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Abstract: The wide spread usage of wearable sensors such as in smart watches has provided
continuous access to valuable user generated data such as human motion that could be used to identify
an individual based on his/her motion patterns such as, gait. Several methods have been suggested to
extract various heuristic and high-level features from gait motion data to identify discriminative gait
signatures and distinguish the target individual from others. However, the manual and hand crafted
feature extraction is error prone and subjective. Furthermore, the motion data collected from inertial
sensors have complex structure and the detachment between manual feature extraction module and
the predictive learning models might limit the generalization capabilities. In this paper, we propose
a novel approach for human gait identification using time-frequency (TF) expansion of human gait
cycles in order to capture joint 2 dimensional (2D) spectral and temporal patterns of gait cycles.
Then, we design a deep convolutional neural network (DCNN) learning to extract discriminative
features from the 2D expanded gait cycles and jointly optimize the identification model and the
spectro-temporal features in a discriminative fashion. We collect raw motion data from five inertial
sensors placed at the chest, lower-back, right hand wrist, right knee, and right ankle of each human
subject synchronously in order to investigate the impact of sensor location on the gait identification
performance. We then present two methods for early (input level) and late (decision score level)
multi-sensor fusion to improve the gait identification generalization performance. We specifically
propose the minimum error score fusion (MESF) method that discriminatively learns the linear
fusion weights of individual DCNN scores at the decision level by minimizing the error rate on the
training data in an iterative manner. 10 subjects participated in this study and hence, the problem is
a 10-class identification task. Based on our experimental results, 91% subject identification accuracy
was achieved using the best individual IMU and 2DTF-DCNN. We then investigated our proposed
early and late sensor fusion approaches, which improved the gait identification accuracy of the
system to 93.36% and 97.06%, respectively.

Keywords: gait identification; inertial motion analysis; spectro-temporal representation; deep
convolutional neural network; multi-sensor fusion; error minimization

1. Introduction

Gait refers to the manner of stepping or walking of an individual. Human gait analysis
research dates to the 1960s [1] when it was used for medical purposes for early diagnosis of various
disorders such as neurological disorders such as Cerebral Palsy, Parkinson’s or Rett syndrome [2],
musculoskeletal disorders such as spinalstenosis [3], and disorders caused by aging, affecting large
percentage of population [4].

Reliable monitoring of gait characteristics over time was shown to be helpful in early diagnosis
of diseases and their complexities. More recently, gait analysis has been employed to identify
an individual from others. Unlike iris, face, fingerprint, palm veins, or other biometric identifiers,
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gait pattern can be collected at a distance unobtrusively [5]. In addition, recent medical studies
illustrated that there are 24 various components to human gait and that gait can be unique if all
movements are considered [6]. As a result, gait has the potential to be used for biometric identification.
It is particularly significant as gait patterns are naturally generated and can be seamlessly used for
authentication under smart and connected platforms e.g., keyless smart vehicle/home entry [7],
health monitoring [8], etc.

In recent years, there has been much effort on employing wearable devices for activity
recognition [9], activity level estimation [10], joint angle estimation [11], activity-based prompting [12],
and sports training [13]. Recently, gait identification using wearable motion sensors has become an
active research topic because of the widespread installation of sensors for measuring movements in
smartphones, fitness trackers, and smartwatches [7,14]. Most of the wearable motion sensors use Micro
Electro Mechanical Systems (MEMS) based inertial sensors. These inertial sensors (accelerometers,
gyroscopes) are one of the most important members of MEMS family and are combined together as
inertial measurement units (IMU). Most modern accelerometers are electromechanical devices that
measure acceleration forces in one, two, or three orthogonal axes. Gyroscope sensors are devices that
measure angular velocity in three directions. Due to their small-size, portability, and high processing
power, IMUs are widely used for complex motion analysis. Hence, gait recognition using wearable
IMUs has become an efficient Privacy Enhancing Technology (PET) [15].

Advent of MEMS-based accelerometers and gyroscopes and wireless interfaces such as Bluetooth
and Wi-Fi have made the measurement setup for gait analysis data collection non-intrusive and
ubiquitous. IMUs have become a significant part of ubiquitous smart devices and therefore integration
of inertial sensors in smart devices has become a common practice. There is a mass of people using
smart devices on a daily basis. With the latest achievements in the field of pervasive computing,
limitations of inertial sensors such as cost, storage, and computational power were overcome to
a great extent [16]. Therefore, inertial sensors are not only restricted to simple tasks such as tilt
estimation but also for complex tasks such as advanced motion analysis, and activity recognition [14].
They have also been evaluated in medical applications, such as analysis of patient’s health based on
gait abnormalities [17], fall detection [18]. Although the IMU-based wearables have enabled pervasive
motion and gait analysis, there are some intrinsic challenges with those devices. Since, the wearable
device is always worn casually, relative orientation between the sensors and the subject body cannot
be fixed over different sessions of data acquisition [19]. As the coordinate system used by sensors
is defined relative to the frame of the device, small orientation changes of sensor installation may
make measurements quite different [19]. The issue of ensuring orientation invariance in extracting gait
features has been a matter of concern in many studies. In [20], the authors introduced an orientation
invariant measure to alleviate the orientation dependency issue. In this work, we also employ
an orientation invariant resulting measures of motion as the input signals.

A large number of research studies have been conducted on developing gait recognition systems
using inertial sensors. As a pioneer study in this field, in [21], a triaxial accelerometer was used and
fixed on a belt to keep the relative position between the subject’s body and sensors unchanged. In order
to detect the gait cycles, they have applied a peak detection method. Then, they implemented a template
matching process to identify their subjects from their gaits. Due to the less contribution of axis Y,
authors just used X and Z axes. Similarity-based measures and machine learning are two frequently
used approaches for gait identification in the recent literature. Similarity-based measures such as
Tanimoto distance [22], dynamic time warping metrics (DTW) [23], and Euclidean distance [24] have
been used in the recent studies. Similarity-based approaches are dependent on selecting representative
gait patterns (commonly by an expert and manually) and requires storing them for all subjects in order
to compare them with the search population, which, in turn, results in lower efficiency in storage
and computation. Machine learning techniques are commonly designed in two major modules after
pre-processing of the motion data: (1) feature extraction from the input signal in short windows of the
streaming data; and (2) model training to generate a predictive model fed by the data at the feature
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space. Various modeling algorithms such as Bayesian network classifier [25], hidden Markov model
classifier [24], support vector machines, and decision trees [25] have been used in gait recognition
applications. The performance of such systems are highly dependent on the extracted features and
their resulting hypothesis class, which is the set of possible predictors with the fixed set of features.
The impact of noise interference and particularly motion artifacts on complex sensor data makes the
task of extracting relevant and robust features very challenging. Commonly, feature extraction is
undertaken manually and via handcraft effort for a specific application [15]. However, extracting
manual and hand crafted features for machine learning based systems is cumbersome, subjective,
and is prone to biases due to the complexity of sensor data collected from IMUs [26,27]. Manual feature
extraction is heuristic and can result in poor expressivity of the feature set (i.e., the set of possible
predictors with a fixed set of features may not be good enough). Therefore, the best model given the
manual features might generate poor accuracy compared to an optimal performance given the desired
representative feature subspace. Another important reason for poor expressivity of commonly used
machine learning-based methods can be the detachment of feature extraction and the predictive model
training. In this way, important information that might be crucial for high performance predictive
modeling, can be neglected in the process of feature extraction.

