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Abstract: As digital circuit design continues to evolve due to progress of semiconductor 

processes well into the sub 100 nm range, clocked architectures face limitations in a number 

of cases where clockless asynchronous architectures generate less noise and produce less 

electro-magnetic interference (EMI). This paper develops the Delay-Insensitive Ternary Logic 

(DITL) asynchronous design paradigm that combines design aspects of similar dual-rail 

asynchronous paradigms and Boolean logic to create a single wire per bit, three voltage 

signaling and logic scheme. DITL is compared with other delay insensitive paradigms, such 

as Pre-Charge Half-Buffers (PCHB) and NULL Convention Logic (NCL) on which it is 

based. An application of DITL is discussed in designing secure digital circuits resistant to 

side channel attacks based on measurement of timing, power, and EMI signatures. A Secure 

DITL Adder circuit is designed at the transistor level, and several variance parameters are 

measured to validate the efficiency of DITL in resisting side channel attacks. The DITL design 

methodology is then applied to design a secure 8051 ALU. 

Keywords: Asynchronous Logic; Delay Insensitive Logic; Ternary Logic; Digital Design; 

NCL; Secure Circuits 
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1. Introduction 

For the last four decades, the focus of digital design has been primarily on synchronous, clocked 

architectures. However, as clock rates have significantly increased while feature size has decreased, 

clock skew has become a major problem. High performance chips must dedicate increasingly larger 

portions of their area for clock drivers to achieve acceptable skew, causing these chips to dissipate 

increasingly higher power, especially at the clock edge, when switching is most prevalent. As these 

trends continue, the clock is becoming more and more difficult to manage, while clocked circuits’ 

inherent power inefficiencies are emerging as the dominant factor hindering increased performance. 

These issues have caused renewed interest in asynchronous digital design. Asynchronous, clockless 

circuits generate less noise and produce less electro-magnetic interference (EMI), compared to their 

synchronous counterparts, without degrading performance. Furthermore, delay-insensitive asynchronous 

paradigms have a number of additional advantages, especially when designing complex circuits, like 

Systems-on-Chip (SoC), including substantially reduced crosstalk between analog and digital circuits, 

ease of integrating multi-rate circuits, and facilitation of component reuse. As demand increases for 

designs with higher performance, greater complexity, and decreased feature size, asynchronous 

paradigms are becoming more prevalent in the multi-billion dollar semiconductor industry, as predicted 

by the International Technology Roadmap for Semiconductors (ITRS), which envisions a likely shift 

from synchronous to asynchronous design styles in order to increase circuit robustness, decrease power, 

and alleviate many clock-related issues [1,2]. ITRS shows that asynchronous circuits accounted for 22% 

of chip area in 2012, compared to 11% in 2008, and estimates they will account for 40% in the next 5 

years and over 50% within 10 years [3]. 

Asynchronous circuits can be grouped into two main categories: bounded-delay and delay-insensitive 

models. Bounded-delay models, such as Micropipelines [4], assume that delays in both gates and wires 

are bounded. Delays are added based on worst-case scenarios to avoid hazard conditions. This leads to 

extensive timing analysis of worst-case behavior to ensure correct circuit operation. On the other hand, 

delay-insensitive (DI) circuits, like NULL Convention Logic (NCL) [5] and Pre-Charge Half-Buffers 

(PCHB) [6], assume delays in both logic elements and interconnects to be unbounded, although they 

assume that wire forks within basic components, such as a full adder, are isochronic [7], meaning that 

the wire delays within a component are much less than the logic element delays within the component, 

which is a valid assumption even in future nanometer technologies. Wires connecting components do 

not have to adhere to the isochronic fork assumption. This implies the ability to operate in the presence 

of indefinite arrival times for the reception of inputs. Completion detection of the output signals allows 

for handshaking to control input wavefronts. Delay-insensitive design styles therefore require very little, 

if any, timing analysis to ensure correct operation (i.e., they are correct by construction), and also yield 

average-case performance rather than the worst-case performance of bounded-delay and traditional 

synchronous paradigms. Each data unit in a delay-insensitive system can take at least three  

values: DATA0, DATA1, and a spacer, also referred to as NULL. Delay-insensitive circuits 

communicate using request and acknowledge signals, Ki and Ko, respectively, as shown in the  

Figure 1, to prevent the current DATA wavefront from overwriting the previous DATA wavefront, by 

ensuring that the two DATA wavefronts are always separated by a NULL wavefront. The acknowledge 

signal from the receiving circuit is the request signal to the sending circuit. When the receiver circuit 
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latches the input DATA, the corresponding Ko signal will become logic 0, indicating a request-for-

NULL (rfn); and when it latches the input NULL, the corresponding Ko signal will become logic 1, 

indicating a request-for-DATA (rfd). When the sending circuit receives a rfd/rfn on its Ki input, it will 

allow a DATA/NULL wavefront to be output. This handshaking protocol coordinates DI circuit 

behavior, analogous to coordination of synchronous circuits by a clock signal. Additionally, delay-

insensitivity requires the circuit to be input-complete, which means that all outputs may not transition 

from NULL to DATA until all inputs have transitioned from NULL to DATA, and that all outputs may 

not transition from DATA to NULL until all inputs have transitioned from DATA to NULL [8]. 

 

Figure 1. DI system framework: local handshaking instead of global clock control. 

