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Abstract: Global inequity and the unbalance of water resources has been a critical issue for many
years; and the Chinese per capita water resources are only 1/4 of the global average. Meanwhile, as
the Chinese economy is growing rapidly, the demand of Chinese industrial water use is also increasing.
In this case, it is important to balance the relationship between economic growth and industrial water
use. In this study, a reduction model is established for the northeastern, northern coastal, eastern
coastal, southern coastal, middle Yellow River, middle Yangtze River, southwestern, and northwestern
regions to verify the environmental Kuznets curve (EKC) for their respective industrial water use
and provide theoretical support for decision making from an economic perspective. It adopts the
per capita industrial water use and GDP of the eight economic zones from 2002 to 2014. The unit
root test and co-integration test were adopted to analyze the stationarity of the data, and the triple
reduction model was used for the fitting of variables. The relationship between per capita industrial
water use and GDP showed an inverted U-shaped curve from 2002 to 2014 for China, as well as for
the eastern coastal and middle Yangtze River regions, with the coordinates of the turning points
being (9.8749, 4.6735), (10.3098, 5.4783), and (9.8184, 5.0622), respectively. The per capita GDP at the
turning point of the inverted U-shaped curve is 18,000–30,000 Yuan (at constant prices from 2000).
This study provides important thoughts and lessons for collaborative research into the relationship
between industrial water consumption and economic development. The central government should
focus on the central and western regions when creating policies for water resource management and
technological development to improve their industrial water use efficiency.

Keywords: environmental Kuznets curve; industrial water use; economic growth; reduction model;
panel data

1. Introduction

The insufficient and imbalanced water resources across the globe is an important problem facing
the 21st century. The World Water Council [1] estimated that approximately 40% of the world
population experiences water shortages, and the ratio is likely to reach 50% by 2025. As the most
populous country, China accounts for 21% of the world population but possesses a measly 6% of global
water resources, and its per capita water resources amount to merely 2048 m3 or 29% of the global
average. The situation is severe. In the water use structure of China, agriculture accounts for the largest
share, but the proportion is declining. By contrast, the proportion of industrial water use continues to
grow. The National Bureau of Statistics [2] stated that the proportion of agricultural water use in China
fell from 69% to 63% from 2000 to 2014, whereas that of industrial water use rose from 21% to 22%.
The World Bank [3] estimates that before 2050, the agricultural water use rate will drop to roughly
50%, but the industrial water use rate will increase steadily. The Chinese government established goals
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for energy and water use intensity in the 12th Five-Year Plan, along with objectives for nationwide
water use at the end of this five-year plan. Programs such as “Strengthening the Foundation through
Industry” and “Intelligent Manufacturing in China” are advanced in the 13th Five-Year Plan, and
Made in China 2025 is promulgated. China’s industrial economy will usher in rapid development, and
industrial water demand is also projected to change. To create a well-rounded, moderately prosperous
society by 2020, China will implement strict water resource management policies and control the
consumption, as well as the consumption intensity, of water resources. Analyzing the relationship
between industrial water use and economic development is considerably significant for removing
the bottleneck problems related to the water resources of China. In this study, per capita industrial
water use and GDP/GRP (hereinafter referred to as GDP) are used as indicators to investigate the
EKC of China, in the northeastern, northern coastal, eastern coastal, southern coastal, middle Yellow
River, middle Yangtze River, southwestern, and northwestern regions. Regional panel data from 2002
to 2014 were utilized for verifying and analyzing the EKC for industrial water use and economic
development to provide a scientific reference for the concerted development of industrial water use
and economic growth.

In 1955, Kuznets [4] advanced that the curve of income distribution will form an inverted U-shape
with the course of economic development. That is, the gap of wealth will first increase and then decrease
along with economic growth. This inverted U-shaped relationship is called the environmental Kuznets
curve (EKC). Since 1992, scholars have conducted various EKC studies focusing on environmental
pollution and energy. Panayotou et al. [5] verified the EKC relationship between environmental
degradation and economic growth using forest logging rate and per capita income as indicators.
Selden et al. [6] verified the EKC for air pollution with suspended particulate matters, SO2, NO, CO,
and per capita GDP as indicators. By studying the relationship between energy consumption and per
capita GDP in 113 countries, Luzzati et al. [7] demonstrated that transnational EKC research requires
more detailed discussion.