In this paper, we propose a gait recognition framework and investigate the ability to extract
time-invariant signature motion patterns within a gait cycle of each subject to identify him/her from
others. We first exploit the information provided by expanding the motion signals recorded from
various IMUs worn by the participants to 2D spectro-temporal space via time-frequency (TF) analysis.
Due to the non-stationarity of the motion signals, TF and instantaneous frequency (IF)-based methods
accommodate the temporal variations in the gait patterns during a gait cycle segment. However,
there are two major issues in order to extract relevant descriptors from the 2D TFs: (a) efficient
selection of relevant features from the 2D spectro-temporal expanded space might not be feasible
due to high dimensionality of the space; and (b) selection of a reliable predictive model given the 2D
TFs is a difficult task due to the high dimensionality of the input space and shallow models might
face the challenge of curse of dimensionality as discussed in [28]. The authors in [28] discussed
that placing decision hyperplanes directly the high dimension space space (the high resolution 2D
TF in this work) might raise the risk of curse of dimensionality and hurt the generalization ability
of the learnt predictive model. They illustrated that incorporating hierarchical locality using deep
learning structures can be sufficient to avoid the curse of dimensionality [28]. Therefore, in this
paper, we design a deep convolutional neural network (DCNN) model that is trained for each of
the sensor nodes (i.e., five inertial sensors) and the modalities (i.e., accelerometer and Gyroscope
readings) to extract individual signature patterns from the 2D expanded gait cycles and optimize
the predictive identi f ication model at the same time in a discriminative fashion. The best individual
DCNN performance reaches 91% identification accuracy. In order to aggregate the complementary
discriminative information from all sensors, we then investigate multi-sensor early and late fusion
with the aim of improving the gait identification performance. We achieve the average accuracy of
93.36% via early fusion by augmenting multi-sensor gait cycles at the input level. In late fusion,
a discriminative performance measure is introduced that directly relates the performance of the fusion
of individual sensor DCNN models to the fusion weight parameters. Using the introduced measure,
we propose the minimum error score fusion (MESF) learning method that discriminatively optimizes
the linear fusion weights of DCNN scores at the score level by minimizing the error rate on the training
data in an iterative manner. The average gait identification accuracy of 97.06% is achieved by applying
our proposed MESF method on the DCNN decision scores.

2. Method

We aim to automatically identify a target subject given their gait information. Assuming M target
subjects, given an unknown gait segment, a gait identification system gives the corresponding subject
identity, ϕ, where ϕ ∈ {1, · · · , M}. Figure 1 illustrates the structure of the gait identification task.
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As shown in Figure 1, gait segments are processed and relevant features are extracted from them either
manually or automatically. Then, a set of reference models, learned in the training phase using a set of
training data, is employed to classify the input gait segments to one of the M subjects. Each model,
ϕ, generates a likelihood score of an input gait segment belonging to the target subject ϕ. The aim
is to identify each subject based on their individual gait characteristics given that all the subjects are
performing the same activity i.e., gait. In order to achieved this goal in this paper, we capture and
identify visual high level spectro-temporal features in an isolated gait cycle in a discriminative fashion
using DCNN and multi-sensor fusion.
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Figure 1. Human gait identification task.

The overview of the proposed gait identification system is depicted in Figure 2. Raw motion
data is collected from five inertial sensors worn by a population of subjects. Then, gait cycles are
extracted and transformed to 2D TF space. The high-level one-vs-rest subject discriminative features
of the expanded gait cycles are captured through the 10-layer hierarchies of the DCNN and predictive
model training is conducted jointly using the last layers of the DCNN network to perform the human
identification task. We then combine the individual sensor systems via performing multi-sensor early
and late fusion.
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Figure 2. The overview of our proposed system for Human Gait Identification.
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2.1. Experimental Setup and Data collection

A total of 10 subjects participated in the experimental procedure. In this way, we present a solution
for a 10-class problem as a proof of concept of identifying a target person among overall 10 subject
population (with 10% expected accuracy of random guess). A set of five inertial sensors were placed at
various locations including chest, right wrist, right knee, right ankle and lower back in order to conduct
a gait identification performance comparison between different sensor locations and improving the
overall performance via multi-sensor fusion. Table 1 provides the detailed characteristics of the
sensors [29,30]. The motion sensor system employed for this study was Shimmer sensor platform,
which is a wearable senor platform with wireless interface. It houses both the accelerometer and
gyroscope inertial sensors. The data collection sessions were synchronized across all the sensors and
labeled using our in-lab designed Android application developed at the Wearable Sensing and Signal
Processing (WSSP) laboratory, University of Michigan, Dearborn. Each subject was asked to walk the
same route from a specific point to another outside the building.

Table 1. The parameter values of the Gyroscope and Accelerometer sensors.

Gyroscope Accelerometer

2 integrated dual-axis, InvenSense 500 series 3 Axis Accelerometer, Freescale MMA7260Q
Measures angular rate Sensitivity: 800 mV/g @ 1.5 g
Full scale range: ±5000 deg/s 12 bit analogue digital converter (integer number)
Sensitivity: 2 mV/deg/s Resolution: (1.5 g + 1.5 g)/(212) ≈ 7.10 − 4 g/unit
12 bit ADC (integer number) -

2.2. Preprocessing

The raw accelerometer and gyroscope data (Rx, Ry and Rz vectors) collected during the experiment
is contaminated with various noise factors such as motion artifacts, step impacts, sensor orientation
and location related noises along with the necessary gait information. To alleviate the orientation
related biases, resultant vectors of the triaxial sensor data (i.e., accelerometer and gyroscope recorded
data) is computed using Equation (1). Figure 3 illustrates a visualization of resulting factor extraction,
which is an orientation invariant measure of overall acceleration and angular velocity of each IMU.