NCL and PCHB DI circuit methods utilize at least two binary rail signals to represent a single bit of 

data. Hence, at least 2N wires are needed to represent N bits. Each of these rails requires its own set of 

gates to evaluate computations; therefore, dual-rail circuits typically require 1.5× to 2× transistors 

compared to Boolean logic. In this paper, a new method called Delay-Insensitive Ternary Logic (DITL) 

is detailed, which combines the design aspects of NCL, PCHB, and Boolean logic to form a  

delay-insensitive paradigm that only utilizes a single wire to represent a single bit of data, which has 

three distinct voltage levels corresponding to the three DI values of DATA0, DATA1, and NULL. Some 

advantages envisioned for DITL compared to NCL are half the number of interconnects, fewer 

transistors, and less power dissipation due to a reduced voltage swing for each NULL to DATA transition. 

The paper is organized into the following sections. Section 2 discusses an introduction to 

asynchronous paradigms, including NCL and PCHB, and also discusses previous work regarding ternary 

logic circuits. Section 3 discusses the development of DITL at the gate-level using the example of a 

DITL NAND2 gate. A 1.2 V 130 nm IBM 8RF-DM CMOS process is used to design and simulate the 

DITL, NCL, and PCHB NAND2 circuits at the transistor-level; and a comparison of results is presented. 

Section 4 discusses a secure hardware application for DITL and elaborates on the design methodology 

to create secure DITL circuits resistant to side-channel attacks utilizing timing, power, and 

electromagnetic emission measurements. A secure DITL Full Adder is designed and compared to NCL 

and Boolean methods for resistance to side-channel attacks. The developed DITL methodology is then 

utilized to design and simulate a physical-level implementation of a secure 8051 ALU, showing that the 

method can be scaled up to much larger circuits. Section 5 concludes the paper. 
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2. Previous Work on Asynchronous and Ternary Logic 

2.1. NULL Convention Logic (NCL) 

NCL uses dual-rail signals to achieve delay-insensitive behavior. A dual-rail signal, D, consists of 

two wires, D0 and D1, which may assume any value from the set {DATA0, DATA1, NULL}. The 

DATA0 state (D0 = 1, D1 = 0) corresponds to a Boolean logic 0, the DATA1 state (D0 = 0, D1 = 1) 

corresponds to a Boolean logic 1, and the NULL state (D0 = 0, D1 = 0) corresponds to the empty set 

meaning that the value of D is not yet available. The two rails are mutually exclusive, so that both rails 

can never be asserted simultaneously; this state is an illegal state.  

NCL utilizes threshold gates with hysteresis for its basic logic elements [9]. The primary type of NCL 

gate is the THmn threshold gate, where 1 ≤ m ≤ n, as depicted in Figure 2. THmn gates have n inputs 

and a threshold value of m. At least m of the n inputs must be asserted before the output will become 

asserted. Because NCL gates are designed with hysteresis, all inputs must be de-asserted before the 

output will be de-asserted. This ensures a complete transition of inputs back to NULL before asserting 

the output associated with the next wavefront of input DATA. Therefore, a THnn gate is equivalent to 

an n-input C-element, and a TH1n gate is equivalent to an n-input OR gate. In the representation of a 

THmn gate, each of the n inputs is connected to the rounded portion of the gate; the output emanates 

from the pointed end of the gate; and the gate’s threshold value, m, is written inside of the gate. 

 

Figure 2. NCL threshold gate representation. 

For example, a TH23 gate has three inputs with a threshold value of two. Hence, the output is asserted 

when at least two of the three inputs are asserted. The output is then de-asserted only when all three 

inputs are de-asserted. A TH22 gate has two inputs and a threshold of two, such that the output is 

asserted/de-asserted only when both inputs are asserted/de-asserted. By employing threshold gates for 

each logic rail, NCL is able to determine the output status without referencing time. Figure 3 shows the 

design of a simple NCL system, consisting of two input NCL registers, followed by a NCL NAND2 

function, and a single NCL register for the output.  

 

Figure 3. Simple NCL system for a NAND2 function. 
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The Completion Component is a TH22 gate used to combine the two Ko signals from the input 

registers to create a single Ko handshake output for the system. The internal design of NCL gates at the 

transistor-level, as well as the gate-level design of NCL components, such as an NCL Register, 

Completion Component, and NAND2 function, are detailed in [8]. 

2.2. Pre-Charge Half-Buffer (PCHB) 

PCHB circuits [6] are designed at the transistor-level, utilizing dynamic CMOS logic, instead of 

targeting a predefined set of gates like in NCL. PCHB circuits have dual-rail data inputs and outputs, 

and combine combinational logic and registration together into a single block, as shown in Figure 4, 

yielding a very fine-grain pipelined architecture.  

 

Figure 4. PCHB NAND2 circuit. 

The dual-rail output is initially pre-charged to NULL. When Ki and Ko are rfd, the specific function 

will evaluate when the inputs, X and/or Y, become DATA, causing the output, F, to become DATA. Ko 

will then transition to rfn only after all inputs and the output are DATA. When Ki is rfn and Ko is rfd, or 

vice versa, the output will be floating, so weak inverters must be used to hold the current output value. 

After both Ki and Ko are rfn, the output will be pre-charged back to NULL. After all inputs become 

NULL and the output changes to NULL, Ko will change back to rfd, and the next DATA  

wavefront can evaluate after Ki becomes rfd. PCHB circuits contain Boolean NOR2 gates,  

strong-weak inverter pairs, and a Th33 gate, which ensures that all data inputs and outputs are in the 

same state (either DATA or NULL) before toggling the Ko signal to request the next DATA or  

NULL wavefront. 
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2.3. Ternary Logic 

Ternary logic utilizes three distinct voltage values per wire, Vdd, ½ Vdd, and Gnd, whereas binary 

logic only utilizes two distinct voltage values, Vdd and Gnd. Hence, ternary logic can be used as an 

alternative to dual-rail logic to represent the needed three DI logic states (i.e., DATA0, DATA1, and 

NULL), requiring only one wire per bit. Vdd is used to represent DATA1, Gnd to represent DATA0, 

and ½ Vdd to represent NULL, which yields maximum noise margin with minimum switching power 

dissipation, since each wire always switches to NULL between every two DATA states, such that the 

voltage swing is always ½ Vdd. 

