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Abstract: The flow of a viscous fluid in a plane channel is simulated numerically following the
DNS approach, and using a computational code for the numerical integration of the Navier-Stokes
equations implemented on a hybrid CPU/GPU computing architecture (for the meaning of symbols
and acronyms used, one can refer to the Nomenclature). Three turbulent-flow databases, each
representing the turbulent statistically-steady state of the flow at three different values of the Reynolds
number, are built up, and a number of statistical moments of the fluctuating velocity field are
computed. For turbulent-flow-structure investigation, the vortex-detection technique of the imaginary
part of the complex eigenvalue pair in the velocity-gradient tensor is applied to the fluctuating-velocity
fields. As a result, and among other types, hairpin vortical structures are unveiled. The processes of
evolution that characterize the hairpin vortices in the near-wall region of the turbulent channel are
investigated, in particular at one of the three Reynolds numbers tested, with specific attention given
to the relationship that exists between the dynamics of the vortical structures and the occurrence of
ejection and sweep quadrant events. Interestingly, it is found that the latter events play a preminent
role in the way in which the morphological evolution of a hairpin vortex develops over time, as
related in particular to the establishment of symmetric and persistent hairpins. The present results
have been obtained from a database that incorporates genuine DNS solutions of the Navier-Stokes
equations, without superposition of any synthetic structures in the form of initial and/or boundary
conditions for the simulations.

Keywords: Navier-Stokes equations; DNS; turbulent channel flow; swirling-strength criterion for
vortex detection; hairpin vortices; quadrant events

1. Introduction

The flow of a viscous fluid in a channel has been investigated numerically by several authors in
the recent past, becoming a reference case for the study of wall turbulence with DNS.

Accurate DNS calculations of the turbulent channel flow have been carried out by Kim et al. [1],
Lyons et al. [2], Antonia et al. [3], Kasagi et al. [4], Rutledge and Sleicher [5], Moser et al. [6], Abe et al. [7],
Iwamoto et al. [8], Del Alamo and Jiménez [9], Del Alamo et al. [10], Tanahashi et al. [11], Iwamoto et al. [12],
Hoyas and Jiménez [13], Hu et al. [14], Alfonsi and Primavera [15], Lozano-Durán et al. [16], Lozano-Durán
and Jiménez [17], Vreman and Kuerten [18,19], Bernardini et al. [20], and Lee and Moser [21], at different
values of the Reynolds number (see also at Table 1).
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The aim of these simulations is mainly that of calculating a given number of time steps of the
statistically-steady turbulent flow in the channel, to build up DNS databases, and extracting from the
latter useful information for a better comprehension of the wall-turbulence phenomena.

Overall, in the above-mentioned works, the Navier-Stokes equations system is mainly solved
within a fractional-step-method framework, in conjunction with Runge-Kutta algorithms for time
marching. In particular, in the milestone work of Kim et al. [1], and in Lyons et al. [2], Antonia et al. [3],
Kasagi et al. [4], Rutledge and Sleicher [5], Moser et al. [6], Iwamoto et al. [8], Del Alamo and Jiménez [9],
Del Alamo et al. [10], Iwamoto et al. [12], Hu et al. [14], Lozano-Durán et al. [16], Lozano-Durán and
Jiménez [17], Vreman and Kuerten [18,19], and Lee and Moser [21], the unsteady three-dimensional
Navier-Stokes equations are integrated in space by using either the fully spectral Fourier-Chebychev
numerical technique originally introduced by Kim and Moin [22], minor variants of the latter, or
fully spectral techniques introduced by other authors. In Abe et al. [7] and Bernardini et al. [20],
the flow governing equations is integrated by means of a finite-difference algorithm in which a
grid-stretching law is inserted orthogonally to the walls. In Tanahashi et al. [11] and Hoyas and
Jiménez [13], mixed spectral-high-order finite difference numerical schemes are used. In Alfonsi and
Primavera [15], the Navier-Stokes equations in conservative form are integrated by means of the mixed
Fourier-finite difference method originally introduced by Alfonsi et al. [23], where a grid-stretching
law of hyperbolic-tangent type is inserted along y (the direction orthogonal to the solid walls).

Table 1. Outline of turbulent-channel-flow DNSs.