Mag(t) = R =
√

Rx
2 (t) +Ry

2 (t) +Rz
2 (t) (1)

X Rx

Z

Rz

Ry

Y

R

Figure 3. Resulting Factor Extraction. R indicates resulting factor.

Since typical gait data for normal walking has frequency components in the range of 0.5 to 3.5 Hz,
a 10-th order Butterworth bandpass filter was used to extract the required frequency components from
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the resultant vectors of the IMUs. For Gyroscope data, we assume the first estimated value of direction
vectors to be the same as the direction vectors measured by the accelerometer:

RxEst(0) = Rx Acc(0)

RyEst(0) = Ry Acc(0)

RzEst(0) = Rz Acc(0)

(2)

In our algorithm, we assume the value of the accelerometer, when the sensor device is at rest
(a first few seconds recordings before subjects started the gait paradigm), to be zero.

2.3. Gait Cycle Extraction

Since the data collection through all the sensors is time synchronized, we extracted the gait cycles
from the sensor#1 (i.e., the ankle sensor) and used the same markers for other sensors. The cycle
extraction process implements amplitude check and zero crossing check to extract noise free gait
cycle data.

To approximate the gait cycle frequency, the resultant vectors of accelerometer data from sensor#1
RAcc are passed through a band pass filter of rage 0.5–1.5 Hz. We conduct a more aggressive band pass
filtering only for the purpose of cycle extraction. This eliminates the interference of any high frequency
components while determining the gait cycle frequency. The frequency range of 0.5–1.5 Hz is chosen
to include the average gait frequency, which is 1 Hz. Frequency Analysis consists of finding the energy
distribution as a function of the frequency index ω. Therefore, it is necessary to transform the signal to
the frequency domain by means of the Fourier transformation:

X(ω) =
∫

x(t)e−jtωdt (3)

where x(t) is the time domain signal. A Fourier transform is performed on the resultant data and the
dominant frequency component within the range of 0.5 to 1.5 Hz is selected as the gait cycle frequency
of that subject fcycle.

In order to remove irregular gait cycles,the RAcc is checked against the amplitude threshold of
a signal 0.05. If there are samples that have values below the threshold, those samples are neglected
and samples with an amplitude above the threshold are collected into small local windows. Gait cycles
are extracted from these local windows (LW) following the process shown in the Algorithm 1.

Algorithm 1: Gait Cycle Extraction Process
ScycleStart = 0

while (LWend < length(LW))
ScycleEndTemp = ScycleStart + ScycleO f f set
ScycleEnd = ScycleEndTemp ± SzeroCrossing
ScycleStart = ScycleEnd
LWend = ScycleStart

end

To synchronize the cycles, zero crossing of the RAcc is taken as a reference point and the samples
between a given zero crossing and the subsequent zero crossing at ScycleO f f set samples away from
previous zero crossing is considered to be a gait cycle. ScycleO f f set is calculated using Equation (4),
where fs is the data sampling frequency 50 Hz in our empirical investigations.

ScycleO f f set =
fs

fcycle
(4)
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The end sample of this cycle ScycleEndTemp is approximated initially based on the fcycle but a more
precise ScycleEnd is calculated based on finding a zero-crossing sample near the initial approximation.
The local window indices of the start and end of cycle data ScycleStart and ScycleEnd are then mapped to
the global window of RAcc.

Cycle data collected across all subjects and sensors were observed for data consistency, i.e.,
the number of gait cycles extracted per sensor. Considering this number as a measure of data integrity,
the ankle-based accelerometer (sensor#1) captured nearly all of the gait cycles performed by different
subjects consistently. Hence, it was selected as the reference sensor with discriminative features to
represent the gait cycle. Gait cycles are extracted from other sensors based on the indices generated
from the sensor#1 RAcc. Figure 4 shows the gait cycle extracted from Subject#1 for all the five sensors.

Sensor 5

 Lower Back 

(motion)

Sensor 1

 Right Ankle 

(motion)

Sensor 3

 Right Knee 

(motion)

Sensor 2

Right Wrist 

(motion)

Sensor 4

Chest 

(motion)

Figure 4. Extracted cycle data sample plot for subject 1 across all the sensors.

2.4. Time Frequency Representation

One way to represent and describe a multi-component and non-stationary signal simultaneously
in frequency and time space is considering its instantaneous frequency (IF). To analyze a
multi-component signal, an IF rule can be assigned to all components of the signal. Several IF
estimation methods have been considered for multi-component signals in recent literatures [31]. These
methods first characterize and extract components of the signal and then conduct an IF estimation
procedure. Implementation of a multi-component IF estimation approach includes two major steps
as follows:

1. Applying time frequency transformation.
First step is mapping the input signal to the time and frequency space by applying an appropriate
time-frequency distribution (TFD). TFD method can be chosen by considering the characteristics
of the input signal.

2. Choosing a proper method for estimating IF.
Methods for estimating IF consider the TFD space (G(T, F)) as a two dimensional representation,
which its coordinates are row (time) and column (frequency) of the G space. Then, IF estimation
method by applying first and second derivative tests identifies the local extremums (with respect
to frequency). In this step, valid peak are the local extermums which have values higher or
lower than a predefined threshold. Finally, for detecting the linked components an algorithm
specifically designed for detection of linking component is applied by evaluating the connectivity
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of the pixels and also the number of the connected pixels. The fact behind this is that IF of
a component of a signal (where energy of the signal is concentrated) is observable in the TFD
space as a ridge which describes the IF.

Selection of a proper TFD representation approach for representing gait cycle can be counted
as the first step in designing any identification system using TF space. A proper TFD method is
the one which is capable of emphasizing the non-stationarities of the given signal which, in turn,
gives the system highest discriminative power to correctly discriminate between different cases in the
population under consideration. In this study we use smoothed Wigner-Ville distribution (SWVD)
as it is capable of reducing the cross-term affection while it provides good resolution [31,32]. SWVD
is a variant method which incorporates smoothing by independent windows in time and frequency,
namely (τ) and (t):

SPWV(t, ω) =
∫ +∞

−∞
Wω(τ)[

∫ +∞

−∞
Wt(u− t)x(u +

τ)

2
x∗(u− τ

2
)du]ejωτdτ (5)

The feature extraction using SWVD is based on Energy, Frequency and Length of the principal
track. Each segment gives the values Ek (energy), Fk (frequency), and Lk (length). The signal is firstly
divided into segments; then, the construction of a three-dimensional feature vector for each segment
will take place. Energy of each segment can be calculated as follows:

Ek =
∫ ∫ +∞

−∞
ϑk(t, f )dtd f (6)

where ϑk(t, f ) stands for the time-frequency representation of the segment. However, to calculate the
frequency of each segment k, we made use of the marginal frequency as follows:

Fk =
∫ +∞

−∞
ϑk(t, f )dt (7)

For the purpose of SWVD representation we use a MATLAB toolbox designed by François Auger
at CNRS (France) and Rice University (USA) [32]. Figure 5 illustrates the TF representation using
6 different TF approaches.