References [10,11] develop a ternary logic completion detection circuit for use with a bounded-delay self-

timed paradigm; and references [12,13] develop a ternary bounded-delay self-timed paradigm, which is 

similar to micropipelines [4]. However, as mentioned in the introduction, delay-insensitive paradigms 

have many more advantages compared to their bounded-delay counterparts. Reference [14] develops a 

delay-insensitive ternary logic transmission system, called Asynchronous Ternary Logic Signaling 

(ATLS), which converts dual-rail signals into ternary logic for transmission over a bus, in order to 

decrease transmission area and power. However, all of the logic processing is still done using dual-rail 

logic. References [15,16] develop a circuit called a Watchful as part of their proposed  

delay-insensitive ternary logic paradigm. However, their approach is not delay-insensitive because it 

assumes that the input, in, will transition to VI (NULL) before the input, clear, is asserted, causing the 

output, full, to be de-asserted, shown by two shaded circles in the adapted timing diagram in Figure 5.  

 

Figure 5. Watchful timing diagram adopted from [15,16]. 

In order to become delay-insensitive, full must not be de-asserted until both clear is asserted and in 

transitions to VI. Otherwise, if in remained at a single DATA value (e.g., if no additional data needs to 

be processed at that time), this DATA value would continue to be utilized in subsequent operations 

instead of causing the system to become idle. 

Reference [17] utilizes diode-connected transistors to shift the threshold voltage in special inverters 

dedicated to detect the presence of only one input logic level. As shown in Figure 6, for the Detect0 

circuit, in, must be lower than Vdd-2VtP for the PMOS transistors to turn ON and pull out to Vdd. 

Similarly, for the Detect1 circuit, in, must be higher than 2VtN for out to be pulled down to Gnd. The 

truth table for Detect0 and Detect1 is provided in Table 1. 
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Figure 6. Original ternary logic Detect circuits adapted from [17]. 

Table 1. Truth Table for Detect Circuits. 

Ternary Input Detect0 Detect1 

DATA0 (Gnd) 1 1 
NULL (½ Vdd) 0 1 
DATA1 (Vdd) 0 0 

3. Delay Insensitive Ternary Logic (DITL) 

Delay-Insensitive Ternary Logic (DITL) is a new paradigm that utilizes three distinct voltage levels, 

i.e., Vdd, ½ Vdd, and Gnd, to encode the three delay-insensitive logic states, DATA1, NULL, and 

DATA0, respectively, on a single wire. The motivations for utilizing ternary logic for delay-insensitive 

circuit design include reducing area (only half the number of wires are required for each bit compared 

to dual-rail logic) and reducing power/energy (each transition, NULL to DATA or vice-versa, only 

requires a ½ Vdd swing compared to a full Vdd swing for dual-rail logic). DITL utilizes DI request and 

acknowledge signaling to move DATA and NULL wavefronts from one stage to the next without a 

clock. Like PCHB, DITL circuits are designed at the transistor-level, incorporate registration and 

combinational logic into a single component, and pre-charge the internal node to NULL before each 

function evaluation. DITL has ternary logic inputs and outputs and binary logic handshaking signals. 

DITL utilizes Boolean logic, consisting of DATA0 and DATA1, to implement a specific component, 

such as a 2-input NAND gate, since the 3rd logic level, ½ Vdd, is only used as the NULL state that 

separates every two adjacent DATA states. 

3.1. Distinguishing Ternary Logic States 

DITL distinguishes between ternary logic states of DATA0, DATA1, and NULL using the  

Is-DATA component shown in Figure 7. Is-DATA asserts the primary output IsD when the ternary 

signal, Input, is either DATA1 or DATA0, and de-asserts the output when Input is NULL. The truth 

table for Is-DATA is given in Table 2. The Is-DATA component utilizes Detect0 and Detect1 circuits. 
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Using the 1.2 V 130 nm IBM 8RF-DM process, the original detect circuits discussed in Section 2.3 were 

simulated at the transistor-level and were found to consume significant static power because all 

transistors are partially turned ON for a NULL (½ Vdd) input, yielding 31.8 nW for Detect0 and  

5.5 nW for Detect1. Additionally, they require extra inverters to properly shape the outputs; otherwise 

the output is only 1.07 V instead of 1.2 V for Detect0 with an input of 0 V, and 0.17 V instead of 0 V 

for Detect1 with an input of 1.2 V. To decrease static power consumption, a method called Reverse Body 

Bias (RBB) [18–20] was used. In RBB, a voltage higher than Vdd is applied as the PFET body bias and 

a voltage lower than Gnd is applied as the NFET body bias so as to increase the threshold voltage, which 

results in less leakage and static power. The maximum steady state voltage allowed between any two 

terminals (gate, source, drain, and body) of a FET cannot exceed Vddmax, which is 1.6 V for this 1.2 V 

130 nm process. Hence, the original detect circuits were modified with all PFET body biases set to 1.6 

V and NFET body biases to −0.4 V, as shown in Figure 8. This resulted in a Detect0 with steady state 

power of 8nW and propagation delay of 0.55 ns; and a Detect1 with 0.75 nW and 0.65 ns. 