Author(s) Year Numerical Technique

Kim et al. [1] 1987 Spectral
Lyons et al. [2] 1991 Spectral

Antonia et al. [3] 1992 Spectral
Kasagi et al. [4] 1992 Spectral

Rutledge and Sleicher [5] 1993 Spectral
Moser et al. [6] 1999 Spectral
Abe et al. [7] 2001 Finite Difference

Iwamoto et al. [8] 2002 Spectral
Del Alamo and Jiménez [9] 2003 Spectral

Del Alamo et al. [10] 2004 Spectral
Tanahashi et al. [11] 2004 Spectral-Finite Difference
Iwamoto et al. [12] 2005 Spectral

Hoyas and Jiménez [13] 2006 Spectral-Finite Difference
Hu et al. [14] 2006 Spectral

Alfonsi and Primavera [15] 2007 Spectral-Finite Difference
Lozano-Durán et al. [16] 2012 Spectral

Lozano-Durán and Jiménez [17] 2014 Spectral
Vreman and Kuerten [18] 2014 Spectral
Vreman and Kuerten [19] 2014 Spectral

Bernardini et al. [20] 2014 Finite Difference
Lee and Moser [21] 2015 Spectral

As for velocity boundary conditions, periodic conditions are generally imposed along the
streamwise (x) and spanwise (z) directions, in conjunction with no-slip (and impermeability) conditions
at the walls, while Neumann conditions are enforced for the pressure. In Table 1, an outline of the
above-mentioned works is reported.

In the aforementioned channel-flow simulations, interesting results have been obtained, as related
in particular to the evolution of the fluctuating-velocity statistical moments with the Reynolds number
(see also Alfonsi [24], Marusic et al. [25], Smits et al. [26], Kim [27], Jiménez [28]).

Though, there are several aspects of the channel-flow case that can be further investigated, in
particular related to the processes of development of the wall-turbulence flow structures (see also
Alfonsi and Primavera [29]).
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In the present work, three DNS channel-flow database have been calculated, respectively, at
friction-velocity Reynolds numbers Reτ “ 200, 400 and 600 (one can see at the Nomenclature for
the meaning of symbols and acronyms used). Statistical moments of the fluctuating-velocity field
have been computed and compared with results obtained by other authors, obtaining a rather good
agreement with the latter. The vortex-detection technique of the imaginary part of the complex
eigenvalue pair of the velocity-gradient tensor (the λci or swirling-strength criterion) as introduced by
Zhou et al. [30] has been applied to the computed fluctuating-velocity fields. As a result, and among
other shapes, hairpin-like vortical structures are unveiled. The processes of evolution that characterize
the hairpin vortices are investigated giving particular attention to the relationship that exists between
vortex dynamics and the occurrence of Q2 and/or Q4 quadrant events. Interestingly, it is found that
the physical condition for the development of a complete and stable hairpin is twofold, namely:

(i) the development of ejections distributed on spheric-like isosurfaces behind an initial Ω-shaped
vortex filament;

(ii) the subsequent development of sweeps distributed on elongated isosurfaces adjacent to the
external sides of hairpins’ heads and necks.

The present work is organized as follows. Section 2 contains an outline of the numerical technique
used for the solution of the Navier-Stokes equations in the plane-channel-flow computing domain,
in Section 3 a concise presentation is given of the vortex-detection method used for flow-structure
extraction, and in Section 4, the numerical simulations are described. In Section 5, the results are
presented and compared with data obtained by other authors, mainly in terms of turbulence statistics,
while in Section 6, the results of the simulations are presented in terms of vortical structures and
quadrant events. Concluding remarks are given at the end.

2. Numerical Techniques

The three-dimensional time-dependent Navier-Stokes equations for incompressible fluids are
considered in non-dimensional, conservative form (Einstein summation convention applies to repeated
indices, i, j = 1, 2, 3):

Bui
Bt
`
B

Bxj

`

uiuj
˘

“ ´
Bp
Bxi

`
1

Reτ

B2ui
BxjBxj

(1)

Bui
Bxi

“ 0 (2)

Variables and operators are nondimensionalized by the channel half-height (h) for lengths,
the wall-shear velocity (uτ) for velocities, the group (ρu2

τ) for pressure, and (h{uτ) for time, being
Reτ “ uτh{ν the friction-velocity Reynolds number (ρ is fluid density, ν is fluid kinematic viscosity.
Note that, for simplicity, the symbols of both dependent and independent variables have not been
altered in switching from the dimensional to the dimensionless formalism). The computing domain
(Figure 1) is considered homogeneous along the x (streamwise) and z (spanwise) directions, so that
Equations (1) and (2) are Fourier-transformed accordingly:

Bû
Bt
` ikx

´

û2
¯

`
B pûvq
By

` ikz p ˆuwq ` ikx p̂ “
1

Reτ

ˆ

B2û
By2 ´ k2û

˙

(3a)

Bv̂
Bt
` ikx pv̂uq `

B

´

v̂2
¯

By
` ikz p ˆvwq `

B p̂
By
“

1
Reτ

ˆ

B2v̂
By2 ´ k2v̂

˙

(3b)

Bŵ
Bt
` ikx pŵuq `

B pŵvq
By

` ikz

´

ŵ2
¯

` ikz p̂ “
1

Reτ

ˆ

B2ŵ
By2 ´ k2ŵ

˙

(3c)

ikxû`
Bv̂
By
` ikzŵ “ 0 (4)
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where the superscript (ˆ) indicates variables in Fourier space, and k2 “ k2
x ` k2

z. The nonlinear terms in
the momentum Equations (3a–c) are evaluated pseudospectrally by anti-transforming the velocities in
physical space to perform the products (FFTs are used). Here, in order to avoid errors in transforming
the results back to Fourier space, the discrete Fourier transforms are applied on “3n/2” points along
each homogeneous direction.
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Figure 1. Computing-domain scheme.