Figure 5. Time-frequency representation of one cycle data using different TFDs.

2.5. Deep Convolutional Neural Networks (DCNN)

Figure 6 demonstrates an example TF representation of gait cycle for 10 different subjects. Taking
a close look at the gait cycle data, it is evident that the temporal orientation and order of the data stand
out as significant discriminative features. We design a Convolutional Neural network (CNN) structure
as a deep hierarchical structure for feature extraction and predictive modeling. We intend to verify if
multiple feature maps generated by CNN process would preserve the temporal aspect of the gait cycle
data and provide higher level of discriminative feature space.
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CNNs are most commonly used in pattern recognition. A simple CNN is a sequence of steps
where each step transforms a volume of activations through a set of functions that are differentiable.
They are made up of neurons with learnable weights and biases [33]. Though the weight vector
optimization is similar to the conventional neural networks. CNNs are designed to deal specifically
with 2D or 3D image data. A variety of combinations of linear and non-linear differentiable steps could
be used to build a deep CNN and that determines the complexity of the system [34].

Figure 6. TF representation of gait samples as CNN inputs.

We have developed a non-parametric fully supervised DCNN model for motion-based gait
authentication. The model takes a 3D input image xi and transforms it into a prediction probability
vector yi for ten different classes which correspond to the 10 participating subjects. We train the
model using N labeled images {x,y} where the label yi is the class label of the input data. Training
minimizes a So f tMax loss function with respect to network parameters such as weights and biases
using a gradient descent method and network parameters are updated using back propagation.

We aim to conduct a comparison between the sensor locations in terms of how well each can
describe subject dependent gait signatures towards the identification task. Furthermore, we aim
to investigate multi-sensor fusion in order to enhance the gait identification performance using
complementary information among various sensors.

DCNN Architecture

We have used the following four main building blocks in the DCNN model:

• Convolution.
• Pooling.
• Rectified linear unit (ReLU).
• Fully connected layer.

The convolution layer performs convolution of input with a set of predefined filters, which is a dot
product between the filters and the region they are connected to in the input image. If we consider k
kernels of spatial dimensions’ hk and wk, then the filter tensor would have the dimension of hk × wk
× k × k′ which could be represented by tensor w. Considering a simple convolution layer with zero
padding and a unit stride, the output y after performing convolution on an input layer of tensor x
could be represented as

yi′ j′ k =
hk

∑
i=0

wk

∑
j=0

k

∑
k′=0

wijk′ k × xi+i′ ,j+j′ ,k′ (8)

In Equation (8), xi+i′ ,j+j′ ,k′ represents the (i + i
′
, j + j

′
, k
′
) indexed element of the input tensor x.
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The pooling layer applies a chosen operator and combines closely associated feature values.
It is used to down sample the input image along the width and height. This layer does not require
parameter learning. A simple implementation of max pooling can be represented as

yi′ j′ k =
Max
0 ≤i ≤hp , 0 ≤j ≤wp

{x
i′∗ hp+i, j

′∗wp+j, k
} (9)

where x and y represent the i
′
j′k indexed input and output layer and hp, wp are the pooling

window dimensions.
The Rectified Linear Unit (ReLU) is a non-linear activation layer introduces the non-linearity

when applied to the feature map. ReLU layer leaves the size of its input unchanged. A simple
implementation of ReLU would be as below:

yi′ j′ k= max{0,xi′ j′ k′ }. (10)

where x and y are input and output of corresponding tensors. Like pooling layer, ReLU does not need
any parameter learning and it does not alter the dimensions of the input layer.

3. Multi-Sensor Fusion

In this work, we investigate 5 different IMU sensor locations on the body and evaluate them for
the gait identification task. Besides the comparison between the sensor locations in terms of how well
each can distinguish subjects based on their gait, we also aim to investigate multi-sensor fusion in order
to incorporate complementary information among various sensors to enhance the gait identification
performance. The sensor fusion system is generally grouped into two types, namely early and late
fusion. The basic idea of fusion is to combine multiple decisions generated by different experts in
an attempt to enhance the performance of the overall system. A key issue to design a suitable and
effective fusion scheme is to appropriately exploit all the available discriminative cues to generate
an enhanced identification performance. Information fusion can be carried out at three levels of
abstraction closely connected with the flow of the classification process: (1) data level fusion; (2) feature
level fusion; and (3) model score fusion [35]. In this work, we present a simple data level fusion by
concatenating the TFs from different sensor nodes and modalities into one collective input to the DCNN
structure. We then propose and investigate an iterative minimum classification error multi-score fusion
algorithm. Figure 7 demonstrates a block diagram of the proposed early and late fusion.

.

.

.

Score 1

Score 2

Score 10

.

.

.

Early Fusion Late Fusion
DCNN Initialization, feature 

extraction, and score genertion

Sensor 1

Sensor 2

Sensor 10

Decision
.
.
.

Figure 7. block diagram for early and late score fusion.

3.1. Early Fusion

Sensor fusion at the input level was first considered in this study. We aim to investigate
multi-sensor fusion in order to enhance the gait identification performance using complementary
information among various sensors. The key advantage of CNN is the feature learning ability,



Sensors 2017, 17, 2735 11 of 22

which can automatically discover an intricate structure and learn useful features from raw data
layer by layer, which enables CNN to fuse input raw data and extract basic information from it in its
earlier layers, fuse the basic information into higher level representation of information, and further
fuse those information in its later higher layers to form the final classification result. For early fusion,
we aggregate the information in all the synchronous IMUs at the input level to feed the DCNN model.
The input level fusion is achieved by combining the 3D gait cycle images from five different sensors
to form a 120× 120× 30–dimensional image. The intuition behind early fusion is to incorporate all
possible information that various sensors generate in order for the DCNN learning structure to learn
the discriminative features in an iterative manner.