Foreign studies have been conducted on the EKC for water use, but few of them have focused on
industrial water use. Consistent with the EKC hypothesis, Rock [8] suggested that both per capita water
intake and water use follow an inverted U-shaped curve of development on the basis of cross-regional
data for water intake and panel data for water use in the US. Katz [9] verified that the EKC has a certain
limitation with regard to water policy making and planning; the curve cannot accurately represent
the performance of an individual country. Gleick [10] indicated that no clear relevance exists between
nationwide per capita water use and income, but the research did not adopt a rigorous method of
statistical analysis. Hemati [11] studied the per capita industrial water use and income elasticity of 132
countries, verifying a bell-shaped relationship between the two.

In China, studies have been conducted to verify the EKC for industrial water use. Jia [12]
studied the relationship between the per capita water use index and the GDP of OECD states and
found that most OECD states follow the EKC for industrial water use; however, this study did not
include a non-OECD state. Li Qiang et al. [13] studied the EKC for per capita industrial and domestic
water use in China and confirmed that the EKC for per capita industrial water use exists, but the
EKC for per capita agricultural and domestic water use is unavailable. Despite these important
findings, the research could not provide a reliable reference for the industrial development of each
region because of the considerable differences in regional economic and industrial development.
Zhang Bingbing et al. [14] tested the industrial added value and water use for east, central, and west
China and indicated that the relationship is represented by an inverted U-shaped curve for East China,
an N-shaped curve for Central China, and an approximately progressive increase for China and West
China. The research could not provide a prominent conclusion because the division of regions failed
to feature the geographical characteristics and the per capita added industrial value. A portion of per
capita GDP cannot represent the national economic level.

With regard to methodology, EKC is sensitive to data and statistical approaches. The smooth
transition regression (STR) model was applied in the studies of Hemati [8], Bacon [15],
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and Teräsvirta [16]. The relatively common reduction model was employed by Cole [17], Katz [18],
and Bhattarai [19]. The panel smooth transition regression (PSTR) model was adopted by Duarte [20]
and Fouquau [21]. Katz [18] demonstrated that in EKC studies on pollution, the results were sensitive
to the data selection and analytical method and that no method could make the per capita water
recycled in all databases conform to an EKC. List et al. [22] analyzed the relationship between per
capita emissions of SO2 and NO and income in the US from 1929 to 1994 using the regression model
and stated that it could verify the inverted U-shaped curve. Despite its prevalence, the inverted
U-shaped relationship is not applicable to all data, and a statistical error may be generated if the
model is used indiscriminately. With the quadratic polynomial fixed effect regression model and
the PSTR model, Duarte et al. [20] verified the inverted U-shaped relationship between per capita
water use and income of 65 countries from 1962 to 2008, but these models resulted in significantly
different curve forms and estimated turning points as well as varying water use in different time
periods and countries.

In general, the reduction model is applied frequently in EKC research. Katz [18] verified that
the regression model is suitable for analyzing the relevance between economic growth and water use
given the limitation of data collection. Grossman et al. [23] regressed environmental indexes to income
or its square or cube; this simplified model can be used to emphasize the direct or indirect relationship
with income. Moomaw et al. [24] demonstrated that the regression model cannot reflect the random
factors in nature. Seldon et al. [25] also concluded that the regression model cannot account for other
complicated influencing variables (e.g., politics and educational level). Rock [5] attempted to adopt
a complex model, but many variable errors may be incurred because all relevant parameters should
be covered.

In this study, per capita industrial water use and GDP are employed as indices to analyze the
EKC for the industrial water use of the entire China along with the northeastern, northern coastal,
eastern coastal, southern coastal, middle Yellow River, middle Yangtze River, southwestern, and
northwestern regions. This study explores the relationship between the industrial water use and
economic development of these regions on the basis of their unique development characteristics and
development stages.

2. Materials and Methods

2.1. Method and Model

The reduction model proposed by Katz et al. [18] was employed in this study. This model can
reflect the relevance between independent and dependent variables rather than the direct influence
of the former on the latter. The method adopted is consistent with that of initial EKC research.
The logarithm to the per capita GDP of China and each of the eight economic zones from 2002 to 2014
was derived as the independent variable, and the per capita industrial water use was obtained as
the dependent variable. Logarithms of the independent and dependent variables were used because
they can mitigate data fluctuation, remove the heteroscedasticity of the time series, and reduce the
extremum, abnormal distribution, and heteroscedasticity of variables. This method is identical to
that in the EKC research of Stern [25]. Consistent with the research of Katz [18], per capita data are
employed because they can reflect the living standard directly, whereas nationwide industrial water
use data is affected by population.

The reduction model was adopted, including the first power, square, and cube of the independent
variable. The cubic model was used because per capita industrial water use does not decline after a
turning point, and the model can display two turning points. The failed reflection of the original data
trend and the reduced accuracy in the quadratic model could be avoided. List et al. [22] also adopted
the cubic model.

