digital block [21–27]. The complete topology of the
designed 12-bit SAR-ADC, which includes a sample and hold (S/H) circuit, a digital to analog converter,
a comparator circuit and a successive approximation register, is shown in Figure 8a. The SAR-ADC
design approach is proposed as a hybrid of resistors and capacitors, such that the performance
is improved, thus being able to increase the sampling rate and reduce the negative effects of the
fabrication process tolerance [25–27]. In Figure 8b, the circuits in green and blue blocks constitute the
12-bit digital-to-analog converter, using a binary-weighted capacitor array and resistors in an R-string,
whose number of bits is 9 bit and 3 bit, respectively. The unit capacitance used is 10 fF. This adopted
architecture owns the advantages of a reduced total capacitance value and small proportion error,
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while the R-string DAC has high linearity and a low least significant bit (LSB), leading to increasing
the resolution significantly. Besides the D/A converter, the comparator has a crucial influence on the
overall performance in the SAR ADC. In this study, the topology of the comparator for SAR-ADC is
designed and then shown in Figure 9.
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This comparator adopts differential inputs of PMOSs to reduce flicker noises and operated on the
weak inversion area to increase the highest gain. The PMOSs are connected to the source and drain to
avoid body effects. It can also strengthen the input common mode range (ICMR) and the common
mode rejection ration (CMRR). When the input Clk of the comparator is low, M3 and M4 are opened,
and the comparator is in the comparison state. On the contrary, when the Clk is high, M3 and M4 are
closed, and the comparator is in the reset state. The comparator requires high a bandwidth and high
gain to increase the switch speed and reduce the return time, but it consumes more power. Thus, an
effort has been dedicated herein to achieve a comprise between speed and power consumption.

3. Experimental Results

Functions in blocks, connections and I/Os of the designed chip are illustrated by Figure 10.
With simulations successfully confirming the expected chip performances, the designed chip is
fabricated via the TSMC 0.35-µm CMOS process. A die photo of the proposed chip is shown in
Figure 11. The chip area is 6.61 mm2, while the power consumption is 56 mW. Measurements are
conducted for validating the performance of the proposed chip. The sensor output has three different
levels of output voltage to the PGA, e.g., 120 mVp-p, 250 mVp-p and 330 mVp-p, which are amplified
successfully by the designed PGA with 1 mVp-p at the output with adequate precision.
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The measured result of the PGA is shown in Figure 12, where the sinusoids associated with
co-sinusoids are amplified with amplitudes reaching to 1 Vp-p. Figure 13 shows the power spectral
density of the PGA output, the noise of which is clearly controlled well below −80.2 dB with a noise
floor level under −90 dB/Hz. Following the PGA circuits, two comparators are implemented to
generate transistor-transistor logic (TTL) signals for determining the MR reader position, as well as
direction. The result of the comparator circuit is shown in Figure 14. Furthermore, it can be seen in
Figure 14 that the TTL output is used to determine in which quadrants the MR sensor is. These data
are used to specify the director of the MR sensor movement. To compute the position of the sensor, an
algorithm was implemented by FPGA to calculate interpolation. The algorithm employed in FPGA is
able to determine precise MR reader positions with the capability to compensate the offset and gain
errors of the sin/cosine analog signals.

In addition to the PGA, the designed 12-bit hybrid analog-to-digital converter (ADC) is
successfully realized in the tape-out chip for converting the PGA outputs of sinusoids and co-sinusoids
in near full-dynamic ranges to digital values in 12-bits. The 12-bit hybrid SAR ADC was designed as
stated in Section 2.4, whose sampling rate is up to 5 MHz. It can successfully convert a sinusoidal input
with the required precision at a frequency up to 300 kHz. The measured INL is −0.79–0.95 LSB, while
the DNL is −0.68–0.72 LSB, as shown in Figure 15, where the linearity of the ADC achieves a good
performance (±1 LSB) in input range 1 Vp-p. The ENOB and all other values to validate the designed
12-bit ADC are shown in Figure 16, where an experimental spectrum on ADC output is calculated and
shown. Based on this spectrum, the ENOB is validated as 10.86, which is good enough to convert the
input analog signals to digital values for conducting the ensuing interpolation. By utilizing a motor to
move the reader stage in the magnetic scale, the readout circuit can successfully extract the output
signals from the sensor, and then, the algorithm employed in FPGA computes the position of the
sensor precisely. Measurement results show that the position error of the magnetic scale in 10 mm is
successfully controlled within ±15 µm, as shown in Figure 17. The summary performance compared
to other works is given in Table 1, where it is seen that the present design offers larger interpolation
digits in a small chip area and via the relative conventional 0.35-µm process, thus also at low cost.
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Table 1. Performance comparison with other interpolation methods.

[5] [28] [29] This Work

Technology N/A 0.35-µm CMOS 0.5-µm CMOS 2P2M 0.35-µm CMOS 2P4M

Interpolation Method Advanced Adaptive
Phase-locked loop ADC Comparator-based ADC and comparator

Sampling Rate N/A 100 kS/s Not needed 600 kS/s

Interpolation Factor 200 - 5, 10, 40 (optional) 1000 (magnetic)

Output Format Sine signal Counter code Pulse stream Counter code

Chip Area N/A 1.7 mm2 3 mm2 6.61 mm2

Power N/A 90 mW 50 mW 56 mW
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4. Conclusions

A front-end readout circuit is proposed by this study, which can be applied to a magnetic scale
for different product specifications. The chip has been successfully designed and fabricated via the
TSMC 0.35-µm 2P4M CMOS technology. The chip area is 6.61 mm2, while the power consumption is
56 mW under a 5-V power supply. Experiment results show that the PGA successfully amplifies the
MR electrode outputs of three different voltage levels, 120 mVp-p, 250 mVp-p, 330 mVp-p, to 1 mVp-p

at the output with adequate precision. This is achieved primarily via auto-adjusting by an on-chip
tunable feedback resistance to control the PGA gain. The chip is also validated such that the output
of the differential signals is stable. As for the designed ADC following the PGA, the measured INL
is −0.79–0.95 LSB, while the DNL is −0.68–0.72 LSB. The ENOB of the 12-bit ADC experimentally
reaches 10.86, while the linearity of the ADC has been achieved as ±1 LSB in the input range of
0.5–2.5 V. With the above achieved performance of the PGA and ADC, the fabricated readout chip
is next connected to a digital interpolation chip for deciphering the MR reader position in realistic
digits. Based on the experimental results, the displacement error is validated to be as small as other
works, ±15 µm, at a distance of 10 mm in length. Finally, as compared to other similar chip designs
and based on the experimental results, the present readout design offers larger precision interpolation
digits at the output in a small chip area and via the relatively conventional 0.35-µm process, thus also
at low cost.
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