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Abstract: This paper presents a cache-aware configurable hybrid flash translation layer 

(FTL), named CACH-FTL. It was designed based on the observation that most  

state-of-the-art flash-specific cache systems above FTLs flush groups of pages belonging to 

the same data block. CACH-FTL relies on this characteristic to optimize flash write 

operations placement, as large groups of pages are flushed to a block-mapped region, named 

BMR, whereas small groups are buffered into a page-mapped region, named PMR. Page 

group placement is based on a configurable threshold defining the limit under which it is 

more cost-effective to use page mapping (PMR) and wait for grouping more pages before 

flushing to the BMR. CACH-FTL is scalable in terms of mapping table size and flexible in 

terms of Input/Output (I/O) workload support. CACH-FTL performs very well, as the 

performance difference with the ideal page-mapped FTL is less than 15% in most cases and 

has a mean of 4% for the best CACH-FTL configurations, while using at least 78% less 

memory for table mapping storage on RAM. 

Keywords: NAND flash memory; hybrid-mapping; flash translation layer; cache;  

solid state drives 

 

1. Introduction 

Semiconductor-chip-based nonvolatile memories (NVM) are becoming more widely used and are no 

longer confined to embedded systems. According to MarketResearch.com [1], the NVM market will 
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increase by a mean of 69% annually until 2015. This is partly due to the extensive usage of flash 

memories, but is also caused by the emergence of new NVM technologies, such as ferroelectric RAM 

(FeRAM), phase change RAM (PCRAM), and magneto-resistive RAM (MRAM). Even though some 

firms are beginning to move toward mass production of MRAM, the most mature and commonly used 

NVM for data storage in various consumer electronics is still NAND flash memory. 

Its attractive performance, energy efficiency and shock resistance features have made NAND flash 

memory increasingly popular in smartphones, tablet PCs, multimedia players and even in enterprise 

storage systems. In fact, the growing adoption of flash memories is considered the most important 

technology change relevant to the field of data-centric computing [2]. As the gap between the processing 

power of computer systems and the performance of traditional storage systems continues to grow, it 

becomes necessary to insert a new memory technology into the traditional memory hierarchy to carry 

on feeding the growing number of processing elements with data. The current best candidate is flash 

memory, as it gives a very interesting performance-per-cost ratio. 

Even though NAND flash memory presents some very interesting characteristics, it also has some 

limitations caused by its internal intricacies. Basically, the smallest addressable data unit in flash 

memory is a page (two to 8 KB), and a fixed set of pages (usually 64) composes a block. Some NAND 

flash memory operations can be executed on pages, while others are executed on blocks. The main 

constraints are: (1) write/erase (W/E) asymmetry; writes are performed on pages, whereas erasures are 

realized on blocks; (2) erase-before-write limitation; a costly erase operation is necessary before data 

can be modified; (3) limited number of W/E cycles; the average number is between 5,000 and 105, 

depending on the technology used. 

From the performance point of view, it is commonly accepted that flash memories often outperform 

traditional secondary storage hard disk drives (HDD), except for random write operations, where 

performance depends highly on the flash memory internals. Random write operation performance is the 

Achilles’ heel of flash memory: if not efficiently managed, it can even be worse than that of HDDs. 

The flash translation layer (FTL) is a hardware/software layer intended to overcome the 

aforementioned limitations: (1) The erase-before-write and the W/E granularity asymmetry constraints 

imply that data updates should be performed out-of-place. Hence, the logical-to-physical mapping 

scheme, which is a critical issue, is used to manage these updates. Mapping tables are stored in an 

embedded RAM. (2) Out-of-place data updates require the use of a garbage collector to recycle blocks 

enclosing invalid pages in order to recover free space. (3) To minimize the limitation on the number of 

W/E cycles, FTLs try to evenly distribute the wear over the memory cells. This wear leveling prevents 

some memory cells from wearing out more quickly than others. 

FTL mapping schemes depend on the granularity with which mapping information is managed. They 

can be classified into three groups: page, block and hybrid mappings [3]. (1) The page-mapping scheme 

maps each logical page into a physical page independently of the other pages of the same block. It is 

very flexible and gives good performance, but it requires too large of a mapping table to fit into the 

embedded RAM. (2) The block-mapping scheme considers the granularity of a block rather than a page. 

The logical page address is composed of the logical block number and a fixed page offset that is not 

modified by the mapping process. The block-mapping scheme is more feasible in terms of table size; 

however, its main drawback is that a page update systematically triggers a whole block erase operation 

and several valid page copies to another block. (3) The hybrid-mapping scheme was proposed to 
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overcome the above-mentioned shortcomings by combining both types of mapping. It is generally based 

on a block-mapping scheme and uses page-mapping for a small number of blocks (see the Related Work 

section below). Throughout this scheme, designers try to get as close as possible to the performance of 

a page-mapping scheme, while keeping the mapping table RAM usage as close as possible to the block-

mapping table size. 

Many caching mechanisms [4–11] have been designed to facilitate the work of the underlying FTL. 

These cache systems absorb part of the data updates and attempt to reveal sequentiality in order to evict 

the largest set of pages from the same block at the same time. Grouping pages allows a reduction in the 

number of block erasures performed. State-of-the-art caching systems are designed independently of FTLs 

for reasons of genericity, and FTL designs do not take into account upstream caches. However, flash-

specific caches have a common feature consisting of flushing groups of pages from the same block. 

This paper describes CACH-FTL [12], a cache-aware configurable hybrid FTL designed to optimize 

write performance and embedded memory usage. This optimization is achieved through a flexible and 

efficient data placement mechanism. With CACH-FTL, the flash memory is partitioned into two regions: 

(1) a page-mapped over-provisioning region, named PMR; and (2) a block-mapped data region, named 

BMR. CACH-FTL selectively places data flushed by the above cache either in the PMR or in the BMR, 

depending on the number of flushed pages. If this number is above a (configurable) threshold, written 

data are considered as sequential and, thus, directed toward the BMR; as block-mapping is well suited 

for large write operations with a high spatial locality (pages from the same block). If the number of 

flushed pages is below the predefined threshold, the small dataset is sent to the PMR, which works as a 

second-level in-flash buffer. Small groups of pages are temporarily placed into the page-mapped PMR 

in order to: (1) generate less ineffective erase operations and; (2) collect more pages before moving them 

to the BMR. 

