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Abstract: Because of the degradation of classification accuracy that is caused by the uncertainty
of pixel class and classification decisions of high-resolution remote-sensing images, we proposed
a supervised classification method that is based on an interval type-2 fuzzy membership function
for high-resolution remote-sensing images. We analyze the data features of a high-resolution
remote-sensing image and construct a type-1 membership function model in a homogenous region
by supervised sampling in order to characterize the uncertainty of the pixel class. On the basis
of the fuzzy membership function model in the homogeneous region and in accordance with the
3σ criterion of normal distribution, we proposed a method for modeling three types of interval
type-2 membership functions and analyze the different types of functions to improve the uncertainty
of pixel class expressed by the type-1 fuzzy membership function and to enhance the accuracy of
classification decision. According to the principle that importance will increase with a decrease in
the distance between the original, upper, and lower fuzzy membership of the training data and
the corresponding frequency value in the histogram, we use the weighted average sum of three
types of fuzzy membership as the new fuzzy membership of the pixel to be classified and then
integrated into the neighborhood pixel relations, constructing a classification decision model. We use
the proposed method to classify real high-resolution remote-sensing images and synthetic images.
Additionally, we qualitatively and quantitatively evaluate the test results. The results show that a
higher classification accuracy can be achieved with the proposed algorithm.

Keywords: interval type-2 fuzzy membership function; weighted average; high resolution; remote
sensing image classification; type-1 fuzzy membership function

1. Introduction

Image classification is the basic task for the processing of remote-sensing images. Its results
will greatly affect the accuracy of the subsequent tasks, such as feature extraction, target recognition,
and ground object classification. Benefiting from the rich and the detailed information of ground
objects, high-resolution remote-sensing images have good application prospects and advantages in
large-scale and accurate object classification. A high-resolution remote-sensing image, however, has
two uncertainties, uncertainty of pixel class and uncertainty of classification decision, and both of them
introduce new problems to the design of the classification algorithm.
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The uncertainty of pixel class is derived mainly from the mixed pixels for the medium and
low-resolution remote-sensing images. For high-resolution remote-sensing images, it is mainly caused
by the clearly visible surface information. For example, stones on the grass, cracks on the asphalt
pavement, and manhole covers on the road are clearly visible in high-resolution remote-sensing
images. Such detailed information can bring changes to the characteristic distribution curve in the
homogeneous region, thereby aggravating the uncertainty of pixel class and causing great difficulties
for classification. In addition, for high-resolution remote-sensing images, the uncertainty of the
classification decision is further increased by the complexity and the diversity of ground objects and
the lack of real surface information.

Type-1 fuzzy theory has a wide range of applications in image processing, because it can
effectively characterize the uncertainty of the image data itself [1,2], such as the uncertainty of the
pixel membership, the inaccuracy of the boundary and the contour, and so on. Among the existing
fuzzy classification algorithms, fuzzy clustering is one of the most common and effective methods
to solve the clustering problem of uncertain data. For example, the Fuzzy C-means (FCM) method
is proposed, bringing in the local (neighborhood) spatial information. In the proposed method,
the neighborhood relation is modeled by defining the deterministic function of the neighborhood pixel
spectral measure [3–8], and the correlation model of neighborhood pixels is integrated into the FCM
based image classification algorithm after establishment by the use of the Markov Random Field (MRF)
model [9,10]. Although the uncertainty of pixel class caused by pixel spatial correlation is effectively
solved, the noise is smoothed, and the classification accuracy of the algorithm is improved to a certain
extent by these methods, the adverse effects on the high-resolution images caused by the uncertainty
of the classification decision still cannot be handled by these clustering methods.

A type-2 membership function [11] is characterized by the primary membership function and
the secondary membership function. The membership of each element in the type-2 membership
function is a fuzzy set (called primary membership) between [0, 1], rather than a single definite value,
and each element in the primary membership has its corresponding membership (called secondary
membership). The three-dimensional membership function, which can describe a large amount of
uncertain information, is used by the type-2 membership function. So, when compared with the type-1
membership function, the type-2 membership function can provide richer information and present a
stronger ability to handle uncertainties. Its popularization and application in more extensive fields is
limited, however, because of the complexity of its expression and the reduced type calculation. For the
type-2 membership function [12], the computational cost can be overcome because the secondary
memberships of all the elements in the primary membership function are defined as 1. Therefore,
data modeling that is based on the interval type-2 fuzzy theory is the most commonly used format in
practical work.

