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Abstract: This paper developed an approach, the window-based validation set for support vector
data description (WVS-SVDD), to determine optimal parameters for support vector data description
(SVDD) model to map specific land cover by integrating training and window-based validation sets.
Compared to the conventional approach where the validation set included target and outlier pixels
selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened
hypersphere because of the compact constraint by the outlier pixels which were located neighboring
to the target class in the spectral feature space. The overall accuracies for wheat and bare land
achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated
because the validation set covers only a small fraction of the heterogeneous spectra of the target
class. The different window sizes were then tested to acquire more wheat pixels for validation set.
The results showed that classification accuracy increased with the increasing window size and the
overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed
much less sensitivity to the untrained classes than the multi-class support vector machine (SVM)
method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff
coefficient (C) and kernel width (s), in mapping homogeneous specific land cover.

Keywords: support vector data description; optimal parameters; window-based validation set;
simulated annealing; land cover

1. Introduction

Land-cover thematic maps produced with remote sensing images have been used to record the
Earth’s surface development processes and dramatic land use/cover changes impelled from natural
and human factors [1–3]. Typically, exhaustively-labeled training data within images are required to
map all land-cover types by supervised classification methods. Omission of any class would degrade
classification performance because a pixel belonging to an untrained class would be erroneously
allocated to one of the pre-defined classes in the training set [4]. For many applications, however, users
are concerned about one specific class, such as the wetland or urban class. In such cases, conventional
multi-class classification makes more of an effort to select training samples of non-target classes to meet
the requirement of an exhaustive training set [5,6]. Much of the research has converted the solution
from the traditional multi-class classification model to a one-class classification model which defines
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the user-interested class as a target, and other classes as outliers. The one-class classifier is designed to
extract the interested land-cover class using a small training set including only the target class, thus it
can efficiently reduce the hard and redundant work to collect all classes of ground training data for
multi-class classification [7–10].

The support vector data description (SVDD) method, a boundary method developed by Tax
and Duin, creates a hypersphere which is the decision boundary in a high-dimensional feature space
such that it encloses most target objects and rejects outliers [11]. This method shows excellent ability
in mapping specific land-cover distribution [12–14]. Foody and Mathur [15] demonstrated that the
SVDD could achieve satisfying land-cover accuracy, which had little difference in terms of accuracy
compared with multi-class support vector machine (SVM) classifications. Sanchez-Hernandez et al. [16]
introduced SVDD classification to map fenland, which outperformed the conventional multiclass
maximum-likelihood classification algorithm. Muñoz-Marí et al. [17] also analyzed and compared
the applicability of different one-classifiers, and concluded that the SVDD classifier yielded the best
crop classification with respect to other one-classifiers when applied to multi-spectral, hyperspectral
and SAR (Synthetic Aperture Radar) data. Niazmardi et al. [13] combined Fuzzy C-means with
SVDD for unsupervised hyperspectral data classification, which obtained acceptable results with
high dimensional data. Uslu et al. [18] presented ensemble methods for improving classification
performance of SVDD in the remotely sensed hyperspectral imagery data.

Based on the SVDD’s principle, the tradeoff coefficient C and kernel width s, are two critical
parameters that affect the shape of hypersphere [19]. The C is defined as the ratio of target objects
to outlier objects in a training sample set and the kernel width s is to control the compactness of
hypersphere. When the s value is fixed, the reduction of C causes a shrinking hypersphere and more
target objects would be rejected as outliers. When C is set as constant, smaller s contributes to an
over-tight boundary around the training sample set whereas a very loose one would be derived
with higher s value. Previous research demonstrated that the accuracy of one-class classification is
very sensitive to these parameters. In particular, when the spectral mixture between the target class
and outliers is significant, classification errors may be relatively high with inappropriate parameters.
However, little attention was drawn to determining the appropriate parameters, C and s, for the SVDD
model to ensure land-cover mapping performance.