Due to the presence of the steepest variable-gradients near the walls, and in order to obtain a
suitable spatial resolution in the calculations, a grid-stretching law of hyperbolic tangent type is used
for the grid points along y (the direction orthogonal to the walls):

ystr “ PPy` p1´ PPq
ˆ

1´
tanh rQQ p1´ yqs

tanh rQQs

˙

(5)

where y indicates the uniform grid and PP, QQ are two parameters characterising the distribution.
The partial derivatives along y are calculated according to grid-point distribution Equation (5)
using second-order centered finite-difference expressions. For time advancement, the third-order
Runge-Kutta procedure originally introduced by Le and Moin [31] is implemented. For each Fourier
mode one has:

ûplqi ´ ûpl´1q
i

∆t
“ αl D

´

ûpl´2q
i

¯

` βl D
´

ûpl´1q
i

¯

´ γlC
´

ûpl´1q
i

¯

´ ζlC
´

ûpl´2q
i

¯

´ pαl ` βlq
B p̂plq

Bxi
(6)

where l = 1,2,3 denote the Runge-Kutta sub-steps, and where:

C pûiq “
B

Bxj

`

uiuj
˘

“ ikx p ˆuiuq `
B p ˆuivq
By

` ikz p ˆuiwq (7)

D pûiq “
1

Reτ

B2ui
BxjBxj

“
1

Reτ

ˆ

B2ûi
By2 ´ k2ûi

˙

(8)

are the advective- and diffusive terms, respectively. Both terms are treated explicitly and, in
Equation (6), αl , βl , γl , ζl assume constant values, so that the time advancement results are third-order
accurate in the convective part, and second-order accurate in the diffusive:

α1 “
4

15
, α2 “

1
15

, α3 “
1
6

; β1 “
4

15
, β2 “

1
15

, β3 “
1
6

;

γ1 “
8

15
, γ2 “

5
12

, γ3 “
3
4

(9a)
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ζ1 “ 0, ζ2 “ ´
17
60

, ζ3 “ ´
5
12

;
3
ÿ

l“1

pαl ` βlq “

3
ÿ

l“1

pγl ` ζlq “ 1 (9b)

Time marching is coupled with the fractional-step method. In Equation (6), the velocity and
pressure fields are decoupled, so that two distinct expressions are generated. At each Runge-Kutta
sub-step (l) and for each Fourier mode (ˆ), an intermediate velocity field is introduced (superscript *):

û˚plqi ´ ûpl´1q
i

∆t
“ αl D

´

ûpl´2q
i

¯

` βl D
´

ûpl´1q
i

¯

´ γlC
´

ûpl´1q
i

¯

´ ζlC
´

ûpl´2q
i

¯

(10)

ûplqi ´ û˚plqi
∆t

“ ´pαl ` βlq
B p̂plq

Bxi
(11)

where, by applying the divergence operator to Equation (11) (and so enforcing mass conservation) one
obtains a Poisson equation for the pressure, to be solved at each sub-step (l):

∇2 p̂plq “
1

∆t pαl ` βlq

˜

Bû˚plq

Bx
`
Bv̂˚plq

By
`
Bŵ˚plq

Bz

¸

(12)

The final values of the velocity are obtained from Equation (11). No-slip boundary conditions at
the walls, and cyclic conditions in the streamwise and spanwise directions, have been applied to the
velocity (for further details on the numerical algorithm one can refer to Passoni et al. [32–34]).

3. Flow-Structure Extraction

Among the different techniques used for the extraction of the coherent structures of turbulence
(see Wallace [35], Alfonsi [36], Alfonsi and Primavera [37,38], among others), the swirling-strength
criterion as devised by Zhou et al. [30] has been used. The latter is concisely summarized here.

By considering the system of the governing equations, an arbitrary point O can be chosen in
the field, and a Taylor-series expansion of each velocity component can be performed in terms of
space coordinates with the origin at O, so that the first-order pointwise linear approximation at that
point becomes:

ui “ Ai ` Aijxj (13)

(Aij “ Bui{Bxj is the velocity-gradient tensor). If O is located at a critical point, the zero-order terms in
Equation (13) are zero. From the characteristic equation of Aij one has:

λ3 ` Pλ2 `Qλ` R “ 0 (14)

where:

P “ ´tr
`

Aij
˘

; Q “
1
2

!