At present, interval type-2 fuzzy theory has been applied successfully in the fields of fuzzy
control [13,14], time series decisions [15], speech recognition [16], fuzzy clustering [17,18], and medical
image segmentation [19]. The main construction forms, principles, and applications of the interval
type-2 fuzzy model are shown in Table 1.



Remote Sens. 2018, 10, 710 3 of 22

Table 1. Type, principle, and application of interval type-2 fuzzy model.

Model Principle Application

Interval type-2 fuzzy model based
on information entropy [20,21]

Based on the information entropy in information
theory, construct the interval type-2 fuzzy

information entropy model by defining the
fuzzy conditions of information entropy

Image segmentation/
classification edge detection

Interval type-2 fuzzy model
based on FCM [22–24]

Under the framework of FCM, construct the
interval type-2 FCM model by fuzzy

exponential factorization, fuzzy membership
function or fuzzy clustering center

Fuzzy clustering

Interval type-2 fuzzy neural
network model [25,26]

Neural network model operated in
accordance with Zadeh Extension Theorem, with
interval type-2 fuzzy signal, interval type-2 fuzzy

membership function or interval type-2
fuzzy logic activation function

Fuzzy control
Time sequence decision

Interval type-2 Gaussian
mixture model [27–29]

Mean or standard deviation in
fuzzy Gaussian mixture model

Segmentation/Classification
Object identification

Type-reducing is a key and difficult aspect of type-2 fuzzy theory and application.
Regarding feature recognition, type-reducing is intended to defuzzify the type-2 fuzzy membership
model and to construct a decision model whose quality will directly affect recognition accuracy.
For the interval type-2 fuzzy neural network model [30–32], the common construction method for
the decision model is designed as a sum of weights used to link the upper and the lower boundary
information. The symbol of weight is used to judge the role on the objective function. If the symbol
of weight is positive, membership function information is activated. Otherwise, the membership
function information is inhibited. For the interval type-2 FCM [33–36] method, the fuzzy factor in
its objective function is fuzzily, and the interval fuzzy membership matrix and the interval fuzzy
clustering center are computed by the factor. Then, the centroid of the interval fuzzy clustering center
regarding as the cluster center is calculated to improve the classification accuracy. The decision model,
which is modeled by a linear combination of the upper and the lower membership functions in the
Gaussian mixture models (GMM) of the training samples, is used for speech recognition by Zeng and
Liu [27]. When compared with the traditional construction method for the decision model, although
the uncertainty of a decision is considered and the recognition accuracy is improved to some extent in
the previous modeling method that is based on the interval type-2 fuzzy model, two problems persist.
First, the important influence of the type-1 fuzzy membership function on a decision is not considered;
and, second, the influence of the data’s spatial correlation on a decision is not considered.

The modeling method that is based on interval type-2 fuzzy theory can be applied to handle a
large amount of uncertain information from multiple fields. Therefore, to address the uncertainty
of pixel class and the classification decision of the high-resolution remote-sensing data, this paper
proposes a weighted average supervised classification method based on interval type-2 fuzzy theory.
The classification method is based on a type-1 fuzzy membership function and an interval type-2 fuzzy
membership function, and it takes the pixel spatial correlation into consideration, which can realize
the accurate classification of high-resolution remote-sensing images.

This paper is organized as follows. Section 2 contains algorithm description. The construction
principle and method of the type-1 fuzzy membership function model, the interval type-2 fuzzy
membership function model, and the classification decision model are introduced. Additionally,
we analyzed the application of the three interval type-2 fuzzy membership function models. Section 3
contains experiments and results. We conducted classification experiments regarding high-resolution
remote-sensing images with different resolutions and different scales by the use of both the proposed
method and a traditional method. Additionally, we quantitatively and qualitatively analyzed
the classification results. Section 4 contains the conclusions, summarizes the proposed method,
and suggests further research in the future.
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2. Algorithm Descriptions

2.1. Type-1 Fuzzy Membership Function Model for Homogeneous Region

To characterize the uncertainty of pixel class, for a given image X = {xi, i = 1, ..., n}, where n
is the total number of pixels, i is the pixel index, and xi is the spectral measure of the ith pixel (i.e.,
the grayscale value). The following fuzzy membership matrix is established for high-resolution
remote-sensing images.