In this paper, an innovative approach was developed to improve SVDD performance for specific
land cover by optimizing classification parameters using a window-based validation set. The simulated
annealing (SA) search algorithm was employed to determine optimal parameters. Hereafter, the
method of window-based validation set for SVDD is abbreviated as WVS-SVDD. The remainder of
this paper is organized as follows. The modules of the proposed method are introduced in Section 2.
Then, experiments are conducted to test the performance of WVS-SVDD on different spatial resolution
remote sensing images in Section 3. Finally, the conclusions are drawn in Section 4.

2. WVS-SVDD: Window-Based Validation Set for SVDD

The proposed method includes four modules (Figure 1): (1) training set selection; (2) validation
set selection; (3) optimized parameter determination using simulated annealing (SA) algorithm; and
(4) SVDD-based specific land-cover classification. Each module is described in the following sections.
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Figure 1. Flow chart of support vector data description (SVDD) for land cover mapping using the 
optimal parameters. The input and regenerated data delineated by rhomboid. MNF: minimum noise 
fraction; SA: simulated annealing. 

2.1. Training Set Selection 

The size and spectral feature of training set are of great importance for supervised classification 
to ensure the land-cover thematic map accuracy. The training set size is positively related to the 
classification accuracy [20]. Following the rule of thumb, a training set comprising at least 30p pixels 
(p is the number of the wavebands of remote sensing image) is considered enough to represent the 
spectral characteristics of the target class [21,22]. The spectral feature of training set is also important 
since the hypersphere is fitted around the training set. Edge spectral responses from the target land-
cover spectral space are demonstrated to provide potential and effective support vectors, which are 
more effective than training samples that lie in the center of spectral cluster of the target class [23]. 
From our previous study, the edge training set consisted of two parts of sources: mixed and corner 
pixels. The mixed pixels are situated around target land-cover parcel boundaries where pixels 
represent the mixed spectra of the target class and other classes [24]. The corner pixel set are defined 
as the pixels lying at the vertex of the convex data from the view of spectral feature space constructed 
by the first and second component generated from the minimum noise fraction (MNF) transformation 
scatterplots [25]. These pixels together are potential support vectors for creating an optimal hypersphere. 

Figure 1. Flow chart of support vector data description (SVDD) for land cover mapping using the
optimal parameters. The input and regenerated data delineated by rhomboid. MNF: minimum noise
fraction; SA: simulated annealing.

2.1. Training Set Selection

The size and spectral feature of training set are of great importance for supervised classification
to ensure the land-cover thematic map accuracy. The training set size is positively related to the
classification accuracy [20]. Following the rule of thumb, a training set comprising at least 30p pixels
(p is the number of the wavebands of remote sensing image) is considered enough to represent the
spectral characteristics of the target class [21,22]. The spectral feature of training set is also important
since the hypersphere is fitted around the training set. Edge spectral responses from the target
land-cover spectral space are demonstrated to provide potential and effective support vectors, which
are more effective than training samples that lie in the center of spectral cluster of the target class [23].
From our previous study, the edge training set consisted of two parts of sources: mixed and corner
pixels. The mixed pixels are situated around target land-cover parcel boundaries where pixels represent
the mixed spectra of the target class and other classes [24]. The corner pixel set are defined as the pixels
lying at the vertex of the convex data from the view of spectral feature space constructed by the first and
second component generated from the minimum noise fraction (MNF) transformation scatterplots [25].
These pixels together are potential support vectors for creating an optimal hypersphere.
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2.2. Validation Set Selection

Cross validation is a common way to determine optimal parameters for multi-class classification.
The training set itself is randomly split into different subsets in the first step. Then, some subsets
are used to train the classifier with different parameter sets, which is validated by the remaining
subsets. This method is not suitable for one-class classification because only pixels from target class
are included in the training set. Any hypersphere large enough to enclose the whole training set
would be considered as a suitable one, which may be easily to include outlier pixels when applied to
the whole image. Therefore, rather than using training set, an independent validation set including
both target class pixels and outlier pixels should be selected. The target pixels are used to examine
whether the hypersphere could enclose the target class and outlier pixels could measure the ability of
the hypersphere for rejecting other land-cover classes.