3.2. Late Fusion

The early-fusion method fuses two or more sensor readings by combining their transformed 2D
gait cycle data. It provides a comprehensive input space to discover higher performance predictors.
However, the input space grows in dimensions via early fusion and therefore, the search space for
the best predictor increases exponentially. On the other hand, DCNN is a gradient descent learning
method for the best predictor, which has serious limitations when the search space grows. Also,
early fusion often cannot handle incomplete measurements. If one sensor modality becomes useless
due to malfunctions, breakdown or etc, its measurements will be rendered ambiguous. In this
section, we investigate late fusion of multiple sensor nodes (i.e., five inertial sensors) and modalities
(i.e., Accelerometer and Gyroscope readings). In this way, a DCNN is independently trained to perform
human gait identification based on each sensor location and modality. Subsequently, the one-vs.-rest
discriminative output scores are fused at to generate the combined gait identification decision. We aim
to design discriminative fusion of classification scores generated by individual DCNNs to reduce the
classification error rate in the gait identification task. The fusion of multiple model scores operates
as a mixture of experts that makes a collective decision by exploiting complementary information
from each of the individual identification models. The input to each different classifier is generated
by the TF spectro-temporal front-ends. If the model outputs associated with the different IMUs offer
complementary information, multi-sensor fusion can improve the performance.

In this way, we generate the posterior probability scores from 10 DCNNs trained on the resulting
factors of accelerometer and Gyroscope readings from five sensor nodes, individually. We introduce
a discriminative performance measure to optimize the performance of the fusion of the 10 DCNNs.
We propose the minimum error score fusion (MESF) method that iteratively estimates the parameters of
a linear fusion with the aim to minimize the identification error rate on the training data. The proposed
iterative algorithm learns the score weights one by one by finding the optimum decision threshold of
each DCNN-i, {i|i = 1, ..., N} for each specific target subject.

3.3. The Minimum Error Score Fusion (MESF)

The human gait identification task is to recognize M target subjects using N individual gait
classifiers (i.e., DCNNs). The i-th DCNN maps the gait segment x to a score vector Si(x) = {Si,j(x)|j =
1, 2, ..., M}, in which each element, Si,j (x), is the log-likelihood score of x associated with the DCNN
i and target subject j. The fusion output score for the target subject j, Scorej(x), is calculated by
combining the output scores of the DCNN sub-systems,

Scorej(x) =

{
N

∑
i=1

wi,jSi,j (x)

}
, j = 1, 2, ..., M (11)

where wi,j is the weight corresponding to Si,j (x). However, unlike conventional linear score weighting
techniques, the weighting coefficients are subject-dependent in which, the weighting coefficients
vary for different subjects and individual DCNNs. By doing so, it is expected that the inter-subject
discriminative information is taken into account. It also may reflect how one DCNN sub-system
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contributes to identify each particular subject. There are a total of N ×M weighting coefficients as
fusion parameters to be estimated using the MESF algorithm. We then apply a normalization process
on the scores of M target subjects.

3.3.1. The Process of Score Fusion

Figure 8 shows the process of learning the fusion weights. The MESF learning algorithm uses
error feedback from the final fusion decision to fine-tune the fusion weights. We propose and employ
a discriminative measure to find the optimum decision threshold in a one-vs-rest manner to learn the
fusion weights of the general M-class identification problem. The gait recognition results are reported
as the weighted average over multiple subject identifier DCNNs.
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Figure 8. The training paradigm for learning the fusion weights.

As the distribution of the decision scores for each DCNN might be different due to different
node locations and modalities, the scores are less compatible across different DCNN models. Hence,
we conduct score normalization to provide consistency over the output scores of the DCNN models.
The Scoreϕ(x) from Equation (11) is converted to log-likelihood ratio (LLR) Ŝcoreϕ(x) as presented
in [36].

Ŝcoreϕ (x) = Scoreϕ (x)− log

〈
1

M− 1

M

∑
j=1,j 6=ϕ

exp
(
Scorej (x)

)〉
(12)

The input segment x is classified as the target subject ϕ if,

Ŝcoreϕ (x) > θϕ (13)

where θϕ is the decision threshold for the target subject ϕ, which is to be learned using cross validation
on the training data. The weight wi,ϕ, corresponding to the DCNNs output score Si,ϕ(x), can be
interpreted as the degree to which Si,ϕ(x) contributes in the identification decision. From Equation (13),
the fusion weight wi,ϕ can be directly related to the final decision as follows,

wi,ϕ >
θϕ + log〈 1

M−1 ∑M
j=1,j 6=ϕ exp(−Scorej(x))〉 −∑N

k=1,k 6=i wk,ϕSk,ϕ

Si,ϕ(x)
(14)

That is, wi,ϕ needs to satisfy Equation (14) in order for the input segment x to be identified as the
target subject ϕ. The MESF directly relates the performance of the system to the fusion parameters and
determines the weights one at a time iteratively by solving a one-vs-rest subject identification problem
to minimize the errors of the model score fusion.
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3.3.2. The MESF Algorithm for Fusion Weight Learning

(1) Discriminative performance measure of the linear fusion:

DCNN models usually assign a score S (x) to each unseen gait segment x, expressing the degree to
which x would belong to each of the subject classes. Ideally, the score is an accurate estimate of posterior
probability distributions over the target subject class (i.e., positive class), p(′pos′|x), and the rest of the
subjects (i.e., negative class), p(′neg′|x), for an input x which denotes the estimated probabilities that x
belongs to the positive and negative classes, respectively. We introduce a measure, Θ(x) to convert the
probabilities into discriminative scores as below:

Θ(x) =
p(′neg′|x)
p(′pos′|x) (15)

The measure Θ(x) demonstrates the the degree to which x is predicted to be of the negative class).
By optimizing a threshold on the Θ measure, a statistical classifier can be converted to a discriminative
classifier. In this way, the input x is classified as negative if the Θ(x) is greater than a specified threshold
and positive otherwise. The desired threshold is learned by minimizing the classification error rate on
the training data.

(2) Minimum error rate decision threshold in one-vs.-rest manner:

Assume that a training set {(xt, yt)|t = 1, 2, ..., n} consisting of n labeled data and their Θ measure
Θ(xt) is available. Using the training data, we aim to design an algorithm that finds the value of
the linear fusion weight parameter that makes the optimum decision on a set of labeled training
data samples. The proposed algorithm aims to return the decision threshold ’optimum_thresh’ that
minimizes the error rate of the linear classifier fusion by varying the threshold value from 0 to +∞
and find the optimum value by including false negatives (FN) in the positive class. Therefore, we
rank the data samples in an ascending order of their Θ(.) measure Θ(x1), ..., Θ(xP+N). Considering
any threshold, th, between Θ(xt) and Θ(xt+1), the first K data samples will be classified as positive,
where Θ(xK) < th, and the remaining P + N − K data samples as negative. In this way, a maximum of
P + N + 1 different thresholds has to be examined to find the optimum decision threshold. The first
threshold classifies everything as negative and the rest of the thresholds are chosen in the middle of
two successive Θ measures.