U =
[
Uij
]

n×k, (1)

where k is the number of classeses; j = 1, ..., k is the category index; and, 0 ≤ Uij ≤ 1 is the membership

of the ith pixel belonging to the jth category, satisfying the constraint condition
k
∑

j=1
Uij = 1.

The Gaussian membership function model is a universal distribution model with good
computational performance. In this paper, it is used as the type-1 fuzzy membership function model
Uij for the homogeneous region of the image.

Uij(x; u, σ) = αj
1√

2πσj
exp

{
−
(
xi − uj

)2

2σj
2

}
(2)

where αj, uj, and σj are the coefficients (0 < αj < 1), mean and standard deviation of the jth homogeneous
region model, respectively.

In this paper, we supervised each homogenous region and selected about its 30% as the training
samples, and then we obtained the parameters of fuzzy Gaussian function model by the use of the
least square histogram fitting method.

Figure 1a1–c1 are high-resolution panchromatic remote-sensing images with a resolution of
0.5 m, covering typical agricultural areas. Figure 1a2–c2 correspond to the type-1 fuzzy membership
function (fuzzy Gaussian membership function) models that were constructed in accordance with
the proposed method, where “*” is the training data histogram and the curve is the corresponding
type-1 fuzzy membership function model. In Figure 1a1, the spectral measure within the farmland
is evenly distributed, so its training data histogram is Gaussian. Therefore, the histogram is well
fitted by the type-1 fuzzy membership function model that is proposed in this paper. In Figure 1b1,
the training data histogram exhibits an asymmetrical distribution, because part of the farmland is
covered by snow, and its spectral measure is overall shifted to the right when compared with the
spectral measure in Figure 1a1. Therefore, the proposed type-1 fuzzy membership function model can
reflect only the basic distribution of the histogram. In Figure 1c1, within the farmland, there are two
homogenous regions with distinct differences in the spectral measure, and the spectral measure in
the two regions is distributed evenly, so the corresponding histogram shows a bimodal distribution.
In this case, the spectral features cannot be characterized accurately by the type-1 fuzzy membership
function with a unimodal feature.

It is evident that the spectral features and histogram features of the same ground object will
change uncertainly because of the clearly visible details of the ground object in a high-resolution
remote-sensing image. Therefore, these uncertain features cannot be characterized by the type-1
fuzzy membership function model. At the same time, the model established based on pixels with
uncertain feature should also be uncertain, and this uncertainty will further cause the difficulty of
classification decision.

Therefore, an interval type-2 fuzzy membership function model for a homogenous region is
constructed to characterize model uncertainty and to enhance the accuracy of the classification decision.
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2.2. Interval Type-2 Fuzzy Membership Function Model for a Homogenous Region

On the basis of the Gaussian membership function in homogeneous regions and according to the
3σ criterion of Gaussian distribution, the parameters of fuzzy membership function for a homogeneous
region are fuzzed to build the following three interval type-2 fuzzy membership function models.
They are the models with uncertain mean, with uncertain standard deviation, and with uncertain
mean and uncertain standard deviation, respectively. For the previous interval type-2 fuzzy models,
the membership of each pixel is an interval, and all of the elements in the interval appear with the
same probability.

The Gaussian distributions with uncertain mean or uncertain standard deviation, and with
uncertain mean and uncertain standard deviation are defined, as follows:

Uij
(

x; u′, σ
)
= αj

1√
2πσj

exp

{
−
(
xi − uj

)2

2σj
2

}
uj ∈ [u−j , u+

j ] or (3)

Uij
(

x; u, σ′
)
= αj

1√
2πσj

exp

{
−
(
xi − uj

)2

2σj
2

}
σj ∈ [σ−j , σ+

j ] or (4)

U
(

x; u′, σ′
)
= αj

1√
2πσj

exp

{
−
(
xi − uj

)2

2σj
2

}
uj ∈ [u−j , u+

j ], σj ∈ [σ−j , σ+
j ] (5)

where u′ and σ′ denote uncertain mean and standard deviation. uj
– and µj

+ and σj
– and σj

+, are the
left and the right boundary of the jth interval mean and standard deviation.

