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Abstract: This paper presents a novel TaN-Al2O3-HfSiOx-SiO2-silicon (TAHOS) 

nonvolatile memory (NVM) design with dipole engineering at the HfSiOx/SiO2 interface. 

The threshold voltage shift achieved by using dipole engineering could enable work function 

adjustment for NVM devices. The dipole layer at the tunnel oxide–charge storage layer 

interface increases the programming speed and provides satisfactory retention. This NVM 

device has a high program/erase (P/E) speed; a 2-V memory window can be achieved by 

applying 16 V for 10 μs. Regarding high-temperature retention characteristics, 62% of the 

initial memory window was maintained after 103 P/E-cycle stress in a 10-year simulation. 

This paper discusses the performance improvement enabled by using dipole layer 

engineering in the TAHOS NVM. 

Keywords: TaN-Al2O3-HfSiOx-SiO2-Silicon (TAHOS); nonvolatile memory (NVM); 

dipole engineering; work function 

 

1. Introduction 

Nonvolatile memory (NVM), because of its high density and low cost, is widely used for  

portable mass storage purposes in digital cameras, tablet PCs, and smartphones [1]. A crucial challenge 

in the electronics industry is obtaining low-power fast NVM devices with small dimensions.  

A silicon-oxide-nitride-oxide-silicon (SONOS)-like structure has become widely used for charging 
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devices because it does not have a planar scaling problem for floating gate isolation and exhibits 

considerable potential for achieving high program/erase (P/E) speeds, low programming voltages, and 

low power performance [1–7]. 

Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) flash memory devices are potential candidates for 

replacing conventional floating-gate NAND (Not AND) flash devices in the sub-32 nm technology  

node [6,7]. SONOS-like devices have several advantages over the conventional floating-gate device,  

such as rapid programming, low-power operation, high-density integration, and excellent reliability. 

According to studies on SONOS flash, TaN-Al2O3-Si3N4-SiO2-silicon (TANOS) structure flash 

memory [8–10] exhibits excellent performance because of its immunity to gate injection when metal 

gate TaN with a high work function is used. Moreover, several studies have presented various types of 

high-k dielectric trapping layers as potential candidates for replacing Si3N4 to provide discrete NVM 

charge storage [11–16]. Furthermore, high-k dielectric materials can improve the gate capacitance, and 

maintain an equivalent potential difference for a greater thickness compared with SiO2. Therefore, the 

leakage through the dielectric can be minimized, and the scaling limits can be extended. Moreover,  

to achieve a large memory window for differentiating between stable programs and erased states,  

a high-k dielectric trapping layer can provide sufficiently high trapping density for charge storage [17]. 

According to the International Technology Roadmap for Semiconductors, high-k trapping layer use in 

flash memory has high potential for scalability below the 32-nm node [18]. 

Metal gate electrodes with high-k dielectric oxide may be made more effective than poly-Si by improving 

the carrier mobility, thus avoiding the poly-Si depletion effect and dopant penetration through the gate 

oxide [19–22]. However, using a metal gate layer requires n- and p-type metals with appropriate work 

functions for targeting the suitable threshold voltage (Vth) for high-performance complementary  

metal-oxide-semiconductor (CMOS) logic applications on bulk Si [23,24]. In addition, studies have 

demonstrated Vth shift caused by dipole formation at high-k/SiO2 interfaces [25–27]. The areal density 

difference of oxygen atoms is the driving force in dipole formation at these interfaces [28,29]. In this study, 

we used the dipole engineering for NVM to modulate Vth with different high-k dielectric layers.  

The proposed design with adjustable Vth exhibited excellent characteristics such as a considerably large 

memory window, high-speed P/E, excellent endurance, and optimal disturbance. 