 

Figure 7. Is-DATA component.  

 

Figure 8. Modified ternary logic detect circuits with RBB. 
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Table 2. Truth Table for Is-Data component. 

Ternary Input IsD is1 is0 

DATA0 (Gnd) 1 0 1 
NULL (½ Vdd) 0 0 0 
DATA1 (Vdd) 1 1 0 

 

Figure 9. DITL Version I NAND2 component: data inputs X and Y are directly connected 

to the Specific Function block. 
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3.2. DITL Architecture 

Like PCHB, DITL circuits are designed at the transistor-level, with registration included in every 

combinational logic component; the major difference is that DITL uses ternary data inputs and outputs, 

while PCHB utilizes binary dual-rail inputs and outputs. Two different versions of the DITL architecture 

are presented herein. For DITL Version I, shown in Figure 9, data inputs X and Y are directly connected 

to the Is-DATA components as well as the Specific Function. When Ki and Ko are both rfd and the 

inputs, X and Y, are both DATA, the specific function will evaluate, causing the output, F, to become 

DATA, which will then transition Ko to rfn. When Ko is rfn and Ki is still rfd, the specific function is 

floating, so the output needs to be held at its proper DATA value, either DATA0 or DATA1, which is 

done through the Hold 0 and Hold 1 circuitry, respectively. After Ki changes to rfn, the output will be 

pre-charged to NULL (i.e., ½ Vdd), through NFETs for increased speed. After all inputs become NULL 

and the output changes to NULL, Ko will change back to rfd, and the next DATA wavefront can evaluate 

after Ki becomes rfd and the inputs change to DATA. If Ki changes to rfd before the inputs become 

NULL, if the inputs become NULL before Ki changes to rfd, or if both Ki and Ko are rfd but the inputs 

are still NULL, the pre-charge to NULL logic will no longer be conducting, so the NULL output must 

be maintained through the Hold NULL circuitry. Figure 10 shows the Cadence simulation of the DITL 

NAND2 circuit, using the same IBM process. As can be seen from the waveforms, output F transitions 

to DATA only when both Ki (Lack) and Ko (Rack) are rfd and both inputs, X and Y, are DATA. F can 

transition back to NULL as soon as both Ko and Ki are rfn. 

 

Figure 10. Cadence simulation of DITL NAND2 component. 
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Version II of the DITL architecture is shown in Figure 11, where the Specific Function inputs come 

from the input Is-DATA components instead of the external inputs, X and Y. Version II requires one 

additional inverter inside the Is-DATA component for the is1 output corresponding to each data input, 

but the advantage is that each data input drives exactly one Is-DATA component for each DITL circuit 

to which it is an input, such that the capacitance driven by a particular signal only depends on the number 

of circuits to which the signal is an input, and not on the type of circuits it drives For example, if signal 

A is an input to an XOR2 and NOR3 circuit, and signal B is an input to a NAND4 and OR2 circuit, both 

drive the same amount of capacitance because they both drive two Is-DATA components. The use of 

Version II DITL circuits in a secure hardware application is discussed in detail in Section 4. 

 

Figure 11. DITL Version II NAND2 component: data inputs X and Y are connected only to 

the input Is-DATA components. 
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3.3. Comparing DITL with PCHB and NCL 

The NAND2 circuits previously discussed, i.e., NCL in Figure 3, PCHB in Figure 4, and DITL in 

Figures 9 and 11, were simulated in Cadence and the results are listed in Table 3. DITL Version I is 

slightly slower, but requires slightly less area and energy compared to Version II. Compared to PCHB, 

DITL is 21% slower, 74% larger, but requires 68% less energy. Compared to NCL, DITL is 50% slower, 

but requires 38% less energy and is 89% smaller. Therefore, DITL has a significant energy advantage 

compared to PCHB and NCL, and is also more area efficient than NCL. Additionally, as circuit size 

increases, DITL and PCHB circuits increase at a much smaller rate than NCL circuits (e.g., for a NAND2 

vs. a NAND4 circuit, the area increase is 42% for DITL, 70% for PCHB, and 94% for NCL). Comparing 

average static power, DITL consumes 140% more than PCHB and 13% more than NCL. DITL peak 

dynamic power is 13% less than NCL and 81% more than PCHB. 

Table 3. Nand2 comparison: DITL vs. PCHB vs. NCL. 

Type of 

Design 

Avg. DATA-NULL 

Cycle (ns) 

Avg. Energy per 

Operation (fJ) 

Area (# of 

Transistors) 

Avg. Static 

Power (nW) 

Max. Dynamic 

Power (uW) 

DITL V1 5.43 50.3 78 6.9 60 

DITL V2 5.40 52.3 82 7.5 67 

PCHB 4.49 86.3 46 3 35 

NCL 3.61 70.8 151 6.35 72 

4. DITL Secure Hardware Application 

The increasingly pervasive use of digital information storage and processing devices largely 

facilitates societal activities, ranging from people’s everyday life to government and military missions. 

The demands of storing and processing sensitive information, e.g., passwords, messages, personnel 

records, have resulted in incorporating strong cryptographic algorithms inside these devices. Sensitive 

information is first encrypted by the host device and becomes cipher text before it is transferred to 

another device, where the cipher text is decrypted into plaintext for processing. Since most pervasive 

data storage and processing devices use one or more Integrated Circuits (ICs) as a core component(s), 

incorporating cryptography on-chip significantly enhances the security of the information being 

stored/processed due to the fact that modern cryptographic algorithms, e.g., Advanced Encryption 

Standard (AES), Rivest-Shamir-Adleman (RSA), are very difficult to break in a brute-force way. 