The upper and lower membership functions of the interval type-2 fuzzy model with uncertain
mean, as shown in Figure 2, are given by:

U+
ij (x) =


Uij(x; u−, σ) xi < u−j
αj u−j < xi < u+

j
Uij(x; u+, σ) xi > u+

j

, and (6)
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U+
ij (x) =

 Uij(x; u+, σ) xi ≤
u−j +u+

j
2

Uij(x; u−, σ) xi >
u−j +u+

j
2

, (7)

The upper and lower membership functions of the interval type-2 fuzzy model with uncertain
standard deviation, as shown in Figure 3, are written as:

F+
ij (x) = Uij

(
x; u, σ−

)
, and (8)

F−ij (x) = Uij
(
x; u, σ+

)
, (9)

The upper and lower membership functions of the interval type-2 fuzzy membership function
model with uncertain mean and uncertain standard deviation, as shown in Figure 4, are formulated as:

Z+
ij =

{
U+

ij U+
ij ≥ F+

ij
F+

ij U+
ij < F+

ij
, and (10)

Z−ij =

{
U−ij U−ij ≥ F−ij
F−ij U−ij < F−ij

, (11)

The factors aj and bj control the intervals in which the parameters vary

u−j = uj − ajσj u+
j = uj + ajσj aj ∈ [0, 3], (12)

σ−j =
σj

bj
σ+

j = σj × bj bj = [0.3, 1], (13)

According to the 3σ criterion, the probability that the true value falls in [µ − 3σ, µ + 3σ] is 99.7%.
Additionally, the mean and the standard deviation for a high-resolution remote-sensing image are
positive, so aj ∈ [0, 3] and bj ∈ [0.3, 1] are set to control the change range of the Footprint of Uncertainty
(FOU) of an interval type-2 fuzzy model. The bigger aj or smaller bj is, the wider the FOU range and
the larger the uncertainty of the constructed interval type-2 fuzzy membership function model.

Because of the obvious features of ground objects in a high-resolution remote-sensing image,
the difference in grayscale measures of ground objects in homogeneous regions is significant, and the
uncertainty of the training samples is also relatively large. Therefore, training samples that were
extracted by different users or even by the same one at different times may not be the same,
and the corresponding membership function model for homogenous regions also will change greatly.
The Gaussian membership function model that was constructed for a homogeneous region can be
any curve shown in Figure 2a or Figure 3a, and the uncertainty also meets the 3σ criterion of normal
distribution. That is to say, if a series of fuzzy membership function models are constructed within
(µ − 3σ, µ + 3σ) or (σj/0.3, σj), a qualified membership function curve can be found within this region,
no matter what kind of uncertainty exists (e.g., different grayscale measure, different people, different
prior knowledge, different data source). Training samples of local sampling are uncertain, and the
type-1 fuzzy model based on the uncertain local training samples is also uncertain. In this case,
the interval type-2 fuzzy model (given an uncertain region for the type-1 fuzzy model) can effectively
characterize the modeling uncertainty. The interval type-2 fuzzy model essentially realizes a global
constraint on the parameter changes of the type-1 fuzzy image model, and it describes the global
membership in the same region by modeling the uncertainty of the classification decision.

As shown in Figures 2b, 3b, and 4, for a given variable x, there is a clear membership U in the
original type-1 fuzzy membership function, and the membership function is within [U−, U+] for the
interval type-2 fuzzy membership function. If a (b) is set to be 3 (0.3), in accordance with Equation (5),
then there is a 99.7% probability that there is a “real” membership (true value corresponding to the
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observed value) of x within [U−, U+], and the boundary information reflects the uncertainty degree of
the membership function model.