“

tr
`

Aij
˘‰2
´ tr

´

A2
ij

¯)

; R “ ´det
`

Aij
˘

(15)

are the scalar invariants of the velocity-gradient tensor (tr is trace, det is determinant). In the case of
incompressible flow, P “ 0, and:

λ3 `Qλ` R “ 0 (16)

Q “ ´
1
2

tr
´

A2
ij

¯

(17)

where the discriminant of the characteristic equation of Aij becomes:

Dsc “
R2

4
`

Q3

27
(18)

When Dsc ą 0, the velocity-gradient tensor has one real eigenvalue (λ1 “ λr), and a pair of
complex-conjugate eigenvalues (λ2, λ3 “ λcr˘ iλci). Zhou et al. [30] adopted the criterion of identifying
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vortices by visualizing isosurfaces of prescribed values of the imaginary part of the complex-eigenvalue
pair of the velocity-gradient tensor. The swirling strength (λci) represents a measure of the local swirling
rate inside a vortical structure, so that isosurfaces of the imaginary part of the complex eigenvalue
pair of the velocity-gradient tensor can be used to visualize vortices (the strength of stretching or
compression is given by λr). The method is frame independent. It automatically eliminates regions
having no local spiralling motion (due to the fact that the eigenvalues are complex only in regions of
local circular or spiralling streamlines), and has proven to give rather satisfactory results in several
different cases (see [39], among others). As concerns the choice of the threshold value of the swirling
strength chosen for structure representation ( λci|th), one can refer to Alfonsi and Primavera [40].

4. Numerical Simulations

Direct numerical simulations have been executed in the plane-channel domain (Figure 1) with
dimensions, grid points, resolutions and Reynolds numbers as reported in Table 2.

Table 2. Characteristic parameters of the numerical simulations.

Quantities Reτ “ 200 Reτ “ 400 Reτ “ 600

Lx 4πh 4πh 4πh
Ly 2h 2h 2h
Lz 2πh 2πh 2πh
L`x 2513 5026 7540
L`y 400 800 1200
L`z 1256 2513 3770
Nx 256 343 512
Ny 181 321 451
Nz 256 343 512

Ntot 11.9ˆ 106 37.8ˆ 106 118.2ˆ 106

∆x` 9.82 14.65 14.73
∆y`wall 0.25 0.28 0.30

∆y`center 3.87 4.36 4.66
∆z` 4.91 7.33 7.36
η` 1.89 2.19 2.42

∆x`{η` 5.20 6.69 6.09
∆y`wall{η

` 0.13 0.13 0.12
∆y`center{η

` 2.05 1.99 1.93
∆z`{η` 2.6 3.35 3.04

∆t` 0.02 0.04 0.06
∆t 1ˆ 10´4h{uτ 1ˆ 10´4h{uτ 1ˆ 10´4h{uτ

ttot
DB 50¨h{uτ 50¨h{uτ 50¨h{uτ

t`DB
ˇ

ˇ

saved 500¨∆t` 500¨∆t` 500¨∆t`

τ`η 3.56 4.79 5.87
∆t`{τ`η 0.006 0.008 0.010

As concerns the calculation of the Kolmogorov microscales, they have been evaluated by
estimating the average rate of dissipation of turbulent kinetic energy per unit mass (ε).

This method was first introduced by Bakewell and Lumley [41], where in the case of the plane
channel, one has:

ε –
2LxLzτwub

2ρhLxLz
“ u2

τub (19)

The calculations have been executed on a specially-assembled hybrid multicore/manycore
computing architecture. The system includes:

(i) 2 Intel Xeon 5660 exa-core CPU processors (12 cores) at 2.8 GHz, with 48 GB GDDR3 RAM;
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(ii) 3 Nvidia C-1060 (Tesla) 240-core GPU boards (720 computing cores) at 1.3 GHz, each with 4 GB
GDDR3 RAM at 102 GB/s (12 GB available);

(iii) 1 Nvidia GTS-450 (GeForce) 192-core GPU board at 1804 MHz, with 1 GB GDDR5 RAM at
57.7 GB/s (mainly used for visualization);

(iv) storage system including 5 Hard Drives at 7200 rpm, for a total supply of 5 TB.