2. Experimental Section 

Figure 1 illustrates the structure of our TAHOS SONOS-like NVMs. These devices were fabricated 

on 6 inch Si wafers. After the active region was patterned, a 4 nm oxide tunnel was thermally grown at 

1000 °C in a vertical furnace system. Next, 1 nm HfO2 and Al2O3 thin films, used in the dipole layer, were 

deposited using metal–organic chemical vapor deposition (MOCVD). We compared three samples: one 

without a dipole layer, one with a 1 nm HfO2 dipole layer, and one with a 1 nm Al2O3 dipole layer. Table 1 

compares the devices. After a 10 nm trapping HfSiOx deposition, MOCVD was used to deposit a 10 nm 

Al2O3 thin film, which was used as a blocking oxide. Next, a 100 nm TaN layer was deposited using a 

sputtering method. After gate patterning, a self-aligned implantation was used to create an n+ source/drain 

with As+ at a dose of 5 × 1015 cm−2 and energy of 15 keV. Dopant activation and the interaction of the 

dipole layer with tunnel oxide were accomplished through rapid thermal annealing (RTA) at 950 °C for 
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15 s. The remainder of the subsequent standard CMOS procedures were completed for fabricating the 

TAHOS SONOS-like NVM devices. 

 

Figure 1. Cross-sectional cell structure of the TAHOS NVM device using dipole engineering. 

Table 1. Dipole engineering for TAHOS NVM devices. 

Dipole engineering w/o Dipole w/i Dipole Al2O3 w/i Dipole HfO2 

Tunneling oxide SiO2 40 Å SiO2 40 Å SiO2 40 Å 
Dipole layer – Al2O3 10 Å HfO2 10 Å 

Trapping layer HfSiOx 100 Å HfSiOx 100 Å HfSiOx 100 Å 
Blocking oxide Al2O3 100 Å Al2O3 100 Å Al2O3 100 Å 

3. Results and Discussion 

Figure 2 plots the Id-Vg curve of the proposed TAHOS NVM devices. The drain voltage (Vd) of the 

Id-Vg curve is 0.1 V, and Vg transverses from 0 to 5 V. The Vth at 10−7 A Id is 1.68, 2.11, and 1.82 V for 

the without dipole, Al2O3 dipole, and HfO2 dipole samples, respectively. Al2O3/HfO2 dipole layer 

incorporation in the TAHOS stacks results in a positive Vth shift in the NVM devices. The Vth tuning 

was found to be proportional to the net dipole moment associated with the Hf-O/Si-O and Al-O/Si-O 

bonds at the high-k/SiO2 interface because of electronegativity and areal density difference of oxygen 

atoms [28,29]. According to the electrical measurement results, the dipole effects caused by the 

interfacial Al2O3 and HfO2 dipole layer shift the effective work function toward p-metal. Therefore, 

different dipole layers can be used for Vth adjustment for tuning the conventional gate electrode  

work function. 

X-ray photoelectron spectroscopy (XPS) was performed by using an Al Kα X-ray source  

(1486.6-eV photons) to determine the bonding environments of the Hf atoms. Figure 3 shows the Hf 4f 

photoemission peaks of the samples without dipole, with Al2O3 dipole, and with HfO2 dipole. The test 

sample for XPS was prepared for the without dipole or with Al2O3 dipole layer following preparation of 

the HfSiOx thin film after RTA at 950 °C for 15 s. In the without dipole sample, we observed  

well-defined 4f5/2 and 4f7/2 feature peaks for the HfSiOx thin film that correspond to Hf–O–Si bonding. 

For the HfO2 dipole sample, these peaks shifted to lower binding energies (4f5/2: ca. 17.7 eV; 4f7/2: ca. 

16.2 eV), resulting in HfO2 dipole formation after RTA [30]. Moreover, for the Al2O3 dipole sample, 

these peaks shifted to higher binding energies (4f5/2: ca. 18.7 eV; 4f7/2: ca. 17.2 eV), resulting in Al2O3 
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dipole formation after RTA [31]. The XPS results provide definite evidence of HfO2 and Al2O3 dipole 

formation through dipole engineering. 