According to Wang et al.’s research, the location of outlier objects in the validation set is crucial to
construct the optimal hypersphere [26]. Figure 2 shows the distribution of the expected outliers from
the view of the feature space, outlier pixels which are located tightly adjacent to the mixed target cases
are needed. A method proposed by Wang et al. firstly utilized the boundary value method to generate
artificial outliers which surrounded the target data set [26]. However, these artificial outliers were
unable to represent actual scene and usually resulted in an overfitting hypersphere.
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Figure 2. Definition of informative outliers from feature space. Circles and squares indicate cases of
class of no interest (class B and class C) respectively, and triangles indicate cases of class of interest
(class A). The solid line indicates the hypersphere fitted by target pixels. Solid circles and squares are
located around the hypersphere, denoted as informative outliers.

In this paper, a window-based sampling method was proposed to acquire neighboring pixels
of training set as the validation set. Our method is based on the phenomenon that each mixed pixel
straddling a boundary represents the two mixed spectral responses, which is dominated by each of
the classes separated by that boundary [24]. The mixed spectral responses of two classes are also
adjacent in the feature space, which could provide outliers neighboring to training samples to constrain
the hypersphere, as illustrated in Figure 2. In the previous section, mixed target pixels are included
in the edge training samples; their neighboring pixels thus provide informative outlier candidates.
Accordingly, the window-based sampling method fits a window to each training pixel, the neighboring
pixels of training samples within this window were collected to comprise validation set.
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2.3. Optimal C and s Determination Using SA Algorithm

With training and validation sets, the optimal parameters can be determined by adaptive
optimization algorithms. The SA as a global optimization algorithm was introduced here to avoid local
optimality during each iteration [27]. Based on the Boltzmann and Metropolis’s study, Kirkpatrick et al.
claimed that the Metropolis’s approach was conducted for each temperature on the annealing schedule
until thermal equilibrium was reached. The “cooling” process, analogical to the cooling of a metal,
enables SA to converge gradually to the search outcomes to accomplish global optimization. The SA
algorithm has already been proposed for SVM parameters and feature selection, resulting in higher
classification performance of SA-SVM than that of grid search which is also a popular parameters
search method for SVM [28]. We introduced SA to determine optimal C and s for SVDD. The main
steps are described as follows:

Step 1 (Initialization). The upper and lower bounds of C and s were set as (0.01, 1) and (0.01, 20),
respectively. Within the parameter scope, the hypersphere could dilate from an underestimated state
to an overestimated one, therefore enabling SA to search optimal parameters for SVDD. The SA
algorithm starts generating and feeding initial values of the two parameters into the SVDD classifier,
then, the classifier is applied to the test set and the system state (E0) is calculated.

In this research, the focus was on the target class, thus corrected classified outliers were not
considered in the definition of the system state. The value of classification error defined from
Formula (1) serves as the criterion to determine suitable parameters for the SVDD model.

Error =
#wrong

#correct + #wrong
(1)

where #correct and #wrong denote the number of correctly classified target pixels and misclassified
pixels, respectively.

Step 2 (Provisional state). Make a random move to change the existing system state to a provisional
state. Another set of two positive parameters is generated in this stage.

Step 3 (Acceptance tests). The following equation was employed to determine the acceptance or
rejection of the provisional state:

Accept the provisional state if E(snew) > E(sold), and p < P(accept snew), 0 ≤ p ≤ 1
Accept the provisional state if E(snew) ≤ E(sold)

Reject the provisional state otherwise
(2)

where P(accept snew) is the Boltzmann probability factor, which equals e(− (E(snew)− E(sold))/kb T) where kb is
the Boltzmann constant and T is the current temperature. p is a random number to determine the
acceptance of the provisional state, and Snew and Sold are new and original system state, respectively.
If the provisional state is accepted, then set the provisional state as the current state.