Each GPU Nvidia C-1060 board handles a multiprocessor unit, the latter organized in 30
processors. Each processor includes eight floating-point units, 16 kB shared memory, and 4 GB
of GDDR3 memory at 102 GB/s bandwidth. The process of implementation of the numerical algorithm
(Section 2) on the above computing architecture is described in detail in Alfonsi et al. [42]. The possibility
of running the computational code on different partitions of the hybrid computing machine has enabled
the execution of the numerical simulations in remarkably limited runtimes (Table 3). According to
a procedural viewpoint, the initial transient of the flow in the channel has been first simulated, the
turbulent statistically-steady state has been reached, and thereafter (for each value of the Reynolds
numbers tested) 500,000 time steps of the statistical steady state have been gathered, with temporal
resolution ∆t “ 1ˆ 10´4h{uτ . The flow fields have been saved every given ∆ t interval, finally giving
a 500¨∆t` database for each of the Reynolds numbers tested. The adequacy of length and span of
the computing domain has been tested by verifying that the velocity fluctuations at streamwise and
spanwise separations on half the domain dimensions were uncorrelated. The adequacy of the grid
resolution has been also tested, through the analysis of the one-dimensional energy spectra. It has
been verified that the energy densities associated to the high wavenumbers are up to nine orders of
magnitude lower than those corresponding to the low wavenumbers (for more details on these issues
one can refer to Ciliberti [43]).

Table 3. Runtime of the calculations with different computing-platform configurations (seconds per ∆ t).

CPU/GPU Cores Reτ “ 200 Reτ “ 400 Reτ “ 600

1 CPU/240 GPU Cores 0.37 1.71 -
3 CPU/720 GPU Cores - - 3.32

5. Turbulence Statistics

In Table 4 and Figures 2–6 results are presented in terms of turbulence statistics. Figure 2 reports
the values of the Reynolds shear stress (´u1v1) in wall coordinates, in a comparison with the data.
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Moser et al. [6] at Reτ “ 590.
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Table 4. Characteristic computed quantities of the numerical simulations.

Quantities Reτ “ 200 Reτ “ 400 Reτ “ 600

uτ (nominal) 200 400 600
uτ (present work) 200.23 399.94 600.55

ub (nominal, after Dean [44]) 3390.71 7254.35 11,343.22
ub (present work) 3197.67 6966.95 11,106.17

uc (nominal, after Dean [44]) 3918.71 8310.35 12,927.22
uc (present work) 3706.26 7978.80 12,701.63

ub{uτ (nominal, after Dean [44]) 16.95 18.14 18.91
ub{uτ (present work) 16.97 17.42 18.49

uc{uτ (nominal, after Dean [44]) 19.59 20.78 21.55
uc{uτ (present work) 18.51 19.95 21.15

uc{ub (nominal, after Dean [44]) 1.16 1.15 1.14
uc{ub (present work) 1.16 1.14 1.14

C f b (nominal, after Dean [44]) 8.04ˆ 10´3 6.65ˆ 10´3 5.95ˆ 10´3

C f b (present work) 7.86ˆ 10´3 6.86ˆ 10´3 6.58ˆ 10´3

´ u1v1
ˇ

ˇ

ˇ

peak
(present work) 0.739 0.828 0.866

´ u1v1
ˇ

ˇ

ˇ

peak
(from Moser et al. [6]) 0.723 0.837 0.864

y`
ˇ

ˇ

´u1v1

peak (present work) 30.238 40.170 43.938

y`
ˇ

ˇ

´u1v1

peak (from Moser et al. [6]) 30.019 41.882 44.698

u1rms
ˇ

ˇ

peak (present work) 2.680 2.720 2.751
u1rms

ˇ

ˇ

peak (from Moser et al. [6]) 2.660 2.740 2.770

y`
ˇ

ˇ

u1
rms

peak (present work) 14.909 14.199 13.444

y`
ˇ

ˇ

u1
rms

peak (from Moser et al. [6]) 15.281 14.209 13.268

Su1 |peak (present work) 1.003 1.096 1.141
Su1 |peak (from Moser et al. [6]) 0.922 1.013 1.066

y`
ˇ

ˇ

Su1

peak (present work) 1.315 1.423 1.504

y`
ˇ

ˇ

Su1

peak (from Moser et al. [6]) 1.339 1.446 1.591

Fv1 |peak (present work) 26.679 at y` “ 0.249 19.424 at y` “ 0.280 20.882 at y` “ 0.298
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Figure 3. Rms values of the velocity fluctuations (wall coordinates); u1rms: ( ) present work, (—)
data from Moser et al. [6]; v1rms: (���) present work, (— —) data from Moser et al. [6]; w1rms: (NNN)
present work, (– –) data from Moser et al. [6]: (a) present work at Reτ “ 200, data from Moser et al. [6]
at Reτ “ 180; (b) present work at Reτ “ 400, data from Moser et al. [6] at Reτ “ 395; (c) present work at
Reτ “ 600, data from Moser et al. [6] at Reτ “ 590.
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Figure 5. Flatness factors of the velocity fluctuations (wall coordinates); Fu1 : ( ) present work, (—)
data from Moser et al. [6]; Fv1 : (���) present work, (— —) data from Moser et al. [6]; Fw1 : (NNN) present
work, (– –) data from Moser et al. [6]: (a) present work at Reτ “ 200, data from Moser et al. [6] at
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Figure 6. Terms of the turbulent kinetic-energy transport equation; PK : ( ) present work, (—) data
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Figure 3 reports the rms values of the velocity fluctuations (u1rms, v1rms, w1rms) in a comparison
with those of Moser et al. [6]. In a similar manner, Figure 4 reports the skewness factors of the velocity
fluctuations (Su1 , Sv1 , Sw1), and Figure 5 the flatness factors (Fu1 , Fv1 , Fw1). In Figure 6, the values of the
production terms (PK), the transport terms (TK), the diffusion terms (DK), and the dissipation terms
(εK) of the turbulent-kinetic-energy transport equation (K “ u1iu1i{2), as calculated in the present work,
are reported, again in a comparison with Moser et al. [6].