The adopted reduction model was defined as follows:

log waterit = β0 + ai + β1 × log GDPit + β2 × (log GDPit)
2 + β3 × (log GDPit)

3 + eit (1)
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where log waterit represents the logarithm of per capita industrial water use in region i in year t;
log GDPit is the logarithm of per capita GDP in region i in year t; β1, β2, β3 represent the parameters to
be identified in the model; ai is the correction factor of region i; and eit is the error term.

2.2. Samples and Data

The Development Research Center of the State Council [26] reported that the original division
of China into eastern, central, and western regions cannot reasonably reflect regional characteristics
because they cover a large area and population. The regional development strategy is now focused
on the concerted development of all regions rather than only on coastal regions, and, thus, a
detailed division of east, central, and west China is encouraged. In 2004, the Development Research
Center of the State Council divided China into the northeastern, northern coastal, eastern coastal,
southern coastal, middle Yellow River, middle Yangtze River, southwestern, and northwestern regions.
Li Shantong et al. [27] suggested that the adjacent areas of each region possess similar natural conditions
and resource structures.

To accurately represent the economic development characteristics of each region, analyze the
regions with different features, and obtain results consistent with the actual economic development,
this study divides China into eight regions. The northeastern region includes the provinces of
Liaoning, Jilin, and Heilongjiang. The northern coastal region consists of Beijing Municipality,
Tianjin Municipality, Hebei Province, and Shandong Province. The eastern coastal region comprises
Shanghai Municipality, Jiangsu Province, and Zhejiang Province. The southern coastal region covers
the provinces of Fujian, Guangdong, and Hainan. The middle Yellow River region includes Shanxi
Province, the Inner Mongolia Autonomous Region, Henan Province, and Shaanxi Province. The middle
Yangtze River region comprises provinces of Anhui, Jiangxi, Hubei, and Hunan. The southwestern
region consists of Guangxi Zhuang Autonomous Region, Chongqing Municipality, Sichuan Province,
Guizhou Province, and Yunnan Province. The northwestern region covers Tibet Autonomous
Region, Gansu Province, Qinghai Province, Ningxia Hui Autonomous Region, and Xinjiang Uygur
Autonomous Region. This division follows that of the eight economic zones of National Bureau
of Statistics.

The relationship between per capita industrial water use and GDP of the eight regions from 2002
to 2014 was fitted and analyzed. The data included concerned industrial water use, population, and per
capita GDP of each region. Data on total industrial water use were derived from the China Statistical
Yearbook, although that of 2011 is missing. The mean value method was adopted; the mean value of
two continuous years was taken for supplementation. Data on the per capita regional GDP for each
province were provided by the National Bureau of Statistics. Current year prices of per capita GDP of
each region were converted into constant prices based on 2000. The per capita regional GDP index,
for which 100 was designated for 2000, was determined according to the per capita GDP index of the
National Bureau of Statistics, for which 100 was designated for the previous year. Data on regional
population were derived from the National Bureau of Statistics. Figure 1 illustrates the relationship
between per capita industrial water use and GDP in 2014 for the eight economic zones. Most regions
with higher GDP boast a greater per capita industrial water use.
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Figure 1. Relationship between per capita industrial water use and GDP of eight economic zones in China (2014). 
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Figure 1. Relationship between per capita industrial water use and GDP of eight economic zones in
China (2014).

3. Data Verification and Results

Two types of time series exist: the stationary and non-stationary time series. In the former, mean
value, variance, and covariance do not change along with time displacement and the randomness on
each time point is distributed according to certain probability. In the latter, mean value, variance, and
covariance vary along with time placement.

In 1974, Granger et al. [28] stated that insufficient consideration had been given to the
autocorrelation of residual error in many studies and that testing the significance of regression
standards may be misguided by unstable macro data. In a non-stationary time series, the outstanding
regression relationship between a variable and another random variable may result in spurious
regression. A hypothesis and a unit root test should be made to investigate whether variables are
integrated in the same order. On this basis, a co-integration test should be subsequently conducted. If a
co-integration relationship exists in a group of non-stationary time series, then a linear combination
exists in this group of data. Consequently, its mean value, variance, and covariance will no longer vary
with time displacement. Under such circumstances, no spurious regression will be observed in the
time series.