However, attackers have switched their targets from the cryptographic algorithms themselves to the 

implementations of these algorithms. In particular, attackers have been able to exploit on-chip security 

information, e.g., cryptographic keys, through “side-channel” measurements, including power 

consumption, timing, and electromagnetic (EM) emissions. 

From a hardware perspective, such side-channel attacks can be implemented at both the circuit- and 

architecture-level. At the circuit-level, due to CMOS circuit characteristics, a digital CMOS IC exhibits 

fluctuations in side-channel measurements of timing, power, and EM emissions while processing 

different data, causing information leakage. By applying statistical algorithms to the measured  

transient side-channel data, attackers are able to decipher the secure information stored  

on-chip. This paper discusses circuit-level side-channel attack mitigation using DITL. As proof of 
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concept, a series of full adders were designed in Boolean, NCL, and DITL at the transistor-level, using 

the IBM 8RF-DM 0.13 µm process and compared for different power and timing parameters, showing 

that DITL is the best option for designing secure functional units. Afterward, a DITL library for secure 

gates was created and a DITL ALU circuit employing these gates was designed and simulated. 

Physical/invasive attacks are excluded in this research. Such attacks require de-packaging the target 

IC to expose the internal die, and using special equipment to monitor/modify circuit elements or stored 

data. Examples include micro-probing attacks, chip rewriting attacks, and memory remanence attacks. 

There are two reasons for making this assumption: (1) such attacks require special equipment, a much 

longer time, and highly skilled attackers to perform, which significantly limits the number of 

ICs/applications that require this type of protection; and (2) a number of physical and even destructive 

protection mechanisms have been developed, such as inserting pressure sensors on-chip to sense  

de-packaging behaviors. If needed, these mechanisms can be included with the secure chip to achieve 

an even higher level of security. 

4.1. Problems of Existing Security Solutions 

Much research has been performed in mitigating side-channel attacks, and a number of solutions  

have been proposed. Unfortunately, these solutions have one or more weaknesses/limitations,  

as discussed below. 

4.1.1. Inflexibility 

Most solutions are developed to protect a single cryptographic algorithm (e.g., AES, RSA) in 

mitigating one or two side-channel attacks (e.g., power, timing). Therefore, the flexibility of these 

solutions is severely limited. This inflexibility is two-fold: (1) there is no universal solution to all four 

major categories of side-channel attacks, i.e., power-, timing-, EM-, and fault-based attacks; and  

(2) there is a lack of general side-channel mitigation techniques that can be adopted by all prevailing 

cryptographic algorithms, such that when the user switches to another algorithm, there will be no major 

changes in the hardware design methodology for increased security. 

4.1.2. High Overhead 

Almost all existing solutions add significant overhead to the original implementation. Such overhead 

includes higher power consumption, longer processing delay, larger chip area, reduced circuit reliability, 

higher design complexity, and incompatibility with the commercial digital IC design flow. For example, 

dual-rail asynchronous logic for mitigating power-based attacks causes considerable timing and area 

overhead and requires a customized design flow; various pre-charge based dynamic logic paradigms 

introduce additional power consumption, increased design complexity, and reliability degradation; fault-

tolerant techniques usually incur severe penalties in power, timing, and area. Such overhead hinders the 

wide adoption of these side-channel attack countermeasures in commercial products. 
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4.2. Common Circuit Level Side-Channel Attack Methods and Countermeasures 

4.2.1. Power-Based Attacks 

Most electronic devices running cryptographic algorithms are implemented in CMOS technology, 

where transistors act as voltage-controlled switches. While a circuit node is switching, electrons flow 

across the corresponding transistors to charge/discharge its load capacitance, thereby consuming power. 

Due to the fact that different transistors will be turned ON/OFF while processing different data, causing 

different power consumption, side-channel attacks in this category are implemented using the IC’s 

transient power data. The theory of power-based attacks, e.g., Differential Power Analysis (DPA), was 

introduced in [21,22]. In general, these attacks require the transient power data while the target IC 

performs encryption/decryption on different texts, and then use statistical algorithms to derive the key. 

Power-based attacks are the most powerful and prevalently implemented side-channel attacks, which 

have been successfully implemented to crack almost all cryptographic algorithms on different platforms, 

including Data Encryption Standard (DES) [23], Elliptic Curve Cryptosystems [24], RSA [25,26],  

AES [27,28], and all AES candidates [29], implemented on FPGAs [30] and as ASICs [27]. 

A number of methods have been proposed for mitigating power-based attacks by decoupling transient 

power consumption from the data being processed. Techniques based on balancing power fluctuation 

include new CMOS logic gates [31–46], which go through a full charge/discharge cycle for each data 

processed. Asynchronous circuits, especially dual-rail encoded logic, have been well studied for  

anti-DPA because of the fixed switching activities during each DATA-Spacer cycle [47–65]. Other 

power balancing methods include modifying the algorithm execution [66–69], compensating current at 

the power supply node [70–73], and using subthreshold operation [74]. Additionally, many techniques 

for randomizing power data have been proposed [75–86]. 

4.2.2. Timing-Based Attacks 

The principle of timing-based attacks is very similar to power-based ones except these attacks rely 

on timing fluctuations of the target circuit while processing different data patterns. Depending on the 

load capacitance and driving strength, the charge/discharge process during the switching activities at an 

internal circuit node will take different amounts of time to finish, which in turn causes different timing 

delays. First introduced in [87], Timing Analysis (TA) attacks have demonstrated their success on RSA 

[88], DES [89], AES [90], RSA with Montgomery multiplications [91], and GPS systems [92]. Existing 

countermeasures include inserting dummy operations [93], using redundant representation [94], and 

unifying the multiplication operands [95]. 