The threshold, optimum_thresh, on the Θ(.) measure is found such that it minimizes the error rate
of the DCNN model score fusion.The data sample xt is classified as positive if Θ(xt) ≤ optimum_thresh.
That is, xt is classified as ′pos′ if,

p(x|′neg′)
p(x|′pos′)

< optimum_thresh → p(x|′neg′) < optimum_thresh× p(x|′pos′) (16)

The algorithm results in the highest accuracy achievable with the given Θ(.) on the given set of
data samples. In practice, the quality of the optimization depends on the quality of the positive and
negative scores, e.g., the output posterior probability distributions of the DCNN models. In our fusion
task, if the individual DCNN models generate good quality estimates, the fusion weight learning can
considerably improve the performance. It can also be implemented in an efficient way by exploiting
the monotonically ranked Θ measures.

(3) Discriminative learning of the fusion score weights

We propose an iterative learning procedure in order to minimize the error of the overall human
identifier in one-vs-rest manner by re-estimating the weight parameters of the model score fusion.
The proposed learning method adjusts the fusion weights in the interval [0,∞) using the training gait
segments. The weights assigned to the output scores Si,j(.) are set to one, for wi,j ← 1 for i = 1, ..., N,
and j = 1, ..., M, as an initial solution to the problem. Then, the following procedure is presented,
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in which the error rate of the DCNN model fusion is successively reduced by finding a better solution
than the current one by learning the locally optimum fusion weights, one at a time. To find the weight
wi,ϕ, corresponding to the output score of the DCNN i for target subject ϕ, the problem is considered
to be a 2-class problem where the target subject ϕ is the positive class and ϕ̄ comprising the rest of the
subjects is the negative class. The steps are as follows:

1. The wi,ϕ is set to zero, i.e., Si,ϕ(.) does not contribute in classification decision.
2. The gait segments in the training set belonging to the subject ϕ that are classified correctly with

current values of the model score weights are marked. Adjusting the weight wi,ϕ does not have
any impact on their classification.

3. The gait segments of ϕ̄ in the training set that are misclassified are marked. Adjusting the weight
wi,ϕ does not have any impact on their classification.

4. The remaining m gait segments in the training set {xt|t = 1, ..., m} that are left unmarked are used
to determine wi,ϕ so that the error of the model score fusion is minimized over {xt|t = 1, ..., m}.
From Equation (14), the measure Θi,ϕ(.) is calculated for every segment in {xt|t = 1, ..., m}
as follows:

Θi,ϕ(xt) = [θϕ + log〈 1
M− 1

M

∑
j=1,j 6=ϕ

exp(−Scorej(xt))〉 −
N

∑
k=1,k 6=i

wk,ϕSk,ϕ(xt)]/Si,ϕ(xt) (17)

where, Θi,ϕ (xt) is the amount of wi,ϕ necessary for xt to be classified as the target subject ϕ.
5. The training segments are ranked in an ascending order by their Θi,ϕ(.) measure. A threshold is

defined and initialized to zero. Then, assuming that xt and xt+1 are two successive segments in
the list, the threshold is computed as,

thresh = [Θi,ϕ(xt) + Θi,ϕ(xt+1)]/2 (18)

Then, the threshold is adjusted from the lowest score to the highest. For each threshold,
the associated accuracy of the score fusion is measured. The value of the optimum_thresh leading
to the maximum accuracy is used as the estimated score weight wi,ϕ, assuming that all other score
weights are fixed.

Figure 9 shows a data sample of a resulting threshold on the Θq,w(.) measure leading to the
highest accuracy. In this way, the input xt is classified as w if its Θ(xt) is lower than the threshold.
The algorithm determines the optimal value of the parameter φq,w assuming that all other parameters
are given and fixed.

xt belonging to the class ‘pos’

Training 
Instances xt

neg_odds (xt)

best_thresh

0.25
0.39
0.64
0.73
0.89
1.04

2.13
1.76
1.58

2.18

1.32

9.27
5.83
3.53

xt belonging to the class ‘neg’

Figure 9. A data sample of the resulting thresholds on the Θq,w(.) measure.
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The search for the locally optimum combination of weights is conducted by optimizing the score
weights one at a time and learning stops if no improvement to the current performance can be made.
Based on our observations, the above method consistently generated superior results. The MESF
method determines the decision score weights of the sub-systems in order to better discriminate
between the gait segments from subjects ϕ and those of the rest by finding the optimum decision
threshold of the score fusion in the one-vs-rest manner. By doing so, we can interpret that the ROC
curve of the score fusion is locally optimized. As shown below, it is illustrated that the error rate on
the training data always reduces during the optimization and will converge to a minimum point.

ErrorRate(Λ ∪Φnew
q,w , D) ≤ ErrorRate(Λ ∪Φold

q,w, D) (19)

where Λ is the set of all other parameters (Given & Fixed)

⇒ ErrorRate(Λ ∪Φt
q,w, D) ≤ ErrorRate(Λ ∪Φt−1

q−1,w, D) ≥ ErrorRate(Λ ∪Φt−2
q−2,w, D) ≤ ... (20)

where t represent the iteration number starting from 1 and increment after each learning iteration.
After each iteration, the accuracy of the learning algorithm decreases.

3.4. Comparable Score Fusion Methods

In this section, some other linear score fusion methods are described for comparison. Assume
an input gait segment x, and the output decision scores of the sub-systems, {Si,j(x)|i = 1, ..., N & j =
1, ..., M} are available. Comparative methods include a simple non-trainable combiner and the large
margin method that require a more sophisticated training procedures.

• Summation: The output scores of the individual DCNNs are summed up and the subject that
receives the highest score is the output decision of the fusion system.

Scoresum
j (x) =

N

∑
i=1

Si,j (x) (21)

• Support vector machine (SVM): SVM has shown to be effective in separating input vectors in
2-class problems [37], in which SVM effectively projects the vector x into a scalar value f (x),

f (x) =
N

∑
i=1

αiyi (xi.x) + d (22)

where the vectors xi are support vectors, yi = {−1, 1} are the correct outputs, N is the number of
support vectors, (.) is the dot product function, αi are adjustable weights, and d is a bias. Learning
is posed as an optimization problem with the goal of maximizing the margin, which is the distance
between the separating hyperplane and the nearest training vectors. As a combiner method,
the output scores of all the DCNNs are concatenated to form a vector as the input to SVMs. Then,
one SVM is assigned to each of the M target subjects, the one-vs-rest scheme, and train accordingly
to get the final output scores,

ScoreSVM
j (x) =

N

∑
i=1

αiyi (φ (xi) .φ (x)) + d (23)

where φ(x) is the vector resulted by concatenating the output scores of all the DCNNs for the
input segment x.
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4. Results

We implemented a Matlab TF representation toolbox [38] to generate the SWVD TF representation
of the data and use Matlab print function to output a 2D image with specific resolution and size.
After experimenting with multiple image sizes, it was observed that higher image resolution did not
necessarily mean better model performance. DCNN model was tested with different input image
sizes. The image size was modified by changing the resolution of the figure generated by Matlab
print function. It was observed that the model prediction accuracies are highest with the image size of
120× 120× 3 for our current analysis.