As concerns mean-flow quantities, in Table 4 the values of a number of quantities [uτ ,ub,uc,
(ub{uτ), (uc{uτ), (uc{ub), C f b] as calculated in the present work are reported in a comparison with the
experimental data of Dean [44]. As for mean-velocity distribution, the linear distribution (u` “ y`)
is satisfactorily followed in the viscous sublayer (y` ă 5), while at larger distances from the wall

(y` ą 30), the logarithmic distribution (u` “
1
κ

lny` ` C) is also satisfactorily followed, with κ “ 0.4
and C “ 5.5 (not shown).

As concerns fluctuating velocity components (Table 4), the peak values of the Reynolds shear
stress (´ u1v1

ˇ

ˇ

ˇ

peak
), those of the rms-fluctuating streamwise velocities ( u1rms

ˇ

ˇ

peak), and the fluctuating

streamwise velocities skewness factors ( Su1 |peak) [and their positions ( y`
ˇ

ˇ

´u1v1

peak , y`
ˇ

ˇ

u1
rms

peak , y`
ˇ

ˇ

Su1

peak)],
exhibit a good agreement with the values of Moser et al. [6]. Moreover, it has been found that the
peak values of the rms-fluctuating streamwise velocities and their positions satisfactorily follow the
expressions devised by Mochizuki and Nieuwstadt [45] as a function of Reτ , as deduced from the
analysis of a large number of experimental works (see also Alfonsi [46]):

u1rms
ˇ

ˇ

peak “ ´0.0000024Reτ ` 2.70 (20)

y`
ˇ

ˇ

u1
rms

peak “ 0.00020Reτ ` 14.6 (21)

The values of the skewness factors of the streamwise fluctuations (Su1 , Figure 4) are rather close to

zero at the position of rms-fluctuating-streamwise-velocities peak values ( y`
ˇ

ˇ

u1
rms

peak ) and, except for these
latter positions, are significantly different from the Gaussian values. The values of the flatness factors
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of the wall-normal fluctuations (Fv1 , Figure 5) also significantly differ from the Gaussian ones, and
assume remarkably-high values approaching the walls, so unveiling the highly-intermittent character
of the normal-velocity fluctuations near the walls. In particular (Table 4), approaching the walls, the
flatness factor Fv1 assumes values that result in an excellent agreement with the data of Moser et al. [6]
(see also at Xu et al. [47] and Alfonsi [48]).

By looking at the budgets of the mean turbulent kinetic-energy (K, Figure 6), it can be noted that,
at y` ą 30, the homogeneous character of the flow is reasonably confirmed, while, moving toward
the wall, the turbulent-transport rate becomes relevant. The turbulent-transport term is a consuming
term approaching the wall, and a producing term near the wall. Close to the wall, the dissipation rate
balances the viscous-diffusion and pressure-diffusion rates, and, at the wall, the dissipation rate is
nonzero, while being almost equal to the viscous-diffusion rate.

Overall, the comparison of the results of present work with data obtained by other authors, both
numerically and experimentally, is rather satisfactory.

6. Flow Structures

After the application of the λci vortex-detection technique (Section 3), the flow field in the channel
appears to be highly populated by turbulent structures adjacent to both the upper and the lower
wall of the computing domain, with a wide range of inclination angles. The majority of them has no
definite shape. Side views of the phenomenon (at Reτ “ 200 and Reτ “ 600) are given in Figure 7 at a
generic instant. It can be noticed how the turbulent structures are noticeably smaller in size and more
numerous in the case of Reτ “ 600 with respect to Reτ “ 200, as expected. In particular, Figure 7 shows
that several structures also exist outside the buffer layer, protruding toward the center of the channel.
Figure 8 shows a general view of vortical structures at Reτ “ 600 on both walls of the computing
domain. Here, the external surfaces of the structures are colored with the values of the local streamwise
velocity (reddish indicates high values, greenish indicates low values). It can be noted, as expected,
how the streamwise velocities increase towards the center of the computing domain, with respect to
the more peripheral zones. Figure 9 shows a general view of vortical structures in conjunction with
isosurfaces of Q2 and Q4 quadrant events (ejection and sweeps) at Reτ “ 400, on the lower wall of the
computing domain, at a generic instant. It can be noticed how flow structures and quadrant events are
more densely located in streamwise-elongated zones of the domain, the latter being separated from
the adjacent by low-speed streaks (arrows, see also Kline et al. [49]).