In the present study, CACH-FTL was tested on a large number of real and synthetic I/O workloads 

and performed well for both random and sequential ones. Its performance was close to the ideal  

page-mapping scheme performance, but it used a much smaller mapping table, which makes it much 

more scalable. 

The next sections present an overview of flash memories and some related works. The fourth section 

of this paper then details the CACH-FTL structure and algorithms. This is followed by a description of 

the performance evaluation method and a presentation of the results. Finally, the conclusions and some 

perspectives for future work are given. 

2. Overview on NAND Flash Memory 

Flash memories are based on floating gate transistors and include two main implementations:  

(1) NOR and (2) NAND flash memories. NOR flash memories are reliable (no need for error correction 

code), support byte random access and have a lower density and higher cost than NAND flash memories. 

NOR flash memories are used for storing code [13]. NAND flash memories, in contrast, are block 

addressed, offer a higher storage density at a lower cost and provide good performances for large 

read/write operations. They are used as secondary storage [13]. Other types exist, such as divided bit 

line NOR, AND-type and some specific embedded flash technologies. This paper only concerns the 

NAND-type. 
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Basically, there are three main types of NAND flash memories: (1) single-level cell (SLC);  

(2) multi-level cell (MLC); and (3) triple-level cell (TLC). In SLC flash memories, only one bit can be 

stored per cell, whereas two bits can be stored in MLC and three in TLC. From the point of view of bit 

density and cost per bit, TLC is the best, followed by MLC and, finally, SLC. From a performance and 

reliability point of view, SLC outperforms MLC, which further surpasses TLC. While TLC is more 

frequently used for low-end media players, mobile GPS and, more generally, non-critical data 

applications that do not require frequent updates, MLC and SLC are mostly used for more data intensive 

appliances, such as Solid State Drives (SSDs) and mobile phones. 

Flash memory is structured as shown in Figure 1: a chip is composed of one or more dies; each die is 

divided into multiple planes. A plane is composed of a fixed number of blocks, each of which encloses 

a fixed number of pages that is typically a multiple of 64. Current versions of flash memories have 

between 128 and 1,024 KB blocks (with pages of two, four or 8 KB). A page consists of a data space 

and a metadata out-of-band (OOB) area containing the page state, information on the error correction 

code (ECC), etc. Three operations can be carried out on flash memories: reads and writes, which are 

realized on pages, and erases, which are performed on blocks. As shown in Figure 1, a flash memory 

disk contains a flash translation layer managing wear levelling, address mapping and garbage collection 

and other services in the controller part (controller CTRL in the figure). 

Figure 1. Flash disk logic components. FTL, flash translation layer. 

 
3. Related Work 

3.1. FTL Schemes 

Hybrid-mapping schemes aim for the performance of a page-mapping scheme with the memory usage 

of block-mapping. Most are based on a primary block-mapping scheme, whereas others partition the 

flash space according to I/O characteristics into a page and a block-mapped space. 
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Hybrid-mapping schemes with primary block-mapping are mainly based on the use of log-blocks. 

Log-blocks are spare blocks used to avoid a block copy for each page update. At least one block copy is 

generated when the log-block is full and a new update is required. A log-block can be either dedicated 

to one data block (such as M-Systems [14], AFTL, [15], CNFTL [16] and BAST [17]) or shared between 

many (such as RNFTL [18], FAST [19] and KAST [20]). The associativity of pages in log-blocks is also 

crucial for mapping performance. While the first FTLs used log-blocks that are directly mapped to data 

blocks, as in ANAND [14], most recent FTLs are fully associative (FAST [19], LAST [21], HFTL [22], 

BlogFTL [23]). In these hybrid FTLs, page-mapping is generally used to map the pages of the log blocks 

(FAST, BAST). 

The second type of hybrid FTL partitions the flash memory into a page-mapped and a  

block-mapped space (such as WAFTL [24], CFTL [25]). According to the data access type and/or 

pattern, pages are directed toward the adequate space. Indeed, as noted in [24], page-mapping is better 

suited (even if more expensive) to random writes than is block-mapping, which is nonetheless sufficient 

for sequential read and write operations. 

From the partitioning point of view, CACH-FTL can be considered as closer to the latter type, as it 

divides the flash space into a page-mapped region and a block-mapped region. However, from the type 

of data stored point of view, CACH-FTL resembles log-block based FTLs, as it stores temporary data 

into the page-mapped region. While WAFTL and CFTL use some more or less complex mechanisms to 

detect I/O pattern characteristics in order to direct data toward the more adequately mapped space, 

CACH-FTL abstracts the applicative layer and uses a simpler algorithm that relies only on the above 

cache output to decide whether to write data temporarily into the page-mapped or directly to the data 

block-mapped space. The parameter on which CACH-FTL relies is the number of evicted pages. 

However, unlike CFTL and WAFTL, and like log-block-based FTL schemes, such as FAST, in CACH-

FTL, the page-mapped space is used only to buffer small page sets before merging them with the block-

mapped data. 

CACH-FTL allows the use of information coming from the cache system above it to simplify the 

FTL structure, to abstract the higher layers and to be agnostic to the cache system and, at the same time, 

giving better performance. It also provides a high degree of flexibility and can be (re)configured 

according to upper layers (cache and I/O workload). 