Data in this paper are in time series and its statistical law varies along with the change of time,
thus becoming non-stationary. Therefore, a unit root test is conducted for each series through ADF
(Augmented Dickey-Fuller test) before proceeding with variable regression. It reaches stationary series
when the number of integration orders is identical. A co-integration test is then conducted on the
series with a same number of integration orders to achieve a stationary or co-integration series and
avoid spurious regression.
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3.1. Unit Root Test

The unit root test of panel data can be conducted through various methods. The most commonly
used methods include the ADF method proposed by Dickey et al. [29], the PP (Phillips&Perron) method
proposed by Phillips et al., the ERS-DFGLS (Elliott, Rothenberg and Stock proposed Dickey-Fuller
Test GLS Detrending (DFGLS)) method, and the Kwiatkowski–Philips–Schmidt–Shin (KPSS) method
proposed by Elliott. The null hypothesis for the ADF, PP, and ERS methods are a non-stationary series.
For the KPSS method, the null hypothesis is a stationary or trend stationary series. In this study,
the most classic and common ADF method was adopted, and Eviews 8.0 was used to conduct the unit
root test and the following co-integration test.

Given that three explaining variables exist, the number of integrated of order of all explained
variables cannot be higher than that of any explaining variable. When the number of integrated of
order of all explaining variables is greater than that of explained variables, two or more explaining
variables whose number of integrated of order is greater than that of all the explained variables must
exist. If the result of the unit root test indicates the non-same-order integration of variables, then
the co-integration test and the following sequence analysis should not be conducted. In this study,
data were verified at a confidence interval of 95% and 90%, but only the latter passed the verification.
Nevertheless, the data passed the verification.

The result of the unit root test for the per capita GDP nationwide from 2002 to 2014 is shown in
Table 1. The test statistics of the original sequence based on the ADF method was −2.554599. This value
was greater than the critical value under the 10% significance level, and the original sequence was
non-stationary. The test statistics of first-order difference based on ADF was −1.083218, which remains
greater than the critical value under the 10% significance level. After second-order difference, the test
statistics was −3.015682, which is less than the 10% significance level. When the confidence coefficient
is 90%, the time series after the second-order difference is stationary, indicating that the number of
integration orders is two.

The unit root test was first conducted on log waterit, log GDPit, (log GDPit)
2, and (log GDPit)

3 of
China and its eight regions.

Table 1. ADF (Augmented Dickey-Fuller test) test on per capita GDP index of China (2002–2014).

Unit Root Test Result
Critical Value under Significance Level

ADF Test Value p Value
1% 5% 10%

Original Sequence −4.121990 −3.144920 −2.713751 −2.554599 (0.1280)
First-order Difference −4.200056 −3.175352 −2.728985 −1.083218 (0.6812)

Second-order Difference −4.297073 −3.212696 −2.747676 −3.015682 (0.0672)

Given that the trend chart does not start from the original point and that the mode is non-linear,
the intercept term, rather than the trend term, was included in the test. The maximum lag period of the
difference term was defined as two by default. When the original data does not pass the unit root test,
the first-order difference is conducted on the data for testing. If the data fails the test, the second-order
difference test is conducted. The second-order difference test determines the number of integration
orders of the corresponding data. Table 2 provides the results of the unit root test.

The data for China, as well as the northern coastal, eastern coastal, and middle Yangtze River
regions passed the unit root test. The original sequence was stationary at a confidence level of 95%
and 90% for the northern coastal and eastern coastal region, respectively. At a confidence level of 90%,
the number of integration orders was two for both explaining variables and explained variables for
China and the middle Yangtze River region.

By contrast, the data of the northeastern, southern coastal, middle Yellow River, northwestern,
and southwestern regions failed the unit root test. Explanatory variables for the southwestern region
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remained non-stationary until the second-order difference. For the four other groups of sequences,
explaining and explained variables were integrated in different orders.

Table 2. Unit root test results of panel data.

Unit Root Test Result log GDPit (log GDPit)
2 (log GDPit)

3 log waterit

China −2.554599 −1.951466 −1.352739 −2.533588
Original sequence −1.083218 −1.327039 −1.609779 −1.037902

First-order difference −3.015682 * −3.013465 * −3.014400 * −3.918492 **
Second-order difference

Northeastern region −4.206730 ** −4.706684 ** −6.269113 ** −1.012680
Original sequence - - - −1.820042

First-order difference - - - −3.443118 **
Second-order difference

Northern coastal region −3.450119 ** −3.852843 ** −4.294858 ** −4.062908 **
Original sequence

Eastern coastal region −7.046073 ** −5.835000 ** −4.651630 ** −3.060754 *
Original sequence

Southern coastal region −4.024572 ** −3.941847 ** −3.786593 ** −0.570084
Original sequence - - - −3.446596 **

First-order difference

Middle Yellow River region −4.118118 ** −2.924842 −1.788681 −1.659138
Original sequence - 0.530117 −1.107944 −1.585040

First-order difference - 3.049401 * −2.915919 * −3.248551 **
Second-order difference