Step 4 (incumbent solutions). If the provisional state is not accepted, then return to Step 2.
Furthermore, if the current state is not superior to the system state, then repeat Steps 2 and 3 until the
current state is superior to the system state and, finally, set the current state as the new system state.

Step 5 (temperature reduction). After the new system state is obtained, reduce the temperature.
The new temperature reduction is obtained by:

New temperature = (Current temperature)× ρ, where 0 < ρ < 1 (3)

where ρ is the cooling coefficient and is set as 0.9 in this study. If the pre-determined condition is
reached, then the algorithm stops, and the latest state is an approximate optimal solution for each
parameters. Otherwise, go to Step 2.
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2.4. SVDD-Based Specific Land-Cover Classification

SVDD classification using the above training set and optimal parameters generated from SA
model is then implemented to produce specific land cover map.

3. Experiments

In this section, we analyzed the strengths and weaknesses of the proposed WVS-SVDD method.
In the first part of experiments, the comparison between WVS-SVDD, conventional SVDD and binary
SVM classification was made to test the performance of the proposed method for mapping wheat and
bare land maps, respectively. Then, we tested the robustness of the WVS-SVDD using different-size
validation sets on multi-scale images. In addition, Foody et al. verified that the presence of untrained
class decreased both hard and soft neural network classification accuracy [4]. Therefore, the effect of
untrained classes on SVDD and SVM classifications was also tested and compared.

A sub-region of Tongzhou, a district of southeast Beijing in China, was selected as study area,
which covers an area of approximately 40 km2 (39◦1′ N–39◦4′ N, 116◦2′ E–116◦8′ E) (Figure 3).
The topography is flat, and the fragmented agriculture land is a typical landscape in this area.
The agriculture land is dominated by winter wheat. The other three primary land covers in this
area, including trees, bare land and water, are mosaicked with the cultivated land.
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Figure 3. Study area and Quickbird (QB) imagery (bands combination = 4, 3, and 2).

High-quality multi-spectral Quickbird (QB) imagery at 2.4-m spatial resolution, with four bands
(blue: 450–520 nm; green: 520–600 nm; red: 630–690 nm; NIR: 760–900 nm), acquired on 2 May 2006
under cloudless conditions, was used for this study. The pre-processing, atmospheric correction,
was not necessary for the image due to the assumption that the atmosphere condition is uniform
for one scene image which has little influence on classification conduction [29]. The geometric
correction was applied for QB image to co-register with the field survey plot and projected to
UTM (Universal Transverse Mercator) with the WGS-84 (World Geodetic System) coordinate system.
To assess classification results, the actual land cover distribution was visually digitized directly from
the original QB imagery as 2.4-m resolution of QB which was fine enough to support the accurate land
cover extraction.
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3.1. Comparison between WVS-SVDD, Conventional SVDD and SVM

In this section, we compared the WVS-SVDD with conventional SVDD approaches, and a binary SVM
classification for mapping wheat and bare land, respectively. The comparison between WVS-SVDD
and conventional SVDD was to observe the effect of window-based validation set on the classification
performance. Besides, the SVM classification is considered as a basic benchmark for SVDD performance
assessment, a common way for one-classifier accuracy analysis [15].

For conventional and WVS-SVDD classifications, a total of 120 training pixels, including 60 mixed
derived along the target class boundary and 60 corner pixels extracted from the vertex of the MNF
(minimum noise fraction) scatterplot, were chosen from each target class. Then, a validation set
was acquired for each method. For the WVS-SVDD, a window with a size of 3 × 3 was fitted to
each training pixel, the neighboring pixels of training samples within this window were collected
to comprise validation set. The validation set was divided into target and outlier classes through
visual interpretation. For conventional SVDD, the validation sets were randomly chosen through
visual interpretation to collect target and outlier pixels. The numbers of target and outlier pixels
in conventional validation sets were as same as those in the WVS-SVDD, and thus the accuracy
discrepancy between WVS-SVDD and conventional SVDD could be illustrated from the spectral
difference of the two validation sets. Optimal parameters were then determined using SA algorithm
for each classification, shown in Table 1. SVDD-based land cover classifications were implemented
using training sets and corresponding optimal parameters. Furthermore, a binary radial basis function
(RBF)-based SVM classification using the optimal parameters (C and s) was implemented for mapping
wheat [15]. In this approach, 120 pixels from the target class and another 120 pixels from the remaining
land-cover classes were selected to comprise the training set. The results were finally assessed by
confusion matrix measurement using the digitized wheat and bare land maps as test set, from which
statistical metrics such as producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA), and
Kappa coefficient could be calculated [30].