As shown in Figure 2, the interval type-2 fuzzy membership function model with an uncertain
mean is the region that is surrounded by the red solid lines in Figure 2b. With the change of adjustment
factor a, the region that is covered by the interval type-2 fuzzy membership function model with
an uncertain mean will change in the horizontal direction, but it will not change in the vertical
direction. Therefore, this model is suitable for characterizing the uncertainty of the spectral measure in
a homogenous region.Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 21 
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Figure 3a is the expression of the type-1 membership function model with the same mean and
different standard deviations, and Figure 3b is the expression of the interval type-2 fuzzy membership
function with uncertain standard deviation, where the solid red line represents the upper and the
lower boundaries of the interval type-2 fuzzy membership function, and the solid blue line represents
the original type-1 fuzzy membership function. As shown in Figure 3, for the interval type-2 fuzzy
membership function model with uncertain standard deviation, and the changes of adjustment factor
b, the region that is covered by the interval type-2 fuzzy membership function model will change in
the vertical direction. Therefore, this model is suitable for the homogeneous region where the change
of spectral measure is not obvious, while the difference of frequency is relatively large.
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Figure 4 shows the interval type-2 fuzzy membership function model with uncertain mean and
standard deviation. The uncertainty is modeled in accordance with 3σ criterion in both the horizontal
and the vertical directions, and the spectral measure uncertainty and the frequency uncertainty of the
homogeneous region can be simultaneously characterized.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 21 
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Figure 4. Type-2 fuzzy model with uncertain mean and standard deviation.

The parameters α, µ, σ, a, and b need to be estimated for the construction of an interval type-2
fuzzy membership function model in any homogeneous region. The adjustment factors a and b in this
paper can be determined, according to prior knowledge. The estimation steps for the parameters of
the interval type-2 fuzzy membership function model are as follows.

(1) Supervise sample each region to be classified, and then solve the parameters α, µ, and σ by fitting
the least square histogram.

(2) Add adjustment factors a and b, in accordance with prior knowledge, and then according to
Equations (12) and (13), construct the interval type-2 fuzzy membership function model with
uncertain mean, the interval type-2 fuzzy membership function model with uncertain standard
deviation, or the interval type-2 fuzzy membership function model with uncertain mean and
uncertain standard deviation.

2.3. Classification Decision Model

For the category of any point on the image, its classification is only based on the single fuzzy
membership when the traditional fuzzy classification method is used. In this paper, we proposes
a classification decision model that is based on the weighted average method and considering
the neighborhood pixel correlation. The modeling principle is as follows: in the grayscale space,
the membership of the ith pixel belonging to the jth category is related not only to the three kinds
of membership, but also to the membership of the neighborhood pixel belonging to the jth category.
The greater the membership of the neighborhood pixel belonging to the jth category, the higher the
membership of the ith pixel belonging to the jth category; that is, the category of a certain pixel
is actually determined by the memberships of the pixel itself and its neighborhood pixels together.
We constructed a fuzzy classification decision model integrated with spatial relations according to
this principle:

F′′ij =
1

#Ni
∑

i′∈Ni

U∗ij, (14)

where Fij” is the membership of the ith pixel belonging to the jth classification decision and Ni
is the set of 3 × 3 windows that are centered on the membership of the ith pixel in jth category.
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Defining Ni = 9, where i′ = 1, . . . , 9 is the pixel index for the window, Uij* can be calculated according
to the following formula:

Uij
∗ =

P+
ij U+

ij + PijUij + P−ij U−ij
P+

ij + Pij + P−ij
(15)

where Pij, Pij
+, and Pij

− are the weights of the ith pixel belonging to the jth type-1 fuzzy membership,
upper membership, and lower membership, respectively. Uij, Uij

−, and Uij
+ are the weights

of the ith pixel belonging to the jth type-1 fuzzy membership, lower membership, and upper
membership, respectively.

The weight parameters are determined according to the similarity between the membership of
training data belonging to the main, upper, and lower membership functions, and the training data
histogram. We defined the similarity measure by Euclidean distance, that is, the weight decreases
with the increasing in Euclidean distance between the membership value of the training data and the
corresponding frequency value. Calculation can be carried out, as follows:

Pij =
1

(yij −Uij)
2 , P+

ij =
1

(yij −U+
ij )

2 , P−ij =
1

(yij −U−ij )
2 (16)

where yij is the frequency value of zi in the jth training sample, and the constraint that the weight
of this point is 1, and the weight of other points is 0 when any denominator in Equation (16) is 0 is
satisfied. The classification decision is determined by the membership only when any membership in
a certain category of a pixel coincides with the histogram of this pixel. The interval type-2 model is
type-reduced to a type-1 fuzzy model by the previous classification decision model.

According to Equations (14)–(16), we analyse the image to obtain the following fuzzy
membership matrix:

F∗ = [F′′ij ]n×k
(17)

To obtain a clear classification result, the fuzzy membership matrix F* of the classification decision
model needs to be defuzzified. In this paper, we carried out defuzzification, according to the maximum
membership criterion to realize the region classification.