3.2. Flash-Specific Cache Systems 

In order to optimize the performance of write operations on flash memories, different cache systems 

can be placed above the FTL. Most of them reflect the granularity of the erase operations by dealing 

with groups of pages (FAB [4], CLC [5], BPLRU [6], BPAC [7], LB-Clock [8], PUD-LRU [9], REF [10] 

and C-lash (cache for flash) [11]). These caches try to achieve two goals: (1) maximizing the number of 

flushed pages (from a given block); and (2) evicting data that are unlikely to be accessed (temporal and 

spatial locality). To realize Goal 1, most caches evict the largest set of pages belonging to the same 

block. For Goal 2, caches generally use LRU algorithms while dealing with page groups. 

One common characteristic of flash-specific caches is that they all flush groups of pages belonging 

to the same in-flash block. The idea behind CACH-FTL is to make use of this parameter as an indicator 

for deciding whether to evict the group of pages in the page-mapped or the block-mapped space. The 



Computers 2014, 3 41 

 

 

number of pages in the flushed group is a valuable indicator of the performance cost of the generated 

block update operation. The smaller the group of pages is, the higher the cost (for a given set of valid 

data still residing in the flash memory). CACH-FTL uses this indicator so that small groups of flushed 

pages are mapped by page, thereby temporarily eliminating the cost of the block merge operations, while 

large groups are mapped by block. Indeed, in CACH-FTL, the page-mapped area is considered a second-

level buffer that allows more space to group several sets of page updates. 

The information gap between FTLs and the flash memory buffer has been discussed in [26], where 

the authors proposed to handle this by making the cache and the FTL cooperate. This is done through a 

modification of the cache in order to provide many candidates for flushing data, and on the other hand, 

upgrading the FTL by making it achieve a decision on the data to flush according to the cleaning cost. 

The proposed solution is pertinent and can be complementary to the work presented in this paper; 

however, it induces modifying both the buffer and the FTL layers, while we propose in this paper  

a FTL that imposes no modification on the cache and only uses flushed data information. Both 

approaches try to cope with the same information gap issue. 

3.3. Motivation 

The design of CACH-FTL was motivated by the need to exploit the most pertinent information in a 

simple way to perform data placement in a hybrid FTL. Indeed, many state-of-the-art solutions focused 

on I/O pattern-based heuristics to choose the adequate mapping granularity for data placement.  

In CACH-FTL, we used a simpler, yet very efficient, solution that relies on a realistic architectural model 

supposing a cache system on top of the FTL layer, which is the architecture used in most  

real-world applications. CACH-FTL uses information coming from the cache to perform data placement 

on a page-mapped or block-mapped region. The objective, through CACH-FTL, was also to bridge the 

information gap between FTLs and cache systems, as both mechanisms were developed separately in 

state-of-the-art work. Nevertheless, this was done by staying as cache-agnostic as possible, since CACH-

FTL can work with all cache systems that flush groups of pages, and most caches for flash fall into this 

category. In addition, CACH-FTL is scalable, as it can scale on both small and large cache proportions, 

as the mapping table size can be adapted accordingly. 

4. Cache-Aware Configurable Hybrid FTL Design 

The CACH-FTL system architecture is illustrated in Figure 2. CACH-FTL splits the flash memory 

into two regions: (1) an over-provisioning region managed with a page-mapping scheme (called PMR); 

and (2) a data region managed by the use of a block-mapping scheme (called BMR). The BMR size 

dictates the addressable space as seen by the applicative layer. 

The CACH-FTL scheme is generic, as it can be used together with any cache system, provided that 

it flushes groups of pages from the same block. In this paper, C-lash (cache for flash) was considered  

as the cache system example [11] for the performance evaluation part. Using some other cache 

mechanisms proved to have similar results. 
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Figure 2. Cache-aware configurable hybrid (CACH)-FTL system architecture. C-lash, cache 

for flash; b-space, block space; p-space, page space; BMR, block-mapped region; PMR, 

page-mapped region; BM, block-mapping; PM, page-mapping (LBN, PBN: logical and 

physical page number respectively). 

 

4.1. Overview of the C-Lash System 

Cache systems per se are beyond the scope of this paper, as its main contribution is the FTL scheme 

implemented below the cache (see Figure 2). However, for reasons of clarity, a very brief overview of 

C-lash is given in this section. 

In C-lash [11], a typical cache for flash, the cache space is partitioned into two spaces, a page space 

(p-space) and a block space (b-space). P-space consists of a set of pages that can come from different 

logical blocks, whereas b-space is composed of blocks (which are further composed of pages). Pages 

and blocks have the same size as those of the underlying flash memory. Both b-space and p-space have 

fixed sizes. The C-lash system is hierarchical, as it has two levels of eviction policies: one that evicts 

pages from p-space to b-space (F in Figure 2); and another in which blocks from b-space are evicted into 

the flash media (N in Figure 2). 

When a read request arrives from upper layers, requested data are first searched for in the cache  

(B and C in Figure 2). If the data are not available, the read request is forwarded to the underlying FTL 

(A in Figure 2). 

When a write request is issued, and the data to be modified are in the cache, then they are updated in 

place (E or D in Figure 2). When a write miss occurs, data are written into a free page of the p-space (E 

in Figure 2). If there is no space available, the first-level eviction policy is triggered to flush the largest 

group of pages from p-space to b-space (F in Figure 2). If no space is available in the b-space to receive 

pages from the p-space, the second eviction policy is launched to flush a block from the  

b-space to the flash (N in Figure 2) following an LRU algorithm. 
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4.2. CACH-FTL Scheme Management 

As stated above, CACH-FTL partitions the flash memory into two separate regions with two different 

mapping tables that are both maintained within the embedded RAM. 

4.2.1. Read Operation Management 

When requested data are not present in the cache, the cache system forwards the request to  

CACH-FTL. Data can be located either in the BMR or in the PMR if not yet flushed to the BMR.  

CACH-FTL first checks for data in the BMR by looking at the validation bit of the mapping table.  

If data are not valid, the read request is forwarded to the PMR. 