Table 1. Numbers of target and outlier pixels in the validation sets for traditional and window-based
validation set for support vector data description (WVS–SVDD) wheat and bare land classifications.
The optimal parameters for each classification are also listed. C: tradeoff coefficient; s: kernel width.

Target Class Classification
Methods

# of Pixels in Validation Sets Optimal Parameters

Target Outlier C s

wheat
WVS-SVDD

470 128
0.02 1.01

traditional SVDD 0.05 17.81

bare land
WVS-SVDD

449 68
0.08 9.98

traditional SVDD 0.02 18.37

In order to visualize the effect of window-based validation set on SVDD classification performance,
the distribution of target pixels and outlier pixels in both validation sets for wheat mapping and its
corresponding hyperspheres was given in Figure 4. For the traditional validation set, the randomly
selected outlier pixels laid far away from the target class, thus an expansible hypersphere (s = 17.81)
was achieved. In this case, those outliers that lay close to training samples were apt to be falsely
accepted by the over-large hypersphere. For the window-based validation set, a compact hypersphere
was constructed, mainly due to restriction by outlier pixels which were located neighboring to the
target class.

SVDD and SVM classifications are given in Figures 5 and 6 and the accuracy assessment was
given in Table 2. For wheat, the binary SVM yielded an accurate performance with a satisfying
overall accuracy of 94.37%. For the conventional SVDD-based wheat mapping, the omission error
was only 3.94% because the constructed large hypersphere allowed accepting as many wheat pixels
as possible. Unfortunately, the low omission error was achieved at the cost of a large commission
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error of 36.57%, causing a low overall accuracy under 80%. Comparing to the conventional method,
the WVS-SVDD wheat classification yielded a more accurate classification result with an overall
accuracy of 89.25%, at the same level with that derived from SVM classification. Less than 3% outliers
were falsely accepted, highlighting the potential of outliers acquired from the window-based method
for rejecting other classes. Classifications for bare land showed similar results. SVM classification
performed best with an overall accuracy of 91.96% and WVS-SVDD yielded better accuracies than
traditional method. Therefore, our proposed method could improve SVDD classification accuracy
with more efficient validation sets. However, the omission errors of WVS-SVDD were relatively high
because the constructed hypersphere was relatively small to completely enclose heterogeneous wheat
spectral feature under 2.4-m resolution.
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Table 2. Classification accuracy for the proposed, traditional and SVM methods. PA: producer’s
accuracy; UA: user’s accuracy; OA: overall accuracy.

Target Class Classification Methods
Classification Accuracy (%)

PA UA OA

wheat
WVS-SVDD 71.12 97.36 89.25

Traditional Method 95.33 64.84 80.33
SVM 94.57 90.37 94.37

bare land
WVS-SVDD 82.49 81.89 83.65

Traditional Method 88.54 71.24 78.41
SVM 90.85 91.51 91.96

3.2. Sensitivity to Window Size and Pixels’ Spatial Scale

From above analysis, the WVS-SVDD-based hypersphere has shown excellent ability in rejecting
outliers, however, the target class was underestimated at the window size of 3 × 3 because the
constructed hypersphere covered a small space of target spectra. Furthermore, although the higher
pixel resolution leads to a better delineation of land cover and reduces mixed pixels, land-cover
classification maps using high-resolution images generally suffer noise problems due to high
heterogeneity of spectral information at finer pixel size. Better classification accuracy may be achieved
at a medium pixel size scale [31]. Thus, in this part, we evaluate the sensitiveness of the proposed
method with respect to window size and pixels’ spatial scale.