4.2.3. Electromagnetic-Based Attacks 

Due to the inevitable existence of parasitic reactance, electrical current flowing through a switching 

CMOS gate causes a variation in the EM field surrounding the chip, which can be monitored by antennas 

particularly sensitive to the related impulse [96]. Similar statistical analysis methods can be applied 

utilizing EM variances while the target chip is processing different data. Simple and Differential 

Electromagnetic Attacks (SEMA and DEMA) have been successfully implemented to crack DES [97,98], 
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(Rivest Cipher 4) RC4 [99], AES [100], and Ellipse Curve Cryptosystems [96,101], on both  

FPGAs [96,101] and Smart-Cards [102]. Although some power-balancing methods also reduce  

EM fluctuations, masking EM variance is more complex due to increased difficulty in matching parasitic 

reactance. EM attack countermeasures include signal strength reduction and signal information  

reduction [98]. 

4.2.4. Fault-Based Attacks 

Unlike the previous three passive attacks, fault-based attacks are semi-active in that attackers need to 

perform certain unusual operations to induce faults inside the target circuit. During the existence of 

faults, the circuit outputs as well as the side-channel information will be monitored and Differential Fault 

Analysis (DFA) will be applied to perform the attack, the effectiveness of which has been demonstrated 

on DES [103], RSA [104–108], Ellipse Curve Cryptosystems [109–111], AES [112–116], Common 

Scrambling Algorithm [117,118], and RC4 [119]. 

Fault-injection methods can be classified as non-invasive (variations in supply voltage, external clock, 

and/or temperature), semi-invasive (exposure to white light, lasers, X-rays, and EM fields), and invasive 

(ion beams, active probes, and circuit modification) [120]. In general, most fault-tolerant design 

techniques, such as temporal and spatial redundancy, can be applied to mitigate certain types of  

faults. These techniques include Concurrent Error Detection (CED) [121–130], error detection/correction 

code [131–143], modular redundancy [144,145], Built-In Self-Test (BIST) [146], and algorithm 

modification [147–153]. In addition, the use of dual-rail encoding and its fault analysis can be  

found in [130,154–156]. 

4.3. Circuit-Level Side-Channel Attack Mitigation Using DITL 

Most DI paradigms [5,157–162] utilize multi-rail signals, such as dual-rail logic, to achieve  

delay-insensitivity. For DI methods, separating two adjacent DATA wavefronts by a NULL  

wavefront [163] guarantees that there are always two switching events for each dual-rail signal for every 

DATA processed, thereby decoupling the total number of switching events from the data being 

processed. However, as pointed out in reference [164], the imbalanced load between the two rails still 

causes considerable power/timing/EM fluctuations among different data patterns. 

At the circuit-level, DITL is utilized for designing logic circuits with properly sized transistors. While 

maintaining the advantages of asynchronous logic in mitigating side-channel attacks, e.g., distributed 

and balanced switching activities, DITL eliminates the drawbacks such as average performance that 

facilitates timing-based attacks, and the imbalanced load capacitance between the two rails. Using the 

single wire per bit DITL methodology at the circuit-level has the advantage that power, timing, and 

emissions can be more easily balanced to prevent attacks compared to dual-rail delay-insensitive 

methods. In addition, DITL offers a number of other benefits including lower power, higher 

performance, and commercial design flow compatibility. 

Since DITL circuits only have a single output wire per bit, timing, power, and EM can be more easily 

balanced because each signal will only drive a single capacitance, as in the case of the DITL Version II 

architecture discussed earlier (Figure 11); and a gate’s output will always make a ½ Vdd transition every 

DATA and NULL cycle, regardless of the DATA value (i.e., ½ Vdd → Vdd → ½ Vdd for a N→D1→N 
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transition and ½ Vdd → 0 → ½ Vdd for a N→D0→N transition). Since each DITL Version II gate input 

always drives exactly one Is-DATA component, the type of gate being driven will not affect the load 

capacitance, such that the output driving strength selection of a DITL gate only depends on the number 

of gates it drives, which substantially reduces the number of balanced gates needed for a chip design 

library. As proof of concept, a series of Full Adders (FAs) was designed in Boolean, NCL, and DITL, 

using the same IBM process. The Boolean FA is a standard gate-level design consisting of five logic 

gates, as shown in Figure 12. 

 

Figure 12. Five gate Full Adder for Secure DITL and Boolean Logic. 

For the NCL FA, two versions have been designed: one is a 10-gate design based on utilizing 

complete logic functions to directly implement Figure 12, denoted as NCL-10G; the other is an 

optimized four-gate design [9], denoted as NCL-4G. Being compatible with its Boolean counterpart, the 

DITL FA also consists of five gates with different driving strengths, balanced for timing/power through 

proper transistor sizing. To balance timing and power, transistors were sized to yield similar 

output→DATA and output→NULL times, propagation delays, peak current spike during transitions, 

and energy, for all possible transitions. Note that the first two NAND2 gates in Figure 12, denoted by 

“1”, are sized with driving strength of one gate, while the last NAND2 gate, denoted by “2”, has a driving 

strength of two gates, since it will be used to drive the Cin input of a subsequent FA, connected in  

ripple-carry fashion. Simulations of balanced DITL NAND2(1), NAND2(2), and XOR2 gates yielded 

the results shown in Table 4. Explaining the case of one of the DITL gates in Table 4, the 

output→DATA0/1 times were made to be as close as possible to each other when all of the four input 

patterns possible for the two-input gate were applied to the gate. This requires appropriately sizing and 

balancing the PFET network that sets the output to DATA1 and the NFET network that resets the output 

to DATA0 in the DITL Version II architecture depicted in Figure 11. Likewise, the output→NULL times 

were made similar to each other over all four input patterns by sizing and balancing the network for ½ 

Vdd. It was found that using pass transistor gates instead of two NFETs in series to channel ½ Vdd was 

best suited to yield better balanced times.  