4.2.2. Write Operation Management 

From the CACH-FTL point of view, write operations always come from the above cache system 

when an eviction occurs (N in Figure 2). CACH-FTL defines a redirection threshold according to the 

number of evicted pages. This threshold allows making a decision on to where the group of victim pages 

from the cache should be flushed (see Algorithm 1, Functions 1, 2 and 3). The redirection threshold 

gives the number of pages above which the evicted group of pages is sent to the BMR (I then K in Figure 

2) and under which they are sent to the PMR (J then L in Figure 2) for a later update to the BMR. Indeed, 

a low number of flushed pages means that the system has undergone a burst of random write operations. 

The pages are then directed toward the PMR to avoid a costly update/merge operation on the BMR (valid 

page read, block erase and page write operations; see Algorithm 1, Function 2). 

The over-provisioning space used (PMR space) is generally larger than the cache; its size can vary 

between 5% and 30% of the flash memory (this is the interval used in state-of-the-art studies). In CACH-

FTL, the objective of the PMR is to buffer as many random writes as possible in order to group larger 

sets of pages (from the same block), with the objective of reducing the update cost before moving data 

blocks into the BMR data-space (M in Figure 2). When facing a long random write burst, the PMR 

rapidly becomes full of dirty or busy blocks. Therefore, in order to recycle some free space, a garbage 

collection (GC) mechanism is implemented. The designed GC works in two stages: first, it tries to 

recycle blocks by compacting valid pages within the PMR (and recycling invalid blocks); if this is not 

sufficient, data are then moved to the BMR to free some blocks in the PMR. Each of these mechanisms 

is detailed in the following sections. 

Algorithm 1 shows the write operation algorithm followed by CACH-FTL. Function 1 shows the test 

on the redirection threshold value and switches to Function 2 in case of a BMR write or Function 3 in 

case of a PMR write operation. 

In Function 3, Line 29 tests whether there is enough free space; indeed, if the free space falls under a 

given limit, the GC is launched (see Line 35). Otherwise, the group of pages is written to the PMR, and 

the mapping table is updated. 
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Algorithm 1. CACH-FTL write algorithms. 

1: input: 

2:   Redirection page group size threshold: NbPagesThreshold 

3:   Number of evicted pages: NbPagesEvict 

4:   The group of pages to evict: GroupPagesevicted 

5:   The block in the flash corresponding to data to evict: Blockevict 

6:   Free pages in the PMR: FreePagesPMR 

7:   PMR free pages synchronous GC threshold: SyncFreePThreshold // see the following GC section 

for details on this variable 

8: FUNCTION 1: CACH-FTL_Write_To_Flash (NbPagesThreshold, NbPagesEvict, GroupPagesevicted) 

9: if (NbPagesEvict > NbPagesThreshold) 

10:    Flush_Pages_BMR(GroupPagesevicted) 

11: else 

12:    Flush_Pages_PMR(GroupPagesevicted) 

13: end if 

14: FUNCTION 2: Flush_Pages_BMR(GroupPagesevicted) 

15: if (GroupPagesevicted < NumberOfValidPagesInABlock) 

16:    //Read valid pages in flash from the BMR and/or PMR 

17:    Read (Blockevict − GroupPagesevicted) 

18:    Erase Blockevict // erase the block in the flash memory 

19:    Flush the block from the cache → Blockevict 

20:    Update page-mapping tables (PMR if needed and BMR) 

21:    Delete GroupPagesevicted from the cache 

22: else  

23:    Erase Blockevict 

24:    Write the GroupPagesevicted → Blockevict 

25:    Update the block-mapping table of BMR 

26:    Delete GroupPagesevicted from the cache 

27: end if 

28: FUNCTION 3: Flush_Pages_PMR(GroupPagesevicted) 

29: if (FreePagesPMR − GroupPagesevicted > SyncFreePThreshold) 

30:    Flush GroupPagesevicted → PMR 

31:    Update the page-mapping table PMR 

32: else 

33:    // space available in PMR is < SyncFreePThreshold  

34:    Activate Noninterruptible GC 

35:    PMR_GC(NbPagesEvict) // see Algorithm 2. 

36:    Flush GroupPagesevicted → PMR 

37:    Update page-mapping table PMR 

38: end if 
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4.2.3. BMR Block-Mapping Scheme 

Function 2 shows how pages are flushed into the BMR in the case of a page group, the size of which 

is greater than the threshold. The algorithm first checks if there are some valid pages in the target on-

flash data block. If so, it reads first all the valid pages into a dedicated cache block before erasing the 

block. Then, it flushes the whole block (from the cache) into the on-flash block and, finally, updates the 

mapping tables. 

As one can see from Lines 17–19, 23 and 24, for the sake of this study, a simple direct (block) 

mapping in-place update algorithm was used. Therefore, when updated, a given block is written  

in-place. Direct block-mapping does not allow the available flash memory free space to be used to 

optimize the performance of CACH-FTL. This is not an optimal solution in terms of performance, but 

it allows a better performance evaluation, as results could be biased by flash memory free space usage, 

depending on the applied I/O workload. Modifying the direct mapping scheme would allow a better FTL 

performance (this is to be achieved in future work). 

Adding a wear leveler into CACH-FTL is also beyond the scope of this paper, as the evaluation  

of such a mechanism would require a separate performance evaluation study. However, several  

state-of-the-art wear levelers can be adapted to CACH-FTL either locally on each region (BMR or PMR) 

or globally all over the flash memory space. 

4.3. CACH-FTL Garbage Collection (GC) Mechanisms 

Two garbage collection mechanisms are used in CACH-FTL, one for each flash region. The PMR 

garbage collector (PMR-GC) recycles invalid pages inside the PMR in order to recover free space within 

the PMR. The BMR garbage collector (BMR-GC) moves data from the PMR to the BMR when there is 

no free space available in the PMR, even after the PMR-GC is performed. 