 

Figure 2. Id–Vg curve of the TAHOS NVM devices. 

 

Figure 3. Hf 4f XPS spectra of the samples without dipole, with Al2O3 dipole, and with  

HfO2 dipole. 

Figure 4a,b presents the P/E characteristics of various pulse widths for different operation conditions. 

The P/E operations were performed using Fowler–Nordheim tunneling at Vg = 16 V and  

Vg = −15 V with Vd = Vs = 0 V. The Vth shift is defined as the threshold voltage change of a device 

between the written and the erased states. ΔVth increased with the P/E pulse time and bias, and the 

memory window was >1.5 V. In conventional flash memory, >0.8 V memory window is sufficient for 

judge the “1” or “0” state, the Vth window of the device between program/erase state is enough for flash 

memory operation. No erase saturation effect occurred even at high erase bias or over a long erase time 

because of TaN’s high work function (4.7 eV), which prevents the injection of electrons from the gate [10]. 

Regarding the dipole splits, the Al2O3 and HfO2 dipole samples have higher programming speeds than 

does the without dipole sample because of the low barrier height for electron tunneling. The Al2O3 or 

HfO2 dipole samples have slightly lower erasing speeds because of the increasing thickness of gate oxide. 
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(a) (b) 

Figure 4. (a) Program characteristics of the TAHOS NVM devices; (b) Erase characteristics 

of the TAHOS NVM devices. 

Figure 5 plots the endurance characteristic of the proposed TAHOS NVM devices. To achieve 

approximately the same memory window, we used the following P/E conditions: Vg = 16 V,  

1 us/Vg = −15 V, and 0.1 s for the without dipole sample; Vg = 16 V, 1 us/Vg = 16 V, and 0.1 s for the 

Al2O3 dipole sample; and Vg = 16 V, 1 us/Vg = −16 V, and 0.1 s for the HfO2 dipole sample. The NVM 

device displayed more favorable endurance, retaining 75% of its initial memory window after 103 P/E 

cycles. For the endurance characteristics, higher erasing Vt after cycling is the reliability issue in the 

conventional flash memory for thick tunnel oxide degradation [2,6,8]. This result is because the degradation 

of the tunnel oxide (SiO2) in TAHOS NVM devices mainly depends on the electrical field. In addition, 

the endurance curves increase slightly as the number of P/E cycles increase, because of the formation of 

operation-induced trapped electrons. This is intimately related to the use of thick tunnel oxide and 

presence of minute residual charges in the SiO2 after cycling. 

 

Figure 5. Endurance characteristics of the TAHOS NVM devices. 

Figure 6 illustrates the retention characteristics with 103 P/E cycled stress condition of the proposed 

TAHOS NVM at a high temperature (T = 85 °C). The retention time was up to 108 s for 38%, 48%, and 
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72% charge losses for the Al2O3 dipole, HfO2 dipole, and without dipole samples, respectively.  

The retention of both of the dipole samples was superior to that of the without dipole sample because of 

the formation of a thick tunnel oxide. Moreover, the Al2O3 dipole sample exhibited superior retention to 

that of the HfO2 dipole sample because the Al2O3 layer has a greater electron barrier height [31]. 

 

Figure 6. Retention characteristics of the TAHOS NVM devices. 

4. Conclusions 

TAHOS NVM was fabricated using an Al2O3/HfO2 dipole layer at an HfSiOx/SiO2 interface, 

demonstrating a Vth shift and providing work function adjustment. A 2-V memory window was achieved 

by applying 15 V for only 10 μs. Regarding endurance, a 1-V of memory window was maintained after 

103 P/E stress cycles. Regarding retention, 62% of the initial memory window was maintained after a 

10-year simulation at high temperature (T = 85 °C). Thus, dipole engineering has great potential for 

work function adjustment in conventional SONOS-type NVM. 
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