Di = argj{max{F′′ij }} i = 1, . . . , n; j = 1, . . . , k (18)

where Di is the category to which the ith pixel belongs, and the classification result is represented by
D ={D1, D2, . . . , Dn}.

Figure 5 shows the determination of weight parameters when weighted average method is used
to construct the classification decision model. The red and green solid lines, respectively, represent
the lower and upper membership functions of the interval type-2 fuzzy model; the blue solid line
represents the type-1 fuzzy membership function; and, the black dot represents the frequency of the ith
pixel in the sample data of the jth category. In the least square histogram fitting process, the frequency
value yij of the grayscale x in the histogram of the jth category is considered to be the expected value,
and the corresponding membership is considered to be the measured value. The closer the measured
value is to the expected value, the higher the accuracy of the measured value will be, and the greater the
effect of the corresponding membership in classification decision is, and vice versa. This principle can
be characterized by Euclidean distance among the three kinds of memberships and the corresponding
histogram frequency. The effect of the corresponding membership in the classification decision will
increase with a decrease in the distance among the three kinds of membership of training samples in
a certain category and the corresponding frequency. In Figure 5, 1/Pij, 1/Pij

+, and 1/Pij
− represent

the weight of type-1 fuzzy membership, the upper membership, and the lower membership of the ith
pixel over yij, respectively.
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The specific flowchart for the proposed method is shown in Figure 6, where the solid line frame
for each task needs to be completed, and the dashed line frame is the technique for realizing the task.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 21 
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3. Experiments and Results

To verify the feasibility and effectiveness of the proposed method, we carry out classification
experiments on high-resolution remote-sensing images with different resolutions and different scales
using the proposed method and a traditional method. Additionally, we quantitatively and qualitatively
evaluate the classification results.

3.1. Experimental Results and Analysis of Synthetic High-Resolution Remote-Sensing Images

Figure 7 is a synthetic image that is composed by four types of ground objects that were acquired
from a 0.6 m-resolution QuickBird panchromatic image. The size of the image is 256 × 256 pixels and
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contains four ground object types: forest (Class I), mine (Class II), farmland (Class III), and residential
area (Class IV), where pits and rocks exist in the mining area (Class II), two kinds of crops with
different grayscales exist in the farmland area (Class III), and houses, roads, and vegetation exist in
the residential area (Class IV). These detailed features results in significant differences in the internal
spectral measure of each homogeneous region, whereas the spectral measures of the heterogeneous
regions have strong similarities, thus increasing the classification difficulty.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 21 
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”)
presents a bimodal distribution, and the histogram of the residential area presents a complex irregular
distribution (Class IV, represented by pink “∆”). Because of the significant difference among the
internal spectral measures for the homogenous regions of the four kinds of ground objects in the Quick
Bird synthetic image, their histograms have different degrees of overlapping areas, which will cause
the classification difficulty. These histogram distribution features can not be accurately fitted by the
fuzzy Gaussian membership function (type-1 fuzzy model), as shown in Figure 8a. If it is used as the
classification standard, the result will be affected by the poor fitting quality. As shown in Figure 8b,
by the proposed method, the forest and the mining areas present an asymmetric unimodal distribution,
the farmland area also presents a bimodal distribution and all can be accurately fitted. In addition,
irregular curve fitting can be achieved for the residential area with irregular distribution.
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Figure 8. Quick Bird synthetic image of training data histogram and best classification model. (a) Type-1
fuzzy membership function model; and, (b) Best classification decision model deviation.

Figure 9 shows the classification results that were obtained by different classification methods.
Figure 9a–f are the fuzzy Gaussian membership function classification (type-1 fuzzy model),
maximum likelihood classification, FCM classification, HMRF-FCM classification, optimal classification
of weighted average method, and optimal classification of neighborhood weighted average
method, respectively.
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Figure 9. Quick Bird synthetic image classification results. (a) Gauss membership function method;
(b) Maximum likelihood method; (c) Fuzzy C-means (FCM); (d) Hidden Markov Random Field
(HMRF-FCM); (e) Weighted average method; and, (f) Neighborhood weighted average method.

Table 2 lists the user accuracy, product accuracy, total accuracy, and Kappa coefficient that were
obtained from the classification of the QuickBird synthetic image in Figure 7 by the previous methods.
The higher these indicators are, the more accurate the classification results are.