Through Figures 10–13 the process of evolution in time is shown with a single hairpin-like vortical
structure. At t` “ 450 (Figure 10), the onset is represented by the process of formation of a single,
isolated, two-leg, symmetric and stable hairpin. It can be noted how an ejecting surface is pushing the
perspective hairpin upwards (actually a Ω-shaped vortex filament) while, mainly on its left side (the
flow goes from left to right), a sweeping surface starts to develop. Moreover, Figure 10b shows that the
head of the structure is subjected to stretching, while the neck and legs are subjected to compression.
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The process continues through instants t` “ 451 and t` “ 452 (Figures 11 and 12) during
which the ejecting surface keeps pushing the head of the structure upwards, and the sweeping surface,
adjacent to the right side of the structure, further grows, so that both the right and the left portions
of the structure neck become adjacent, externally to the sweeping isosurface, and internally to the
ejecting isosurface. The head of the structure (Figures 11b and 12b) continues to be stretched under the
action of the ejecting surface, while neck and legs are subjected to compression, due to the action of
the sweeping surfaces.

At instant t` “ 453 (Figure 13) the ejecting surface starts to extinguish, while the sweeping
surface now exerts its characteristic stabilizing action onto the entire external structure of the now
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fully-formed hairpin vortex (head, neck and legs). From Figure 13b it can be also noted that the head
of the vortical structure is subjected to a less intense stretching, due to the gradual process of extinction
of the previously upward-pushing underlying ejecting isosurface, while the legs of the structure are
subjected to compression when subjected to the action of the overlying sweeping surfaces.

Figures 14–17 show the evolution in time of a more complex aggregate of vortical structures in a
different portion of the computing domain.Computation 2016, 4, 13 16 of 21 
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Figure 14. λci´ isosurface representation of vortical structures in conjunction with quadrant events at
t` “ 220 (isosurfaces of ejections are shown in red, isosurfaces of sweeps are shown in yellow): (a)
vortical structures are shown in cyan; (b) vortical structures are colored with the values of λr (reddish
indicates stretching, bluish indicates compression).
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(reddish indicates stretching, bluish indicates compression).

At t` “ 220 (Figure 14) two main primary Ω-shaped vortex filaments are visible at the center
of the field (arrows). Right below the head of each filament, the internal space of the structure is
occupied by an ejecting isosurface, again showing that, in this initial phase, ejections represent the
main mechanism according to which the heads of the structures are raised upwards. Correspondingly
(Figure 14b), the process of progressive stretching of the vortex head (actually still a double head)
also starts.

In Figure 15, the flow field at t` “ 221 is shown. The heads of both structures 1 and 2
continue to raise (being subjected to stretching, Figure 15b) due to the upward-pushing action of the
ejections. The sweeping surface mainly maintains its position adjacent to the right side of hairpin 1,
causing the compression of the contiguous vortical-structure neck (Figure 15b). Note again that the
ejecting isosurface below hairpin 1 is almost equally developed in the streamwise, spanwise and
normal-to-the-wall directions (a spheric-like surface), so guaranteeing that the pushing action of the
ejecting surface against the internal part of the vortical structure is exerted almost uniformly. It can
be also noticed that the presence of sweeping isosurfaces adjacent to hairpin 2 is not so evident as in
the case of hairpin 1, and this is the reason why vortex 2 will be destroyed much sooner with respect
to vortex 1 (not shown). At t` “ 222 (Figure 16), the vortical structures continue their development.
The heads of hairpins 1 and 2 continue to raise under the residual influence of the ejection events (the
underlying ejecting isosurfaces are now reduced) while a well-defined sweeping isosurface assumes
its definite position, adjacent to the external side of head, neck and legs of hairpin 1. The action of
compression (Figure 16b) exerted by the sweeping vortex-overlying surface, in particular onto the
neck of hairpin 1, becomes more intense. At t` “ 223 (Figure 17), the process of evolution of the
vortical structures continues in a similar manner, with respect to the previous instants. The action of
the ejection events is decreasing, while the sweeping isosurface acts towards the maintenance of the
stability of hairpin 1. Also, in this case, the result is hairpin 1 becoming a two-leg, symmetric, and
stable vortical structure.