The experiment setup is started by upscaling the QB image into low-resolution images, resulting in
the land cover spectral features being more homogeneous. The original QB imagery was sub-resampled
to 5-, 10-, 15-, and 20-m resolution according to the aggregated operation that aggregated the original
image pixels’ spectrum [32]. Then, training sets were selected for each image, followed by validation
set acquisition with different window sizes. Thus, in this paper, a variety of window sizes (5 × 5,
7 × 7, 9 × 9 and 11 × 11) were used to acquire more wheat pixels at the validation stage, which could
increase the spectral variability of target pixels. WVS-SVDD classifications were carried out for the
up-scaled data using the optimal parameters derived from SA algorithm under different spatial scales.
To evaluate classification results generated from individual scales, the aggregated fraction map derived
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from the digitized wheat maps as the test set was used. These aggregated fraction maps were classified
into binary wheat distribution maps using a majority rule in which pixels having faction higher than
0.5 were defined as “target class” and the remaining pixels as “outlier class” [33].

Figure 7 and Table 3 showed WVS-SVDD classification results and accuracy assessment results
using wheat reference maps, respectively. For spatial resolution at 2.4-m, the producer’s accuracy
increased nearly 10% with the validation set search window size ranging from 3 to 7, meanwhile all
user’s accuracies were higher than 95%. The overall accuracy also increased from 89.5% to 92.34%.
The classification accuracy became stable after 7 × 7 scale, suggesting that a window size at 7 × 7 scale
may be most suitable for choosing the validation data. The wheat spectra became more homogeneous
and uniform, as the spatial resolution growing coarser, and target pixels derived in the window-based
validation set with a size of 3 × 3 was generally enough to represent spectral characteristic of target
class. As a result, more wheat pixels were correctly classified accompanying with producer’s accuracy
increase. For each scenario, overall accuracies of WVS-SVDD classifications were greater than 88%,
indicating that the proposed window-based validation set could help SVDD determine the optimal
parameters, C and s, at an individual spatial scale.
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Figure 7. Comparison of SVDD classification results for wheat over different window sizes using
simulated 10-m resolution image. The ground data are also included as reference.

Table 3. Accuracy assessment for each classification at different spatial patterns and window sizes.

Spatial Resolution
and Window Size

# of Pixels in
Validation Set

Optimal
Parameters Classification Accuracy (%)

Target Outlier C s PA UA OA

2.4 m
3 ×3 470 128 0.02 1.01 71.12 97.36 89.25
5 × 5 1056 367 0.02 1.02 79.75 96.22 91.84
7 × 7 1687 702 0.05 3.76 80.49 97.05 92.34
9 × 9 2307 1104 0.02 1.40 81.18 95.62 92.13

11 × 11 2926 1580 0.01 1.03 80.11 96.11 91.93
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Table 3. Cont.

Spatial Resolution
and Window Size

# of Pixels in
Validation Set

Optimal
Parameters Classification Accuracy (%)

Target Outlier C s PA UA OA

5 m
3 × 3 338 123 0.11 1.12 81.07 86.27 88.89
5 × 5 697 383 0.08 9.76 85.50 86.31 90.20
7 × 7 1090 748 0.21 7.37 81.91 93.66 91.75
9 × 9 1542 1202 0.21 1.94 82.32 93.42 91.80

11 × 11 2026 1744 0.09 4.37 85.10 86.73 90.25

10 m
3 × 3 385 136 0.02 1.40 93.53 92.32 95.01
5 × 5 822 317 0.04 1.57 91.13 93.87 94.81
7 × 7 1302 554 0.02 1.51 92.93 92.53 94.90
9 × 9 1818 841 0.11 1.68 89.44 97.12 95.37