Figure 9a,b are the classification results that were obtained by the fuzzy Gaussian membership
function (type-1 fuzzy model) and the maximum likelihood method, respectively. The distribution
curves of each ground object are assumed to be subject to Gaussian distribution, and the modeling
principles are the same. For each region, although there are differences between user accuracy and
the product accuracy after we adopt the two classification methods, the total classification accuracy
is the same (total accuracy is 0.879 and the Kappa coefficient is 0.839). Figure 9c is the classification
result that was obtained by the FCM method, and it is sensitive to the difference in the grayscale
measure of the homogeneous region because of the FCM classification principle. The grayscale in
the homogeneous regions of the four ground objects in Figure 7 is obviously changed, and among all
of the classification methods, only the FCM method and the HMRF-FCM method are unsupervised.
Generally, the classification accuracy of the unsupervised classification method is lower than that of
the supervised method if the neighborhood relations are not considered. Therefore, the accuracy of
the FCM classification method is the lowest (user accuracy is 0.857 and product accuracy is 0.809)
compared with other classification methods. Figure 9d shows the classification result that was obtained
by the HMRF-FCM method, and the salt-and-pepper noise of the classified area is largely suppressed
as the relations among neighborhood pixels are considered in the classification process. Therefore,
when compared with the FCM method, the fuzzy Gaussian membership function, and the maximum
likelihood method, the classification accuracy of the HMRF-FCM method is enhanced to some extent
(user accuracy is 0.898 and product accuracy is 0.863). Although the salt-and-pepper noise is effectively
suppressed by the HMRF-FCM method, the regional noise is amplified and the over classification
phenomenon is exacerbated, as shown in the light areas in the upper left corner and the lower right
corner of the mining area. Figure 9e shows the classification result that was obtained by the weighted
average method based on the interval type-2 fuzzy model. Thanks to the supervised sampling, the pixel
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grayscale distribution of the corresponding category can be reflected accurately by the histogram
information of the training samples, and the training sample histogram can be more accurately
fitted by the constructed classification decision model, all improving the noise immunity. Therefore,
the classification accuracy is higher than that of the maximum likelihood method, FCM method,
and HMRF-FCM method. The classification results have a lot of noise because the noise sensitivity
to the spatial relationship of pixels is not considered in the maximum likelihood method, the FCM
method, and the weighted average method. The fitting curves in Figure 8 correspond to Regions I, III,
II, and IV in Figure 9, from left to right. As shown in Figure 8, the four ground objects in the fitting
models have different degrees of overlapping areas, whereas the misclassified pixels are concentrated
in the overlapping areas and the quality of pixel classification within these areas cannot be significantly
improved by accurately fitting the histogram distribution features. For this reason, we integrated
the neighborhood relations of pixels into the membership space of the image, as shown in Figure 9f.
Then, we effectively solved the misclassified pixels in the overlapping areas of the fitted models
and significantly improved the classification quality. The user accuracy and product accuracy of the
neighborhood weighted method are both above 0.99, presenting the best classification result.

As shown in Table 2, the classification accuracy of the FCM method is the lowest, with a
total accuracy of 0.857 and a Kappa value of 0.809. When we integrated spatial relations into the
FCM method, we significantly improved the classification accuracy of the HMRF-FCM method,
with a total accuracy of 0.898 and a Kappa coefficient of 0.863. When compared with the fuzzy
Gaussian membership function (type-1 fuzzy model) method, the maximum likelihood method and
the HMRF-FCM method, the total accuracy of the weighted average method is improved by 4.1%, 3.7%,
and 3.2%, respectively, and the Kappa coefficient is increased by 5.0%, 4.9%, and 2.6%, respectively.
This result proves again that the classification accuracy is affected by the quality of the fitted model.
The more accurate the fitting model, the higher the classification accuracy. The HMRF-FCM method is
suitable for the classification of high-resolution remote-sensing images as its classification accuracy is
further improved.

Table 2. User accuracy, product precision, user accuracy, and Kappa value.