Middle Yangtze River region −2.517084 −2.044433 −1.559913 −2.715546
Original sequence −1.070017 −1.606389 −2.015681 −1.629209

First-order difference

Southwestern region −1.754490 −1.438379 −1.199019 −0.232726
Original sequence −1.251042 −1.585236 −1.773876 −0.652887

First-order difference −2.655894 * −2.515806 * −2.389672 * −3.356203 **
Second-order difference

Northwestern region −0.691475 0.915056 1.704604 −3.272664 **
Original sequence −3.490019 ** −3.259445 ** −2.468211

First-order difference - - −2.701544
Second-order difference

Note: ** represents the data pass the test at a confidence level of 95%, * indicates the data pass the test at a confidence
level of 90%, those without * fail the test.

3.2. Co-Integration Test

The co-integration was first proposed by Engle et al. [30] in 1987; it is used to describe the
long-term secular stability of non-stationary series. Various methods can be used for co-integration.
The E-G (Engle-Grange) two-step method is based on regression residuals. In the J-J (Johansen-Juselius)
co-integration test proposed by Johansen et al. [31], the maximum likelihood method is used to
verify the co-integration relationship among multiple variables under the vector auto-regression
(VAR) system.

The most commonly used E-G two-step method was adopted in this study. First, co-integration
regression was conducted, where the ordinary least squares (OLS) method was employed to estimate
the long-term equilibrium relationship and determine the non-equilibrium error et of the sequence.
Then, a unit root test was conducted on et. If et is a stationary sequence, then it proves co-integration;
if et submits to the root of unity, then no co-integration exists.

Two groups of zero-order stationary sequences (for the northern and eastern coastal regions) and
two groups of second-order stationary sequences (for China and the middle Yangtze River region)
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were obtained through the unit root test (Table 3). The co-integration test was conducted on the
second-order stationary sequences via the E–G two-step method.

Table 3. Co-integration test results.

Co-integration Test Statistical Value p Value

China −3.391487 0.0356 **
Middle Yangtze River Region −3.061418 0.0627 *

Note: ** indicates the data passed the test at a confidence level of 95%, * indicates the data passed the test at a
confidence level of 90%, those * failed the test.

In Table 3, co-integration regression was conducted on the second-order stationary sequence
of China, which resulted in the non-equilibrium error et. The ADF test was also conducted on et,
which resulted in a P value of 0.0356. This value was smaller than 5%, indicating that et is a stationary
sequence at a confidence level of 95% and that the original hypothesis is rejected. Co-integration
regression was then conducted on the second-order stationary sequence of the middle Yangtze River
region, which resulted in the non-equilibrium error et. The ADF test was conducted on et, which
resulted in a P value of 0.0627. This value was greater than 5%; however, with a confidence level of 90%,
the statistics of the sequence (−3.061418) were smaller than the critical value (−2.747676), indicating
that the data passed the ADF test at a confidence level of 90%. Therefore, et is a stationary sequence.
At a confidence level of 90%, China and the middle Yangtze River region passed the co-integration test,
indicating a long-term stable relationship. A data regression was able to be conducted.

3.3. Data Fitting and Result Analysis

After the unit root and co-integration test, four groups of data were derived, which were for
the entire China as well as the northern coastal, eastern coastal, and middle Yangtze River regions.
The four groups of data were fitted and analyzed according to Formula (1). The fitting coefficients
and analysis results are provided in Table 4. R2 is the determination coefficient, and the change of the
explanatory ratio between the independent and dependent variables grows as its value approaches
1. F is statistics, and p represents the probability that the F(1, n − 2) distribution is greater than F.
When p < α, the original hypothesis is rejected, and the regression model is significant on the whole.

Table 4. EKC (Environmental Kuznets Curve) fitting parameters of China, northern coastal, eastern
coastal and middle Yangtze River regions.

Fitting
Parameters 0. China 2. Northern

Coastal Region
3. Eastern

Coastal Region
6. Middle Yangtze

River Region

β0 188.291 283.146 −1071.672 230.655
β1 −61.022 −80.174 307.748 −75.631
β2 6.711 7.651 −29.286 8.387
β3 −0.245 −0.243 −0.928 −0.308
R2 0.9721 0.9709 0.7114 0.9619
F 104.4502 100.2204 7.3948 75.7087
p 0.0000 0.0000 0.0084 0.0000

The statistics and probability in Table 4 indicate that the p of the four groups of data is smaller
than 0.01, implying that all four models are significant overall at a confidence level of 99%. However,
R2 is greater than 0.96 for China and the three regions, indicating that 96% of the logarithm change of
their per capita water use can be explained by the EKC model. R2 of the east coastal region is 0.71, and
thus not fully explained by the EKC model.