The energy over an entire operation, where each NULL→DATA0/1→NULL is a single operation, 

was made to be as close as possible to each other over all four possible operations. To do this without 

changing the time balanced transistors of the DITL gate pull up and pull down networks, extra inverter 

like small circuits were introduced to selectively dissipate power. These circuits are controlled by outputs 
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of the Is-DATA component, such that these circuits turn ON to dissipate power for some selected input 

patterns while not serving any logical function. The final result is that all input patterns produce almost 

the same energy consumption for the DITL gate over an entire operation. To match peak current spikes 

for each operation, extra inverters that serve no logical function are added that turn ON for selected input 

patterns to create a similar reading for every input pattern. In short, for Table 4, all values that appear in 

a single row need to be as close as possible to each other, so the individual balanced DITL gates were 

designed to achieve this. 

Table 4. Measurements from balanced DITL gates. 

Input Pattern 
NULL→ 00→ 

NULL 
NULL→ 01→ 

NULL 
NULL→10→ 

NULL 
NULL→ 

11→ NULL 

DITL Nand2 (1) 

Output → DATA (ps) 519.9 546.1 529.5 537.6 

Output → NULL (ps) 565.5 574.5 552.5 582.7 

Energy (fJ) 36.3 37.6 37.5 36.3 

Current Spike (uA) 55 54 55 56 

DITL Nand2 (2) 

Output → DATA (ps) 659.5 691.4 670.7 671 

Output → NULL (ps) 682.2 678 660.2 653.4 

Energy (fJ) 38.4 39.4 39.3 39.2 

Current Spike (uA) 55 54 54 58 

DITL Xor2 

Output → DATA (ps) 783.9 780.7 779.7 774.9 

Output → NULL (ps) 636.8 617.6 625.5 633.3 

Energy (fJ) 44.6 44.1 44.2 44.5 

Current Spike (uA) 71 58 59 58 

After balancing the NAND2 and XOR2 gates, they were combined to form a five-gate balanced DITL 

FA. The simulations of the DITL FA yielded the results summarized in Table 5. No further balancing or 

transistor sizing was done on the FA. In Table 5, as expected, the values in a single row are very close 

to each other over all eight possible FA input patterns. 

Table 6 shows the maximum variance percentage of each parameter among all possible input 

combinations, and compares the DITL FA to the NCL and Boolean full adders. These four FAs were 

simulated in Cadence Spectre and are compared in five categories: “Sum/Cout transition slope” is the 

combined rise/fall time during each transition for Sum and Cout outputs, respectively; “delay” is the total 

time for a N→D→N cycle; “peak current spike” is the magnitude of the supply voltage current spike 

during each transition; and “energy” is the total energy consumed during each transition. 

Although NCL as a dual-rail asynchronous logic is well-known to be more side-channel attack 

resistant compared to Boolean logic, the DITL design exhibits the least variations in all parameters, as 

shown in Table 6. Since power (energy and current spike) and timing (slope and delay) are significantly 

more balanced for DITL, DPA and TA will be much more difficult to succeed. This demonstrates DITL’s 

capability to balance power and timing with different driving strengths in a multi-gate circuit, which 

validates the balanced DITL cell library development strategy undertaken. 
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Table 5. Measurements from Balanced DITL Full Adder. 

Input Patterns from 0 to 3 
NULL→ 

000→ NULL 
NULL→ 

001→ NULL 
NULL → 

010→ NULL 
NULL → 

011→ NULL 

DITL FA 
Sum 

Output → DATA (ps) 645.1 665 665.8 665.4 

Output → NULL (ps) 487.9 488.3 539.2 484.7 

DITL FA 
Carry 

Output → DATA (ps) 587.1 587.1 589.9 606.1 

Output → NULL (ps) 562 566.2 562.4 606.1 

Energy (fJ) 305 303 310 290 

Current Spike (uA) 301 277 289 283 

Input Patterns from 4 to 7 
NULL → 

100→ NULL 
NULL → 

101→ NULL 
NULL → 

110→ NULL 
NULL → 

111→ NULL 

DITL FA 
Sum 

Output → DATA (ps) 677.9 657.8 636.7 665.8 

Output → NULL (ps) 537.8 491.6 483.8 487.1 

DITL FA 
Carry 

Output → DATA (ps) 585.6 600 596.1 592.2 

Output → NULL (ps) 557.1 605.5 601.5 602.3 

Energy (fJ) 311 291 287 284 

Current Spike (uA) 290 284 277 290 

Table 6. Secure Full Adder Comparison. 