4.3.1. PMR Garbage Collector 

When the number of free blocks in the PMR goes under a predefined threshold, the PMR-GC is 

launched (see Algorithm 1, Line 35). CACH-FTL uses a simple greedy reclamation algorithm that 

selects the physical block from the PMR containing the least number of valid pages. Valid pages from 

the chosen block are copied to a free block, and then, an erase operation is triggered to recycle the victim 

block. 

Algorithm 2, Function 4 then Function 5, describe the PMR-GC behavior. While there are still pages 

to evict from the cache (Line 20), the PMR-GC carries on its work. The system scans all the flash blocks 

of the PMR to detect the one containing the larger set of invalid pages. (Lines 21 and 22). If there are no 

invalid pages to recycle (all data in the PMR are valid), the BMR-GC is launched  

(Lines 24 and 25; see the next section). Otherwise, the system reads the valid pages from the selected 

block, copies them into a free block, recycles the selected block and, finally, updates the mapping table 

(Lines 27–31). Once done, it checks whether enough space has been recycled to copy the whole set of 

pages to evict, and if not, it goes for another round of PMR-GC. An example of the PMR-GC behavior 

is given in Figure 3a,b. 
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Figure 3. Examples of garbage collection (GC): each page of PMR can belong to a given 

data block (for instance, in the top left, Block n contains Page 2 of Data Block 4). In  

(a), when a PMR-GC is launched, CACH-FTL chooses the block with the maximum number 

of invalid pages (marked “XXXXX”). It copies the valid pages to a new block and erases the 

original one, which finishes with State (b). In (c), the PMR is full. A BMR-GC is launched, 

and the system chooses the largest group of pages belonging to the same block; in this 

example, B4 (four pages). It then copies those pages to the BMR and invalidates them (State 

(d)). Once done, the PMR-GC is launched to free a block. It then chooses the second block 

(State (d)), copies the two valid pages and erases the first block (State (e)). 

 

4.3.2. BMR Garbage Collector 

The BMR-GC is launched whenever the PMR-GC cannot find any physical block containing enough 

invalid pages to recycle. BMR-GC also uses a greedy reclamation algorithm selecting the largest group 

of PMR pages belonging to the same data block (from BMR), as shown in the example in Figure 3c. 

Once the pages in the PMR are identified, the system searches for valid pages from the same block in 

the BMR in order to launch a merge operation (note that valid pages in the cache are not merged during 

GC). If some pages are found, the valid block pages (from the PMR and BMR) are moved into a 

dedicated block of the cache. The related block of the flash memory is then erased, and all the pages are 

flushed (see Figure 3). 

Function 6 of Algorithm 2 describes the actions performed during the BMR-GC. The loop in  

Lines 36 and 37 searches in the PMR for the largest set of pages from the same data block (BMR). Once 

found, pages are read and copied to the BMR (through the cache), and finally, the mapping tables are 

updated (Lines 38–42). 
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Algorithm 2. CACH-FTL garbage collection algorithms. 

1: input:  
2:  Number of evicted pages: NbPagesEvict 
3:  The group of pages to evict: GroupPagesevicted 
4:  The block in the flash of data to evict: Blockevict 
5:  Free pages in the PMR: FreePagesPMR 
6:  PMR-GC free page asynchronous threshold: AsyncFreePThreshold 
7:  PMR free page synchronous GC threshold: SyncFreePThreshold 
8:  The PMR block with the largest number of invalid pages: BlockMaxInvalid 
9:  Number of invalid pages in BlockMaxInvalid: NbPagesInvalid 
10:  Maximum number of pages in PMR belonging to the same data block: MaxGroupPagesPMR  
11: // FUNCTION 4 is launched at the end of each I/O request 
12: FUNCTION 4: PMR_Garbage_Collector() 
13: if (FreePagesPMR ≤ AsyncFreePThreshold) 
14:    Activate Interruptible GC 
15:    PMR_GC(NbPagesEvict) 
16: else 
17:    Wait for next PMR write request 
18: end if 
19: FUNCTION 5: PMR_GC(NbPagesEvict) 
20: while (NbPagesEvict > 0) 
21:    for i ← 1 to sizeOfPMRinBlocks 
22:       Find BlockMaxInvalid 
23:    end for 
24:    if (no BlockMaxInvalid found) //no invalid pages in PMR 
25:       BMR_GC() 
26:    else 
27:       Find NbPagesInvalid 
28:       Read valid pages from BlockMaxInvalid 
29:       Copy BlockMaxInvalid → freePMRBlock 
30:       Update page-mapping table 
31:       Erase BlockMaxInvalid 
32:    end if 
33:    NbPagesEvict = NbPagesEvict − NbPagesInvalid 
34: end while 
35: FUNCTION 6: BMR_GC() 
36: for i ← 1 to sizeOfPMRinBlocks 
37:  Find MaxGroupPagesPMR 
38: Read all pages MaxGroupPagesPMR → specific block in the cache 
39: Read valid pages of the same block as MaxGroupPagesPMR from BMR 
40: Invalidate data from the PMR and BMR mapping tables 
41: Erase the data block in the BMR 
42: Flush the whole block of MaxGroupPagesPMR from the cache and update the mapping table 
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4.3.3. PMR-GC and BMR-GC Asynchronous Design 

In CACH-FTL, both GCs can be launched synchronously or asynchronously. PMR-GC is launched 

synchronously whenever there is not enough free space to write the flushed pages (from the cache), 

while BMR-GC is launched synchronously whenever PMR-GC is not sufficient to recycle enough free 

space to write the flushed pages. 

In order to benefit from the I/O idle times, GCs can be launched asynchronously in order to recycle 

blocks, to generate free space and, thus, to anticipate page reclamation in PMR. This allows one to reduce 

the I/O request mean response times. 