Figure 2 illustrates the fitting curve for water use in the east coastal region to explain the relatively
unsatisfying fitting result.



Water 2017, 9, 556 9 of 13

The two last sets of data were inconsistent with the increase-to-decrease trend of EKC, and the data
for 2013 and 2014 were relatively different from the data of other years. This disparity is inconsistent
with the variation law of curves. The unfitting data were judged preliminarily as outliers, which
probably explains the small R2 value. Therefore, the data points for 2013 and 2014 were removed
before reconducting the fitting. Table 5 presents the corrected fitting parameters of EKC for the water
use and analysis results for China and the three regions.

The statistics and probability in Table 5 indicate that the corrected results are satisfactory. The
fitted curve is effective at a confidence level of 99% for each group of data. The R2 value of the eastern
coastal region rises to 85% overall, indicating that 86% of the dependent variables can be explained by
independent variables with the corrected fitting result.Water 2017, 9, 556  9 of 12 
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Coastal Region

3. Eastern
Coastal Region

6. Middle Yangtze
River Region

β0 188.291 283.146 −301.181 230.655
β1 −61.022 −80.174 82.080 −75.631
β2 6.711 7.651 –7.267 8.387
β3 −0.245 −0.243 0.213 −0.308
R2 0.9721 0.9709 0.8475 0.9619
F 104.4502 100.2204 12.9702 75.7087
p 0.0000 0.0000 0.0030 0.0000

Shape Inverted U Declining Inverted U Inverted U
Coordinates of Turning Point (9.8749, 4.6735) - (10.3098, 5.4783) (9.8184, 5.0622)
(Per Capita GDP, Industrial

Water use Per Capita) (19,436,107) - (30,025,239) (18,369,158)
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Figure 3. Estimated EKC curve of China, northern coastal, eastern coastal, and middle Yangtze River
regions (corrected).

4. Discussion

The results of the parametric regression support the EKC hypothesis overall. The relationship
between economic growth and water use displays an inverted U-shape for China and the three regions
during the period covered. The per capita industrial water use of the northern coastal region has started
to decline. The relationship between per capita industrial water use and GDP showed an inverted
U-shaped curve from 2002 to 2014 for China as well as the eastern coastal and middle Yangtze River
regions, with the coordinates of the turning points being (9.8749, 4.6735), (10.3098, 5.4783), and (9.8184,
5.0622), respectively. However, the turning point of the northern coastal region was not discovered
because of the short period of statistics. In China as well as the eastern coastal and middle Yangtze
River regions, the relationship between per capita industrial water use and GDP supports the EKC
hypothesis. In Beijing, Tianjin, and Hebei, which are parts of the northern coastal region, economic and
industrial development are advanced; thus, their curves exhibit an overall decline during the period of
statistics. They may have passed the turning point before the start of the statistical period. The EKC
hypothesis should not be rejected in the relationship between per capita industrial water use and GDP
of the northern coastal region.

The per capita GDP at the turning point of the inverted U-shaped curve is 18,000–30,000 Yuan
(at constant prices from 2000). The turning point of the EKC for per capita industrial water use appears
in 2009–2010 for the entire China, in 2006–2007 for the eastern coastal region, and in 2010–2011 for the
middle Yangtze River region, with a per capita GDP of 19,436 Yuan, 30,025 Yuan, and 18,369 Yuan,
respectively, at the turning point. When the per capita GDP exceeds 2000 Yuan, industrial water use
will start to decline along with economic growth in these regions.

Differences exist in the per capita industrial water use at the turning point between 200 and 240 m3.
The value is 107 m3, 239 m3 and 158 m3 for the entire China, eastern coastal, and middle Yangtze
River regions, respectively, closely relating to their stages of industrial and economic development.
Results for the north coastal region show that it has passed the turning point, is on the decline, and has
achieved a win–win situation with economic growth and industrial water use decrease. Other regions
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will also pass the turning point in the short term. For the regions that fail the data test, the EKC
hypothesis is not accepted theoretically.

5. Conclusions

The classic EKC theory reveals the economy–pollution relationship and considers that
environmental indicators (emissions and other ecological impacts) will increase with the development
of the economy, without changes in economic structure and technical process. It is regarded as a scale
effect. Along with improvements in technical process and production efficiency, economic further
development will not destroy the environment. It is considered as a technical effect. With economic
development, more environment requirements will be raised and will contribute to improving
ecological quality. Per capita industrial water use will decline along with economic development
based on the experience of developed countries. A relationship described by the Kuznets curve can be
observed for a number of developed countries.