Full Adder 
Maximum Variance Percentage (%) 

Sum Transition 
Slope 

Cout Transition 
Slope  

Delay 
Peak Current 

Spike 
Energy 

Boolean 27.8 11.4 93.6 221.4 313.4 
NCL-4G 21.0 13.0 105.3 51.0 32.0 
NCL-10G 12.9 58.4 19.0 47.2 10.4 

DITL 8.5 5.6 13.8 18.1 7.4 

4.4. DITL ALU Design and Simulation Results 

Utilizing the methods to develop the DITL secure FA discussed in Section 4.3, a DITL balanced gate 

library was created to be used to design a DITL Secure 8051 Arithmetic Logic Unit (ALU). The gate 

library consisted of timing and power balanced DITL circuits for Half Adder, Full Adder, 2:1 

Multiplexers, two- to four-input versions of NAND and NOR gates, XOR2 and XNOR2 gates, and 

several inverters and buffers with a variety of drive strengths. The developed library also contained  

C-elements [9] for use in the completion circuitry to conjoin multiple Ko signals together and ternary 

buffer circuits to increase drive strength of ternary signals as needed. All the DITL gates were created at 

the transistor-level and simulated using the same IBM 1.2 V 130 nm 8RF-DM process, and then laid 

out. The Boolean 8051 ALU was first designed in VHDL. Then all of the Boolean gates were replaced 

by DITL equivalents with connections added for Ko and Ki handshaking signals. 

The resulting DITL ALU netlist was imported into Cadence as a transistor-level design and simulated. 

The DITL ALU schematic is not included here as it is much too large to be legible; however, Figure 13 

shows the testbench used to simulate the design. It contains the symbol for the ALU and a VerilogA 

controller, which generates inputs to the ALU. Figure 14 shows the Cadence Ultrasim simulation 

waveforms, which include the supply current, handshaking signals, Rack (Ki) and Lack (Ko), one of the 
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many data inputs, Tmp1bus<0>, and one of the many data outputs, resultH<0>. It includes the 

simulation results for eight different DATA/NULL input patterns. 

 

Figure 13. DITL ALU testbench. 

 

Figure 14. DITL ALU Ultrasim simulation. 
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The ALU simulation was performed as follows: Simulation time was calculated for each DATA 

wavefront to produce an output DATA, and each NULL wavefront to produce an output NULL, for all 

different ALU operations using eight random data input patterns each, and then averaged to produce the 

average delay per DITL ALU operation, referred to as TDD or DATA-to-DATA cycle time. This TDD 

Delay was measured as 135 ns. Total energy was calculated by integrating the current waveform for both 

Vdd and ½ Vdd (not shown in Figure 14, but similar to I(Vdd)) over the entire simulation time, and 

multiplying these by the respective supply voltages, 1.2 V and 0.6 V. These two total energies were then 

summed and averaged over the total number of operations to obtain energy per operation which was 

measured to be 0.178 nJ. The energy required from the ½ Vdd supply was negligible compared to that 

from Vdd. The static power readings during the times when all ALU outputs are either all DATA or all 

NULL and the circuit is not switching were found separately by obtaining the current values from the 

Vdd and ½ Vdd supplies between the different input patterns, averaging these, and multiplying by their 

respective supply voltages, 1.2 V and 0.6 V, then summing the two. Following this logic, the ALU static 

power while output is DATA was measured as 137 μW and while output is NULL was measured as 87.5 

μW. After the transistor level simulation proved successful, a layout was created for the DITL ALU 

using Cadence Virtuoso, as shown in Figure 15, which is ready to be integrated into a layout plan with 

pads and be taped out for fabrication. 

 

Figure 15. DITL ALU layout. 

5. Conclusions and Future Work 

A new asynchronous logic paradigm called Delay-Insensitive Ternary Logic (DITL) was developed, 

which combines design aspects of NCL, PCHB, and Boolean logic. DITL uses a single wire per bit, 

three-voltage scheme to represent the three states needed for delay-insensitive signaling, i.e., DATA0, 

DATA1, and NULL. DITL was found to be more energy efficient when compared to similar paradigms, 

such as PCHB and NCL, when simulated using the IBM 8RF-DM 1.2 V 130 nm CMOS process. DITL 

was then applied to secure hardware design, showing that it is less susceptible to circuit-level side-

channel attacks, such as timing, power, and EM emissions, compared to other methods in the literature. 

For this, a five-gate DITL Full Adder was designed using balanced DITL gates, and compared to NCL 
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and Boolean Full Adders for variance in measurements. In order to show that the proposed method can 

be scaled up to much larger designs, it was utilized to develop a cell library of balanced DITL gates, 

which was then used to design a secure DITL 8051 ALU. The designed ALU was shown to work 

correctly through Cadence simulation, and is ready to be taped out for fabrication. 

DITL is fundamentally different from the prevailing Boolean logic at the physical-level; therefore, 

no DITL gate libraries exist in the industry-standard CAD tools. Hence, a full set of DITL libraries at 

VHDL-, transistor-, and physical-levels, offering multiple driving strengths for each gate, need to be 

developed. The VHDL-level library will contain the behavioral description of each DITL gate, and will 

be used for functional simulation. The transistor-level library will consist of the transistor schematic of 

each DITL gate; and the physical-level library will contain the layout of each DITL gate. In addition to 

functionality, the most important consideration is transistor sizing, which has two main purposes: (1) 

achieving multiple output driving strengths; and (2) balancing power and timing during gate switching 

while driving different fan-outs. The currently available balanced DITL ALU gate library can be 

expanded to include gates with different drive strengths and driving a different number of subsequent 

gates, as needed for other DITL designs. As stated before, one advantage of DITL compared to other 

asynchronous paradigms is its compatibility with the synchronous circuit design flow, since both 

Boolean and DITL paradigms utilize the same set of logic functions. With the ever growing size and 

complexity of modern digital ICs, the fact that DITL easily integrates into the commercial CAD tool 

design flow is critical. Future work includes fabricating the DITL ALU and testing the resultant physical 

IC for resistance to side-channel attacks. 
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