PMR-GC is launched asynchronously whenever there is less than a predefined percentage of free 

space in the PMR (Line 13, Algorithm 2). This percentage threshold was fixed at 10% for the 

performance evaluation part of the present study. On the other hand, PMR-GC is launched 

synchronously whenever the free space falls under a minimal predefined threshold (fixed to three blocks 

in the performance evaluation part) and when the FTL needs to free some space on the PMR (in order 

to perform a write operation: Line 33–35, Algorithm 1). When the PMR-GC is launched synchronously, 

it naturally delays the response time of the current write request. 

BMR-GC is launched asynchronously whenever it is triggered by an asynchronous PMR-GC  

(Line 25, Algorithm 2); otherwise, it is launched synchronously.  

In order to allow the design of asynchronous GCs, one has to define interruption points in the GC 

process. Indeed, both asynchronous GC systems (PMR and BMR GC) are interruptible, which is not the 

case for synchronous GC operations. PMR-GC is performed in three phases (Lines 28–30, Algorithm 2) 

and is interruptible at the end of each phase. Each phase is atomic to avoid system inconsistency. If the 

system performs the action on Line 28, the valid pages are read and put into a dedicated block in the 

cache and maintained there until the PMR-GC is complete, even if interrupted. Line 29 consists of 

copying the pages of the candidate block to a free PMR block. This is transparent to the functioning of 

CACH-FTL, as the mapping table is changed only at Line 30. 

BMR-GC is performed in five phases (Lines 38–42, Algorithm 2) and can also be interrupted at the 

end of each phase. As for the asynchronous PMR-GC, the first step consists of reading the data and 

putting them into the cache (Line 38). In Line 39, the valid pages from the BMR are read in order to 

have the whole valid date on that block in the cache. Those two steps are interruptible, as data are still 

consistent in the PMR and BMR. In Line 40, data are invalidated from the PMR and BMR, so that they 

can be read from the cache. In Line 41, the block is erased, and finally, in Line 42, data are flushed from 

the dedicated cache block to the BMR in an atomic step. 

The two GC algorithms described in this section are specific to over-provisioning space management 

and do not concern traditional FTL GCs performed on a data space (in our case, in the BMR), due to 

wear-leveling implementation. Once again, direct mapping is used in the BMR, which operates without 

a GC. If ever out-of-place modifications are allowed in the BMR (which is not currently the case), an 

additional GC algorithm would be necessary to recycle invalid pages. In that case, many state-of-the-art 

GC systems can be used. 
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5. Performance Evaluation 

The first step of the performance evaluation of CACH-FTL consisted of comparing it with three other 

FTL schemes: (1) page-mapping (PM); (2) an optimized block-mapping scheme (BM); and  

(3) FAST hybrid FTL. The same cache system (C-lash in our case) with the same configuration was 

placed on top of each of the tested FTLs. 

In the first step, the CACH-FTL configuration was fixed during all the tests. Cache on pure PM 

represents the ideal performance one can obtain, since PM is the optimal FTL [22]. The drawback of 

such a scheme is that it is definitely non-scalable, as the PM table size would become impractically large 

when the flash memory size becomes high. Cache on BM represents the lower bound of performance 

that CACH-FTL should achieve. The simple BM scheme gives very bad performance, but uses a very 

small mapping table. The BM used in this part was optimized, so that when a group of sequential pages 

was flushed from the cache, writing this group required only one erase operation (rather than as many 

block erasures as the number of pages flushed). This is a very important optimization in BM, as it reduces 

drastically the mean response times. FAST, a good performing, very popular log-block hybrid FTL, was 

also compared. To summarize, CACH-FTL was compared with an ideal, a lower bound and a very 

popular and good performing FTL. 

This first experimental step ends up with some figures comparing the best CACH-FTL configuration 

with the other FTLs. The purpose was to show that one can always find a configuration to apply for 

CACH-FTL, giving very good performance even when compared with PM and better than BM and 

FAST. The objective of CACH-FTL is to approach PM performance, while using a smaller amount of 

embedded RAM. 

The second step consisted of evaluating the impact of tuning both the redirection threshold and the 

over-provisioning space (PMR) size according to the I/O workload. The purpose of this part was to 

investigate CACH-FTL’s flexibility in comparison with standard hybrid FTLs. This helps to find the 

optimal configuration points according to the I/O workload characteristics. 

5.1. Storage System and Performance Metrics 

A modified version of the FlashSim [27] simulator was used, based on the DiskSim [28] discrete 

event simulator, the most popular disk-based storage simulator. 

Two main performance metrics were considered: the mean response time and the number of erase 

operations. Response times were captured at the I/O driver level, including all intermediate delays: 

caches, controllers, I/O queues, etc. The impact of intermediate elements was, however, minimized to 

focus on the flash memory subsystem behavior. The second metric is the number of erase operations, 

which gives an idea of the global wear out, even though it does not provide information on the wear 

leveling (as no wear leveler is implemented). 

The simulated NAND flash memory characteristics were as follows: a 4 KB page size and a  

256 KB block size. The three basic operations had the following delays: 25 µs for a page read, 200 µs 

for a page write and 1.5 ms for a block erasure. Those numbers are related to a real flash storage system 

[29]. The chosen cache size in all the tests was 2 MB (the simulated flash memory address spaces were 
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less than 8 GB for real traces). For this study, the cache system was configured and fixed to six blocks 

in the b-space and 128 pages in the p-space. 

A fixed default configuration for CACH-FTL was used for the first set of tests. It had the following 

characteristics: a redirection threshold of four pages and an over-provisioning space (PMR) representing 

10% of the flash space (the configuration can be optimized according to the workload). Similarly, FAST 

was set to use 10% for over-provisioning space for log-blocks (PM and BM do not use over-provisioning 

space). 

Each simulation trace was preceded by a warm up phase consisting of playing the simulated trace 

twice in order to have a representative flash memory (in terms of valid, invalid and clean pages) and 

cache state. From our tests, we noticed that playing the I/O traces twice during warm up is enough, as 

the performance does slightly change when passing from two to ten trace executions for the warm-up 

(less than 2% performance difference).  