The EKC for the industrial water use in China was verified through a reduction model according
to unit root and co-integration tests—based on the data on per capita industrial water use and GDP of
China and the eight economic zones from 2002 to 2014—in order to accurately represent the economic
development characteristics of each region, analyze the regions with different features, and obtain
results consistent with actual economic development. This study found that increasing industrial
water use in China is consistent with EKC characteristics and that an inverted U-shaped relationship
exists between per capita industrial water use and GDP. The major reasons for this trend include
improvements in water use efficiency resulting from technological innovation and water use transfer
attributed to industrial structure upgrades.

Imbalanced regional development will differentiate the turning point for industrial water use in
China. During the period studied, China along with the eastern coastal and middle Yangtze River
regions experienced their turning point between 2006 and 2011. The northern coastal region is assumed
to have passed its turning point before 2002; thus, its per capita industrial water use is constantly
declining in the statistics. The difference in the turning points is attributable to the different levels
of industrial development and economy of these regions. For instance, the eastern coastal region,
including Beijing, Tianjin, Hebei, and Shandong, boasts a high per capita GDP and an advanced
economy. Particularly, both Tianjin and Hebei are important industrial cities for China. This region
achieved technological breakthroughs and industrial structural adjustments early and experienced an
early turning point of the EKC for industrial water use. Other regions will also pass the turning point in
the short term and witness a decrease in industrial water use while achieving economic development.

Research on the EKC for industrial water use is highly significant. In the foreseeable future, the
economy of China will continue to grow rapidly, the industry share in GDP will keep rising, and the
disharmony between economic growth and industrial water use will remain. On 2 April 2015, China
released the Water Pollution Prevention and Control Action Plan, requiring the adjustment of industrial
structures and the optimization of spatial arrangements. This plan aims to promote cyclic development,
control total water use, improve water use efficiency, conserve industrial water effectively, popularize
and demonstrate applicable technology, develop cutting-edge technology, intensify water pollution
control, and assure national water security. This study provides important thoughts and lessons for
collaborative research on the relationship between industrial water use and economic development. It
is also helpful in balancing the relationship between industrial water use and economic development.
The central government should focus on central and western regions when creating policies for
water resource management and technological development to improve their industrial water use
efficiency. The government should also promote the deceleration of their water use consumption while
shrinking the economic gap between the mid-western regions and mid-eastern regions. In addition, the
government should create multiple policies to promote economic development and remove difficulties
resulting from increasing industrial water use, pass the turning point, and achieve a win–win situation
at the soonest possible time.
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The results presented in this study are indefinite because the data were limited, and factors such
as the complicated population, technical advancements, and policy adjustments could not be analyzed
in the model. Future research should consider the selection of data indices and the scope of panel data
in order to provide detailed analysis and discussion.

Acknowledgments: This work was supported by National Natural Science Foundation (71573145, 71203120).

Author Contributions: Alun Gu and Yue Zhang conceived and designed the experiments; Yue Zhang and
Bolin Pan performed the experiments; Alun Gu and Yue Zhang analyzed the data; Alun Gu and Yue Zhang wrote
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Water Counsil. World Water Vision 2025; Earthscan Publications Ltd.: London, UK, 2000.
2. National Bureau of Statistics. China Statistical Yearbook 2015; China Statistics Press: Beijing, China, 2015.
3. The World Bank. China: Air, Land and Water-Environmental Priorities for a New Millennium; The World Bank:

Washington, WA, USA, 2001.
4. Kuznets, S. Economic growth and income inequality. Am. Econ. Rev. 1955, 45, 1–28.
5. Panayotou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic

Development; International Labour Office: Geneva, Switzerland, 1993.
6. Selden, T.M.; Song, D. Environmental quality and development: Is there a Kuznets curve for air

pollution emissions? J. Environ. Econ. Manag. 1994, 27, 147–162. [CrossRef]
7. Luzzati, T.; Orsini, M. Investigating the energy-environmental kuznets curve. Energy 2009, 34, 291–300.

[CrossRef]
8. Rock, M.T. Freshwater use, freshwater scarcity, and socioeconomic development. J. Environ. Dev. 1998, 7,

278–301. [CrossRef]
9. Katz, D. Water use and economic growth: Reconsidering the environmental kuznets curve relationship.