11 × 11 2358 1163 0.14 7.65 90.57 96.72 95.62

15 m
3 × 3 464 144 0.01 1.04 91.92 93.10 94.75
5 × 5 1013 363 0.03 1.06 90.68 95.09 95.07
7 × 7 1657 905 0.02 1.08 92.07 93.48 94.95
9 × 9 2375 1480 0.02 1.11 91.63 94.39 95.14

11 × 11 3179 2176 0.03 1.09 90.87 95.13 95.15

20 m
3 × 3 538 106 0.03 1.52 93.30 93.40 95.29
5 × 5 1198 302 0.03 1.47 93.39 93.41 95.33
7 × 7 1926 567 0.01 1.19 94.71 92.32 95.33
9 × 9 2694 913 0.03 1.51 93.33 93.41 95.30

11 × 11 3461 1329 0.02 1.21 93.88 93.87 95.66

3.3. The Effect of Untrained Classes on the Classification Accuracy

In this section, we chose a 10-m resolution image aggregated from original QB as an example and
analyzed the performance of WVS-SVDD and SVM classification with untrained class. The training set
for WVS-SVDD was same as in the above experiment, while bare land or trees were excluded in the
validation set. Then, SVDD classifications were undertaken using optimal parameters determined by
SA. There were six land cover combinations for the non-wheat training samples; detailed combinations
are listed in Table 3. For SVM, 120 wheat training and 120 non-wheat training samples consisting of
different non-wheat land covers combinations were chosen. SVDD and SVM classifications were then
assessed using digitized wheat map.

Table 4 showed accuracy of SVDD and SVM classification to map wheat. Under the condition
of the use of training set with all defined classes, both SVDD and SVM achieved good performance
with overall accuracy above 95%. However, the outlier class had obvious impacts, following reduction
of classes in the non-wheat samples, on SVM classification accuracy. From the three-dimensional
view of the scatterplot of land-cover types in Figure 8, wheat lies between bare land and trees, thus
these two classes are necessary to construct an optimal hyperplane for separating wheat from other
non-wheat land-cover types based on the principle of SVM. When trees or bare land were removed
from the training set, classification accuracy decreased to some extent. In particular, the binary SVM
derived the poorest classification with an overall accuracy of 76.28%, while neither trees nor bare land
were included in the training set. The user’s accuracy was only 59.63%, indicating that the pixels
representing areas of bare land and trees were commissioned into wheat. On the other hand, water
is located far away from wheat, having little influences on the hyperplane. Therefore, excluding
water in the training set had little impact on classification; overall accuracy was 96.01%, which was
still at the same level with that derived by exhaustive training set. These results suggest that SVM
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is sensitive to the untrained class and an exhaustive training set is necessary to ensure an accurate
classification. However, how to achieve the exhaustively defined training set is a big challenge. Instead,
the WVS-SVDD still achieved good performance with high overall accuracy, with little sensitivity to
whether trees or bare land pixels were excluded from the validation set, and was able to reach the
same level of the SVDD classification as the original validation set. This is because the hypersphere
constructed using the optimal C and s with support of window-based validation set could create the
enclosed space to determine the wheat, suffering little influence from untrained non-wheat classes.
Thus, WVS-SVDD is much less sensitive to the untrained classes than SVM, highlighting the value of
SVDD for mapping one specific class which could significantly reduce the number of training pixels
compared to multi-class classification where an exhaustive training set is required to keep classification
accuracy. Compared to SVM, WVS-SVDD only requires few training and validation sets to ensure the
target class classification performance.

Table 4. Classification accuracy for SVDD and SVM classifications using an exhaustive and
non-exhaustive training data set.