5.2. Simulated I/O Workloads 

Both real and synthetically generated I/O workloads were considered. For real traces, some widely 

used I/O traces available from the Storage Performance Council (SPC) [30] were chosen. These 

workloads describe traces of Online Transaction Processing (OLTP) applications obtained from two 

financial institutions [31]. Another tested trace subset was Cello99 [32], which is issued from the activity 

of a workgroup file server used in HP labs. For Cello99, eight-day traces beginning on  

20 February 1999, were selected from five different disks (see Table 1). 

Table 1 gives the mean write rate of all the disks of the financial trace and the minimum and maximum 

write rate in the set of disks per trace. As for the sequentiality rate, both the inter-request rate and the 

per-page (4 KB) sequentiality are shown, the latter being more representative, as it takes into account 

both inter- and intra-request sequentiality. 

Table 1. Synthetic I/O trace characteristics (the first line contains the varied metrics). 

Sequential Rate Request Number Inter-Arrival Times 

40%, default value 
(10% → 90%) 

250,000 default value 
(10,000 → 5,000,000) 

exponential (0, 200 ms) default value 
(50 → 500 ms) 

Spatial Locality Write Rate Mean Request Size 

20% 100% 1 page (4 KB) 

Table 2 presents the synthetic I/O workload characteristics. For sequentiality, spatial locality and  

inter-arrival time rates, the observed financial (Financials 1 and 2) trace average rates were considered 

as default values. Then, we launched simulation changing one parameter at a time. The sequentiality 

rate, request number and inter-arrival times were varied on a 1-GB size flash memory. A small size was 

chosen to rapidly saturate the flash memory without affecting performance compared with larger sizes. 

This ensures the launch of the GCs, without which the performance would not be representative. 
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Table 2. Financial 1, Financial 2 and Cello99 I/O trace characteristics. 

Number format: Mean, (Min, Max) 
Financial 1 
(24 Volumes) 

Financial 2 
(19 Volumes) 

Cello99 
(5 Volumes) 

Write rate 
77%, 
(4%, 100%) 

18%, 
(0%, 98%) 

34%, 
(19%, 53%) 

Sequentiality per request/per page 
23%/46% 
(1%, 99%) 

9%/38% 
(3%, 96%) 

9%/45% 
(4%, 27%) 

Mean request. size (KB) 5.6 5.3 4.5 
Trace time (h) 12 12 168 

6. Results and Discussion  

This section describes the results of the tests conducted. 

6.1. CACH-FTL versus PM, BM and FAST 

Figure 4a shows the mean response time per request for CACH-FTL compared with BM, PM and 

FAST. One can observe that for the chosen configuration, CACH-FTL approaches the performance of 

the ideal PM better in most cases and always performs better than BM and FAST. For the Financial 1 

traces, CACH-FTL improves BM by 47% and FAST by 71%. For Financial 2, CACH-FTL improves 

BM by 65% and FAST by 58%. Finally, for the Cello99 trace, CACH-FTL improves BM by 86% and 

FAST by 38%. The average differences between the ideal PM and CACH-FTL are: 39% for Financial 1, 

21% for Financial 2 and 35% for Cello99. Thus, CACH-FTL drastically improves response times and is 

closer to the ideal PM case. 

Figure 4. Performance of CACH-FTL. (a) The mean response times for the studied traces; 

(b) The number of generated erase operations. Note that some results are outside the scale 

of the graph, values are reported on the figure. 

 
 

One can see that the tested CACH-FTL configuration generates 8% more erasures than BM for 

Financial 1 and 6% less than FAST. For the Financial 2 trace, CACH-FTL performs 55% better than 

BM and 5% less then FAST. Finally, for the Cello workload, CACH-FTL performs 89% better than BM 
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and 69% better than FAST. For all erase operation results, one can observe that PM performs, by far, 

better than the other FTLs. 

As compared to BM, CACH-FTL performs better in terms of response times for 80% of the tested 

disks of the Cello trace, 79.2% of the Financial 1 trace and for 94.7% of the Financial 2 trace. For the 

number of erase operations metric, CACH-FTL enhances BM for 80% of the Cello disks, 91.7% of the 

Financial 1 disks and 89.5% of the Financial 2 disks. 

As compared to FAST, CACH-FTL performs better in terms of response times for all the tested disks 

of the Cello trace, 87.5% of the Financial 1 trace and for 84.2% of the Financial 2 trace. For the number 

of erase operations metric, CACH-FTL improves BM for all the Cello disks, 66.7% of the Financial 1 

disks and 68.4% of the Financial 2 disks. 

Figure 5 presents the best results that CACH-FTL can give when varying the redirection threshold 

from 1 to 32 and the over-provisioning space from 5% to 25% of the total flash memory space. Those 

two parameters were varied for each single disk of each trace, and the best configuration was chosen for 

each disk. For FAST FTL, the log-block space has been varied accordingly. The main observation one 

can draw from the mean response times figure is that CACH-FTL performs approximately as good as 

PM, the ideal FTL, with a difference of 4%, 3% and zero for Financial 1, Financial 2 and Cello, 

respectively. CACH-FTL improves the performance of BM by 36%, 56% and 94% for Financial 1, 

Financial 2 and Cello, respectively. Finally, CACH-FTL enhances the performance of FAST by a factor 

of 61%, 56% and 48% for Financial 1, Financial 2 and Cello, respectively. 

Figure 5. CACH-FTL’s best configuration improvement over BM and FAST. 

 

For the mean number of erase operations improvement, one can observe that the best CACH-FTL 

configuration always performs better than BM and FAST by more than 69% (less erase operations are 

generated). One can infer that this would prevent the flash memory from wearing out quickly, as the 

total number of erase operations is drastically reduced. However, compared to PM, CACH-FTL 

performs very poorly, as it generates much more erase operations. This is mainly due to the additional 

number of erase operations generated, because of the garbage collection mechanism. As this mechanism 

is asynchronous in CACH-FTL, it does not always impact response times. One must also keep in mind 

that PM uses approximately 80% more memory for storing the mapping table than CACH-FTL, with a 

25% over-provisioning space. 