7. Concluding Remarks

The Direct Numerical Simulation (DNS) of the turbulent flow of incompressible fluid in a plane
channel has been executed at three values of the friction-velocity Reynolds number, using a hybrid
CPU/GPU computing architecture, and an analysis has been performed of the characteristics of the
vortical structures in the wall region of the turbulent channel flow. Turbulent flow structures have
been extracted from the simulated flow fields using the λci or swirling strength criterion, as devised by
Zhou et al. [24].

The joint analysis of hairpin vortices and ejection/sweep quadrant events has led to the
following conclusions:
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(i) the physical condition for the development and subsequent morphological evolution of a
stable hairpin-like vortical structure is the occurrence of ejections distributed onto an isosurface
almost equally developed along the streamwise, spanwise and normal-to-the-wall directions (a
spheric-like isosurface) behind an initially connected Ω-shaped vortex filament, lying near the
wall. These ejections actually constitute the physical mechanism according to which the head of
the hairpin is raised upward;

(ii) the physical condition for the development of a complete and persistent hairpin is the subsequent
occurrence of sweeps, as distributed on elongated isosurfaces adjacent to the external sides of the
neck and legs of the hairpin.

The sweeps actually constitute the physical mechanism according to which:

(ii/a) the legs of the hairpin are stably kept near the wall;
(ii/b) the right portion (leg and neck) of the hairpin is characterized by local clockwise particle rotation,

the left portion (leg and neck) by counter clockwise local particle rotation.

Author Contributions: All the authors contributed equally to this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Roman symbols (upper case)

Aij “ Bui{Bxj velocity-gradient tensor
C f b “ 2τw{ρu2

b bulk-velocity friction coefficient
Dsc discriminant of characteristic equation
DK viscous-diffusion term of turbulent kinetic-energy transport equation
Fu1 , Fv1 , Fw1 flatness factors of velocity fluctuations
Fv1 |peak peak value of Fv1

K “ u1iu1i{2 mean turbulent kinetic energy
Lx, Ly, Lz domain dimensions along x,y,z (h units)
L`x , L`y , L`z domain dimensions along x,y,z (wall units)
Nx, Ny, Nz number of grid points along x,y,z
Ntot total number of grid points
PK production term of turbulent kinetic-energy transport equation
P, Q, R scalar invariants of velocity-gradient tensor
PP, QQ parameters in the grid-stretching law
Q2 second-quadrant event (ejection)
Q4 fourth-quadrant event (sweep)
Reτ “ uτh{ν friction-velocity Reynolds number
Su1 , Sv1 , Sw1 skewness factors of velocity fluctuations
Su1 |peak peak value of Su1

TK transport term of turbulent kinetic-energy transport equation

Roman symbols (lower case)

h channel half-height
k wavenumber
p pressure
t time coordinate
t` time coordinate (wall units)
ttot
DB total database calculated time

t`DB

ˇ

ˇ

saved actually saved database calculated time (wall units)
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t`DB

ˇ

ˇ

saved actually saved database calculated time (wall units)
ui pu, v, wq velocity components along x,y,z
u1i

`

u1, v1, w1
˘

fluctuating-velocity components along x,y,z
u1rms, v1rms, w1rms rms velocity fluctuations
u1rms

ˇ

ˇ

peak peak value of u1rms

´u1v1 Reynolds shear stress

´ u1v1
ˇ

ˇ

ˇ

peak
peak value of ´u1v1

ub bulk velocity
uc centerline velocity
uτ friction velocity
xipx, y, zq Cartesian coordinates
x`i px

`, y`, z`q Cartesian coordinates (wall units)

y`
ˇ

ˇ

u1
rms

peak y-position of u1rms
ˇ

ˇ

peak (wall units)

y`
ˇ

ˇ

´u1v1

peak
y-position of ´ u1v1

ˇ

ˇ

ˇ

peak
(wall units)

y`
ˇ

ˇ

Su1

peak y-position of Su1 |peak (wall units)

y`
ˇ

ˇ

Fv1

peak y-position of Fv1 |peak (wall units)

Greek symbols (upper case)

∆t` time resolution of calculations (wall units)
∆x`, ∆z` space resolution of calculations along x,z (wall units)
∆y`wall space resolution of calculations along y at channel wall (wall units)
∆y`center space resolution of calculations along y at channel center (wall units)

Greek symbols (lower case)

ε average rate of dissipation of turbulent kinetic energy per unit mass
εK dissipation term of mean turbulent kinetic-energy transport equation
η` Kolmogorov space microscale (wall units)
λ eigenvalue
λr real eigenvalue
λcr real part of complex eigenvalue
λci imaginary part of complex eigenvalue
pλciqth threshold value of swirling strength
ν fluid kinematic viscosity
ρ fluid density
τw mean shear stress at wall
τ`η Kolmogorov time microscale (wall units)

Acronyms

CPU Central Processing Unit
DNS Direct Numerical Simulation (of turbulence)
GPU Graphic Processing Unit
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