Method Untrained Class
Classification Accuracy (%)

PA UA OA

WVS-SVDD
None 93.53 92.32 95.01

Bare land 94.40 85.93 92.63
Trees 93.06 93.21 95.19

SVM

None 95.76 92.77 95.91
Bare land 96.33 86.09 93.26

Trees 98.81 81.51 91.73
Water 95.17 93.55 96.01

Trees and water 98.29 83.46 92.58
Bare land and water 93.62 74.97 86.82
Bare land and trees 99.98 59.63 76.28
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4. Discussion

One-class classification using remote sensing is attracting more attention when users focus on
one specific class. However, determining appropriate parameters to derive accurate land-cover maps
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has never been easy. This study proposed a window-based method to acquire informative outliers
in the validation set which put more constraints on hypersphere compared to traditional randomly
selected validation set. Figure 4 showed that outliers from WVS-SVDD provide effective outliers which
were located tightly around the target training samples, resulting in an efficient hypersphere to reject
non-target land-cover classes. Thus, the proposed method was able to significantly improve the overall
accuracies for different land covers, which were higher than those derived from the traditional SVDD
method, as shown in the Figures 5 and 6.

Results from Table 3 exhibited that this algorithm proved to be robust for many spatial-resolution
images. When image resolution gets coarser, land-cover spectra becomes more homogeneous and
classification accuracies increased. This indicated that the proposed method can be applied to
local-scale specific species mapping using high-resolution images and global-scale forest mapping
using medium-resolution data.

Given results from Table 4, WVS-SVDD is less sensitive to the omission of any class in the
validation set compared to multi-class SVM method. The reason is that SVDD does not need too many
outlier classes to construct the hypersphere, whereas SVM needs to create hyperplanes between the
target class and each outlier class. With this information, the training sample collection work can be
reduced to a small percentage, which could enhance the classification efficiency.

However, there are still some limitations in the proposed method. For high-resolution image
classification, more pixels should be included in the validation set due to higher spectral variation
of land-cover classes, which induce heavier sample collection work. Also, this method has not been
tested in urban environments which have a very complex mixture of different land-covers including
vegetation, impervious surface and soil in the middle resolution images, such as Landsat 8 images.
Moreover, buildings constructed with different materials and colors increase this complexity in the
high-resolution images, such as UAV (Unmanned aerial vehicle) images. Thus, urban class is much
more complicated than any other class presented in this study and the applicability of WVS-SVDD in
urban environment will be explored in the future work.

5. Conclusions

This paper proposed a WVS-SVDD method that integrated a window-based validation set and
an SA-based optimal C and s algorithm to map specific land cover. The results indicated that the
proposed method performed much better than the conventional SVDD classification for one-class
classification. For the wheat class, the overall accuracy of WVS-SVDD based classification was
89.25%, which was a little less than that derived from the SVM classification. Comparison between
classifications for bare land showed similar results.

However, the underestimation of the target class indicated that the number of target pixels in
the validation set is not enough at 3×3 window scale. Then, larger window sizes were adopted
to select more wheat pixels to describe the wheat spectral responses. The study has shown that
classification accuracy increased, accompanying with window size increment to some extent. Moreover,
the proposed method was tested over various spatial patterns, varying from 2.4-m to 20-m resolution.
Producer’s accuracy increased from 71.12% to 94.71%. Under such improvements, the commission
error was keeping low, which was benefiting from the informative outliers. Therefore, the results
highlighted the suitability of the proposed method over different spatial patterns.

The efficiency of untrained classes on the one- and multi-class classification was also analyzed
in this paper. The SVM and WVS-SVDD classifications were undertaken with exhaustive or
non-exhaustive training sets. For SVM classifications, exclusion of bare land or tree classes in the
training set would decrease accuracy to some extent whereas excluding water had little influence
on the classification. For WVS-SVDD, it still yielded good performance with high overall accuracy
when trees or bare land pixels were excluded in the validation set, and was at the same level as that
supported by the exhaustive validation set. These results suggested that SVDD is considerably less
sensitive to the effect of untrained classes, thus SVDD is suitable for specific land-cover mapping with
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the limited and small validation set, compared to multi-class classification which requires exhaustive
training set to ensure classification accuracy.
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