Figure 6 presents the results of the tests with the synthetic I/O workloads described in Table 2. In 

Figure 6a, one can observe the mean response times according to the sequentiality rate variation. It can 
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be noticed that the more sequential the workload, the closer CACH-FTL gets to PM (only a 4% 

difference for a sequential rate of 90%); it generates less garbage collections, as sequential writes are 

directed towards BMR. However, even for very random workloads, CACH-FTL is far better than BM 

and FAST (a 41% and 64% improvement factor, respectively). FAST gives very poor performance  

for random workloads, due to the merge operation overhead. Indeed, the number of costly merge 

operations triggered is equal to the number of pages coming from different data blocks (at random) in 

the victim log-block [19]. 

Figure 6. Performance of CACH-FTL on synthetic workloads. (a) Sequentiality rate 

variation. (b) Number of generated writes (on a fixed flash size) variations. (c) Inter-arrival 

time variation, the values represent the mean of an exponential distribution. 

 

Figure 6b shows the results when inter-arrival times are varied; this variation does not impact the 

performance of BM and PM. For FAST, short inter-arrival times lead to saturated I/O queues, delaying 

response times. However, for CACH-FTL, higher inter-arrival times allow GC times to be better 

absorbed, leading to better performance. CACH-FTL performs better than FAST and BM for all cases 

and approaches PM with a 15% difference for higher inter-arrival times. 

Figure 6c shows the average response time variation according to the number of generated writes. 

Increasing the number of writes tends to saturate the flash memory and forces the FTL to perform several 

garbage collections. In fact, the simulated flash space is 1 GB, and the largest set of generated writes 

(five million) covers 19 GB. CACH-FTL performs even better than PM (for request numbers greater 

than 500,000), as the latter is saturated with garbage collections, while CACH-FTL can better handle 

them, thanks to the asynchronous implementation. 

6.2. CACH-FTL Adaptability: Redirection Threshold and Over-Provisioning Space Configuration 

Figure 7 depicts the I/O performance variation of CACH-FTL with different configuration points for 

both the redirection threshold and the PMR size compared to FAST for three sample disks (one from 

Cello99, one from Financial 1 and one from Financial 2). For nearly all the tested disk volumes (around 

50 for the real I/O traces), simulations showed that there is always at least one CACH-FTL configuration 

that surpasses, or at least matches, both FAST and BM for a given over-provisioning space size. Figure 

7(a-1) and 7(c-1) shows that even though CACH-FTL gives very bad performance when poorly 

dimensioned (very small values of the BMR/PMR redirection threshold), it is capable of optimal 

performance. In Figure 7(a-1), the optimal configuration of CACH-FTL is given for high values of the 

redirection threshold and improves FAST performance by 27%. In Figure 7 (c-1), the best CACH-FTL 
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performance is also reached by high values of the threshold (32) and improves it by 68%, and by 90% 

for Figure 7 (b-1). Optimal performance depends highly on the applied workload, as can be observed in 

Figure 7. The same conclusions can be drawn based on the number of erase operation curves in Figure 

7 (a-2),(b-2),(c-2). The optimal points are always given by CACH-FTL for all the tested disks. Note that 

the best performances are not always achieved at high threshold values and high over-provisioning 

space. 

Figure 7. CACH-FTL and FAST performance comparison on three different volumes of 

Financial and Cello real traces. We varied the over-provisioning space for FAST and the 

PMR region and threshold for CACH-FTL. The curves show one volume from the Cello 

workload (a) and two volumes from the financial traces (b, c). Both response times and the 

number of erase operations are illustrated. 

 
 

CACH-FTL offers the user a large design space, providing flexibility that allows one to compromise 

between the performance and lifetime of the flash memory (the number of erase operations performed). 

7. Conclusion and Future Work 

This paper presents a cache-aware configurable hybrid FTL, named CACH-FTL. CACH-FTL 

manages groups of pages flushed from the upstream cache according to their size (in terms of the number 

of pages). Large groups are flushed into the data block-mapped data region, while small groups are 

buffered within an over-provisioning page-mapped space and moved to the BMR data space 

asynchronously during I/O idle times. 

The CACH-FTL’s design came from the need to better use storage architecture by exploiting some 

information coming from the cache to manage the hybrid mapping in a simple and efficient way.  

It also partly bridges the information gap between the cache and the FTL. 
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Some characteristics of CACH-FTL are: (1) genericity, as it can be used with any flash-specific cache 

system, provided that it flushes groups of pages; (2) flexibility, as it offers a large configuration space, 

allowing the efficient tuning of I/O performance (response time and lifetime) according to application 

needs; this is achieved by modifying the PMR size and the redirection threshold;  

(3) scalability, as CACH-FTL can work with whatever cache memory/flash storage ratio, as one can 

adjust the size of the mapping table accordingly (reducing the PMR size); (4) efficiency, as CACH-FTL 

uses much less RAM than PM to store the mapping table: with four to five times less memory usage for 

a PMR, occupying 25% of the flash memory space, while having a drop in performance of less than 5% 

when the configuration is well chosen. 

One possible limitation of CACH-FTL is the additional erase operations generated (due to PMR and 

BMR GCs), which can result from a bad configuration (threshold and PMR size) or a change in the 

workload characteristics. To solve this issue, we plan to implement an adaptive version of  

CACH-FTL, where the over-provisioning space and/or the redirection threshold can be tuned 

dynamically according to the workload characteristics or the flash memory state. Another perspective is 

the integration of a state-of-the-art wear leveler and garbage collection into CACH-FTL, as this 

functionality was beyond the scope of this study. The wear leveler can be implemented in each region 

(PMR and BMR) and can also be used to balance the wear between the regions when too many erasures 

are provoked in a particular space. 
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