For DCNN model designed in this study, the architecture guidelines as mentioned in [39,40]
were followed. Small filters were used and the image size was reduced using higher stride lengths
where necessary. Padding was introduced in the convolution layers to prevent convolution layer from
altering the spatial dimensions of the input. The spatial dimensions were altered in pooling layer by
down sampling. Also, more ReLU activation layers were used across the DCNN after each convolution
and pooling pair to bring in element wise non-linearity. The current model consists of 10 (CONV,
RELU, POOL) layers and one fully connected layer as shown in Figure 10.

Figure 10. CNN architecture.

4.1. Model Selection and Evaluation Procedure

We consider the human gait identification task as a pattern recognition problem, in which a set of
training samples was employed for gait signature pattern extraction and predicitve model training,
a separate set of validation samples was used for hyperparameter tuning, and an exclusive set of test
samples was used for predictive model evaluation. In order to estimate the generalization accuracy of
the predictive models on the unseen data, 10 fold cross validation (10-CV) was used. 10-CV divides
the total input data of n samples into ten equal parts. In every iteration one part is considered to be a
test sample set and the remaining nine parts are considered to be a validation and training sample set.
There is no overlap between the test sample set (10% of data) with the validation and training sample
set (90% of data). The latter set is further divided into 4:1 ratio of training and validation data samples.
The sets were permuted over 10 iterations to generate an overall estimate of the generalization accuracy.
For an input data set of n samples:

• Number of Test Samples: n/10
• Number of Validation samples: (n− n

10 ) × 1/5
• Number of Training samples: (n− n

10 ) × 4/5.

Data set has n = 4178 samples, which includes images from ten different subjects. Each iteration
of the 10—fold cross validation would have the following division of data (Note that there was no
overlap between the training set, the validation set, and the test set in all the iterations of 10-CV).

• Number of Test Samples: 417
• Number of Validation samples: 752
• Number of Training samples: 3008



Sensors 2017, 17, 2735 17 of 22

Figure 6, shows a sample image set of all subjects for sensor#1. The DCNN model was trained
using the training and validation set and tested independently with the testing set. In order to fine-tune
the parameters of the DCNN model, we conducted random restart hill climbing search method on
a low resolution quantized parameter space to achieve a reliable local minimum in the error function
(i.e., the average error rate of the model on the 5 individual sensor locations). Table 2 reports the
selected parameters to train the gait identification DCNN models. It must be noted that no of epochs
was set to 19 since, we terminate training at 19 epochs where we get maximum accuracy and the model
is able to generalize enough and avoids overfitting.

Table 2. CNN predefined parameters.

Parameter Values

Learning Rate 0.001
Momentum Coefficient 0.9

No. of Feature Maps 32, 64
No. of Neurons in Fully Connected Layer 64

Batch Size 40
Epoch Number 19
Epoch Number 19

4.2. Individual Sensor Performance

The prediction accuracies of the DCNN models for each iteration of the 10-CV and for different
sensors are shown in Figure 11. It demonstrates the average accuracies achieved using each of the five
individual sensors over the 10 iterations of 10-CV. The blue and red markers represent the accuracies
corresponding to the accelerometer and gyroscope data recorded from each sensors, respectively.
It can be observed that the gyroscope generated data (i.e., angular velocity) of the sensors are better
predictors than the acceleration data in 3 out of 5 cases. Only the acceleration data from sensor#1
(on the right ankle) and sensor#2 (on the right wrist) exhibited higher gait identification accuracy
compared to angular velocities from the same sensors. It might be due to wider range movements of
the ankles and wrists generating more individually descriptive accelerations. The acceleration data
from sensor#1 on the ankle generates the best average 10-CV accuracies among all 10 different sources
of data (Acc No.). This observation was expected since dynamics of gait is mostly captured by the
lower limb movement [41]. For the gyroscope data, the average 10-CV prediction accuracy for different
sensors in decreasing order is as follows: sensor#5 (lower back), sensor#3 (right knee), sensor#4 (chest),
sensor#1 (right ankle), sensor#2 (right wrist). For the accelerometer data, prediction accuracies of the
sensors in descending order is: sensor#1, sensor#3, sensor#5, sensor#2, sensor#4. The ranking of the
sensors in terms of identification accuracies are not consistent for gyroscope and accelerometer sensors.
It loosely suggests that upper trunk locations is more suitable for Gyroscopes and lower limb locations
are more suitable for accelerometers. The accelerometer at the at the right ankle sensor (capturing high
range lower limb acceleration) and the gyroscope sensor of of the lower back sensor (capturing the
angular velocity of trunk movements) generated the highest accuracies. This observation suggests that
incorporating the complementary discriminative information generated from different sensors and
modalities can be fused and improved. Therefore, multi-sensor fusion is investigated in early and late
fashions in order to improve the the recognition performance.

4.3. Early Fusion

In early fusion, we investigate aggregating the complementary discriminative motion data
recorded synchronously from the five IMUs. In this way, we conduct a sensor fusion at the input level
to the DCNN model as discussed in Section 3.1. The input level fusion is achieved by combining the 3D
gait cycle images from five different sensors to form a 120× 120× 30–dimensional image. The average
subject identification accuracy percentages of the DCNN model, whose parameters are optimized
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using 10-CV cross validation method, is shown in the Figure 12. The early fusion via input image
aggregation at the input to one overall DCNN demonstrated improved prediction accuracies as shown
in Figure 12. Results report that using Max pooling is preferable over Min pooling leading to higher
identification accuracy in 8 out of 10 subject cases. The average 10-CV gait identification performance
achieved, using Max pooling, was 93.36%. The results suggests that using a simple input aggregation
fusion of sensors by aggregation can enhance the performance of the best DCNN model (i.e., Sensor#1
Acc with 91.01% accuracy) with 26.2% relative improvement. In order to compare the results of the
early fusion model performance and Sensor#1 Gyro DCNN model, we conducted 10-CV test 10 times
and run a statistical test with the null hypothesis that the performance accuracies of the fusion and
’S1 Acc’ on different subjects comes from independent random samples from normal distributions
with equal means, using the two-sample t-test. The test rejected the null hypothesis with the
p-value = 0.028 which demonstrate significant improvement over the best individual sensor-based
DCNN model under the 95% confidence interval.
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Figure 12. Multi-sensor early fusion performance using min and max pooling.