J. Clean. Prod. 2015, 88, 205–213. [CrossRef]
10. Gleick, P. Water Use. Annu. Rev. Environ. Resour. 2003, 28, 275–314. [CrossRef]
11. Hemati, A.; Mehrara, M.; Sayehmiri, A. New vision on the relationship between income and water

withdrawal in industry sector. Nat. Resour. 2011, 2, 191–196. [CrossRef]
12. Jia, S.F.; Zhang, S.F.; Yang, H. The relationship between industrial water consumption and economic

development—Kuznets curve for water use. J. Nat. Resour. 2004, 19, 279–284.
13. Li, Q.; Wang, L.F.; Jia, X.M. Research on the relationship between water resource utilization and economic

growth based on EKC. Sci. Technol. Ind. 2015, 15, 133–136.
14. Zhang, B.B.; Shen, M.H. Analysis on the Kuznets curve for industrial water consumption. Resour. Sci. 2016,

38, 0102–0109.
15. Bacon, D.W.; Watts, D.G. Estimating the transition between two intersecting straight lines. Biometrika 1971,

58, 525–534. [CrossRef]
16. Teräsvirta, T. Modeling economic relationships with smooth transition regressions. In Handbook of Applied

Economic Statistics; Marcel Dekker, Inc.: New York, NY, USA, 1998.
17. Matthew, A.C. Economic growth and water use. Appl. Econ. Lett. 2004, 11, 1–4.
18. Katz, D.L. Water, Economic Growth, and Conflict: Three Studies; University of Michigan: Michigan, MI,

USA, 2008.
19. Bhattarai, M. Irrigation Kuznets Curve Governance and Dynamics of Irrigation Development: A Global

Cross-Country Analysis from 1972 to 1991; International Water Management Institute: Colombo,
Sri Lanka, 2004.

20. Duarte, R.; Pinilla, V.; Serrano, A. Is there an environmental kuznets curve for water use? A panel smooth
transition regression approach. Econ. Model. 2013, 31, 518–527. [CrossRef]

21. Fouquau, J.; Destais, G.; Christophe, H. Energy demand models: A threshold panel specification of the
“Kuznets curve”. Appl. Econ. Lett. 2009, 16, 1241–1244. [CrossRef]

22. List, J.A.; Gallet, C.A. The environmental Kuznets curve: Does one size fit all? Ecol. Econ. 1999, 31, 409–423.
[CrossRef]

http://dx.doi.org/10.1006/jeem.1994.1031
http://dx.doi.org/10.1016/j.energy.2008.07.006
http://dx.doi.org/10.1177/107049659800700304
http://dx.doi.org/10.1016/j.jclepro.2014.08.017
http://dx.doi.org/10.1146/annurev.energy.28.040202.122849
http://dx.doi.org/10.4236/nr.2011.23025
http://dx.doi.org/10.1093/biomet/58.3.525
http://dx.doi.org/10.1016/j.econmod.2012.12.010
http://dx.doi.org/10.1080/13504850701367197
http://dx.doi.org/10.1016/S0921-8009(99)00064-6


Water 2017, 9, 556 13 of 13

23. Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–378.
[CrossRef]

24. Moomaw, W.R.; Unruh, G.C. Are environmental Kuznets curves misleading us? The case of CO2 emissions.
Environ. Dev. Econ. 1997, 2, 451–463. [CrossRef]

25. Stern, D.I. The rise and fall of the environmental Kuznets curve. World Dev. 2014, 32, 1419–1439. [CrossRef]
26. Li, S.T.; Hou, Y.Z.; Feng, J. Strategic thinking and policy measures for achieving regional

coordinated development. Shanghai Invest. 2005, 7, 4–8.
27. Li, S.T.; Hou, Y.Z. Mainland China: Division of eight social-economic regions. Forw. Position Econ. 2003, 5,

12–15.
28. Granger, C.W.J.; Newbold, P. Spurious regressions in econometrics. J. Econ. 1974, 2, 111–120. [CrossRef]
29. Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autore-gressive time series with a unit root.

J. Am. Stat. Assoc. 1979, 74, 427–431.
30. Engle, R.; Granger, C. Cointegration and error correction: Representation, estimation, and testing.

Econometrica 1987, 55, 251–276. [CrossRef]
31. Johansen, S.; Juselius, K. Maximum likelihood estimation and inference on cointegration-with applications

to the demand for money. Oxf. Bull. Econ. Stat. 1990, 52, 169–210. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2307/2118443
http://dx.doi.org/10.1017/S1355770X97000247
http://dx.doi.org/10.1016/j.worlddev.2004.03.004
http://dx.doi.org/10.1016/0304-4076(74)90034-7
http://dx.doi.org/10.2307/1913236
http://dx.doi.org/10.1111/j.1468-0084.1990.mp52002003.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Method and Model 
	Samples and Data 

	Data Verification and Results 
	Unit Root Test 
	Co-Integration Test 
	Data Fitting and Result Analysis 

	Discussion 
	Conclusions 