4.4. Late Fusion

For late fusion, we employ the MESF algorithm described in Section 3.3. The discriminative
measure to find the optimum decision threshold in one-vs-rest manner introduced in Section 3.2 is
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utilized to learn the fusion weights of the general M-class identification problem (M = N = 10).
Therefore, the total number of weight coefficients as fusion parameters to be estimated are N×M = 50.
We applied log likelihood score normalization in order to provide consistency over the output scores
of the individual DCNNs. Table 3 presents the results for score level fusion using the MESF algorithm.
Table 3 reports that MESF using Max pooling lead to higher identification accuracy compared to Min
pooling in 9 out of 10 subject cases. As Table 3 reports, the proposed MESF method generates the
average 10-CV accuracies of 97.06% and 95.24% using Max pooling and Min pooling, which lead to
67.3% and 47.1% relative improvement compared to the best individual DCNN results, respectively.

Table 3. MESF, SUM, and SVM performance using min and max pooling. Bold numbers represent the
highest accuracy achieved for each subject using different methods.

MESF SUM SVM

Max (%) Min (%) Max (%) Min (%) Max (%) Min (%)

Subject 1 95.56 94.61 89.93 89.45 92.31 90.15
Subject 2 100 97.44 92.41 89.26 96.87 91.3
Subject 3 92.91 94.26 88.97 88.35 89.12 91.65
Subject 4 99.35 97.38 93.82 90.7 94.71 90.26
Subject 5 95.76 95.56 89.13 89.29 92.34 90.89
Subject 6 97.27 93.6 93.62 89.44 92.49 89.41
Subject 7 96.15 93.12 87.28 86.31 91.2 88.54
Subject 8 98.93 97.63 92.36 89.04 95.34 92.81
Subject 9 94.65 90.05 87.94 85.75 90.57 87.31
Subject 10 100 98.78 94.2 91.37 97.69 95.95

Average 97.06 95.24 90.96 88.89 93.27 90.83

Using the MESF fusion algorithm, we achieved the highest 10-CV accuracy of 97.06% on the
10-class identification problem with 10% expected accuracy of random guess. In the case of having
a larger subject population, its impact will be solely on the number of impostors per each one-vs-rest
subject identifier (the number of targets will remain the same). That will limit the potentially introduced
errors to false alarms. On the other hand, our proposed method in this paper is designed to minimize
the one-vs-rest identification errors. By decoding the gait cycles via spectro-temporal expansion,
we discover and capture discriminative individual low and high level signatures and predictive model
jointly via the trained DCNN structure and then discriminatively multi-sensor fusion model. Our aim
with the error minimizing design of joint our proposed models was to equip them to cope with both
false alarms and miss detections.

4.5. Comparative Study

We also compare the proposed MESF method with two other linear score fusion methods, namely
SUM and SVM methods introduced in Section 3.4. Table 3 presents the results for our MESF method,
SVM, and SUM using Max and Min pooling. According to Table 3, Max pooling performs better
in majority of cases for various subjects and fusion methods. SUM method did not demonstrate
improvements in either cases of Max and Min pooling compared to the best individual DCNN.
It might be due to the fact that the lower accuracy DCNN model scores adversely affect the fusion
identification decisions. On the other hand, SVM fusion method generates improved results in case of
Max pooling via solving an optimization problem with the goal of maximizing the margin between
the target subjects and the others. In this way, one SVM is assigned to each of the 10 target subjects
(i.e., one-vs.-rest scheme). We applied the two-sample t-test to evaluate the significance of improvement
of SVM fusion compared to the best individual DCNN. The test rejected the null hypothesis with the
p-value = 0.034, which is significant under 95% confidence level. Although the performances of the
SVM fusion relatively improves the best individual performance by 25.2%, they are inferior to the
MESF performance.
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5. Conclusions

In the human gait recognition task, the aim is to extract discriminative features and descriptors
from gait motion signals to identify our target subject from others. The manual feature extraction
is prone to error due to the complexity of data collected from inertial sensors and the disconnection
between feature extraction and the discriminative learning models. To overcome this shortcoming,
we proposed a novel methodology for processing non-stationary signals for the purpose of human
gait identification. The proposed methodology comprises four main components: (1) cycle
extraction; (2) spectro-temporal 2D expansion and representation; (3) deep convolutional learning;
and (4) discriminative multi-sensor model score fusion. We first isolated the gait cycles using a simple
and effective heuristic. Then, we conducted spectro-temporal transformation of isolated gait cycles.
The 2-D expansion of the gait cycle increased the resolution of the desired discriminative trends in the
joint time-frequency domain. In order to avoid manual feature extraction and incorporate joint feature
and model learning from the generated high resolution 2D data, we designed a deep convolutional
neural network structure in order to process the signal layer by layer, extract discriminative features,
and jointly optimize the features and the predictive model via error back propagation model training.
We investigated 5 IMU sensor placement on the body and conducted a comparative investigation
between them in terms of gait identification performance using synchronized gait data recordings
from 10 subjects. Due to complementary discriminative signature patterns captured from the recorded
signals collected via different sensors, we then investigated gait identification fusion modeling from
multi-node inertial sensor data and effectively expand it via 2-D time-frequency transformation.
We perform early (input level) and late (model score level) multi-sensor fusion to improve the
cross validation accuracy of the gait identification task. We particularly proposed the minimum
error DCNN model score fusion algorithm. Based on our experimental results, 93.88% and 97.06%
subject identification accuracy was achieved via early and late fusion of the multi-node sensor
readings, respectively.

6. Future Research Direction

In this paper, the problem of human gait identification was investigated under the bigger umbrella
of ubiquitous and continuous IMU-based gait analysis work group at the Wearable Sensing and Signal
Processing (WSSP) lab. Our main contribution and focus in this paper was our proposed model score
fusion algorithm to incorporate the complementary discriminative scores generated by each individual
DCNN model given a input human gait cycles. We used a local search and an overall accuracy to
generate a reliable baseline DCNN model for all the IMU recordings. Due to the fact that data from
different sensors (i.e., sources) may have different characteristics, the DCNN training paradigm can
be improved by sensor-dependent tuning for different sensor locations and modalities. Therefore,
our team is currently investigating sensor location and modality specific DCNN model optimization
and subsequently, designing multi-sensor and multi-model fusion algorithms. We are also increasing
the number of subjects and the walking conditions in our data set. When completed, our plan is to
create a link on our website to share our data set and our baseline model implementations with the
research community.
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