Method Accuracy Indicator
Homogenous Region

I II III IV

Type-1 fuzzy model

User accuracy 0.998 0.796 0.901 0.833

Product precision 0.892 0.841 0.997 0.786

Total accuracy = 0.879; Kappa = 0.839

Maximum likelihood

User accuracy 0.981 0.822 0.919 0.800

Product precision 0.913 0.791 0.978 0.834

Total accuracy = 0.879; Kappa = 0.839

FCM

User accuracy 0.843 0.747 0.895 1.000

Product precision 1.000 0.905 0.695 0.827

Total accuracy = 0.857; Kappa = 0.809

HMRF-FCM

User accuracy 1.000 0.903 0.932 0.781

Product precision 0.927 0.743 1.000 0.920

Total accuracy = 0.898; Kappa = 0.863

Weighted average

User accuracy 0.995 0.878 0.936 0.874

Product precision 0.932 0.873 0.994 0.881

Total accuracy = 0.920; Kappa = 0.889

Neighborhood
weighted average

User accuracy 0.997 0.993 0.994 0.991

Product precision 0.995 0.991 0.999 0.991

Total accuracy = 0.994; Kappa = 0.992
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3.2. Experimental Results and Analysis of Real High-Resolution Remote-Sensing Images

Figure 10 shows panchromatic images that were taken from different high-resolution
remote-sensing images. Figure 10a is an IKONOS image with a resolution of 1 m and an image
size of 256 × 256 pixels. Figure 10b,c are WorldView-2 images with a resolution of 0.5 m and an image
size of 256 × 256 pixels and 1024 × 1024 pixels, respectively, and the grayscale is from light to dark.
Figure 10a contains three kinds of ground objects, including land, grass, and forest; Figure 10b contains
five kinds of ground objects, including snow, building, vegetation, ice, and water; and, Figure 10c
contains three kinds of ground objects, including buildings, vegetation, and water.
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(c) World View-2 image.

Figures 11–13 show the classification results of the three images in Figure 10. Figure 11a–e show the
results that we obtained using the classification methods in the following order: maximum likelihood
method, FCM method, HMRF-FCM method, weighted average method (optimal classification),
and neighborhood weighted average method (optimal classification). For the type-1 fuzzy model
method and the maximum likelihood method, only the classification result of the latter is given in
the experiment, because their classification principles are the same and their classification accuracy
is similar.

To quantitatively evaluate classification results, total accuracy, Kappa value, and time cost of the
classification results obtained by the different classification methods, the training data (about 30% of
the total data) of different regions of each image in Figure 10 are given in Table 3.

For the three areas to be classified in Figure 10a, due to the significant differences in grayscale
measurements, all of the methods, except for the FCM method, can achieve higher classification
quality. If the spatial relationship of neighborhood pixels is not considered, the misclassified pixels
are concentrated primarily in the forest area where the grayscale changes greatly and at the boundary
between land and grass where the transitional grayscale exists. For the FCM method, by segmenting
the nonsimilar measure between the pixel points and cluster centers, a large number of pixels in the
forest area are classified as land, which has a similar grayscale, resulting in a decrease in the total
classification quality. The total classification accuracy of the training data is 0.971 and the Kappa
coefficient is 0.956, presenting the lowest classification accuracy.

As shown in Figure 11, when compared with the maximum likelihood method (see Figure 11a),
the classification quality is improved by the accurate fitting method (see Figure 11d), and when the
weighted average method is used, the total classification accuracy of the training data is 1.000 and the
Kappa coefficient is 0.999. Although the classification accuracy is improved by the weighted average
method to some extent, the salt-and-pepper noise cannot be suppressed. Therefore, a certain degree of
noise still exists in Figure 11d. Because there exist the obvious difference in grayscale measure among
the three kinds of regions to be classified and the salt-and-pepper noise can be handled effectively by
the HMRF-FCM method, the classification accuracy of the HMRF-FCM method is higher than that
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of the other classification methods without consideration for the spatial relationship. Only sporadic
salt-and-pepper noise exists in the forest area, and the total accuracy of the training data is close to 1.
As shown in Figure 11e, by using the mean of all the pixels in the membership space window as its
center membership, the noise in the homogeneous region is nearly eliminated, and only a small amount
of noise exists at the boundary of the heterogeneous region, thus achieving high classification quality.
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The five ground objects in Figure 10b have the following features: the grayscales of ice and water
are similar and they can not be visually judged; with the ridgeline as the division, the grayscale
difference between both sides of the gable roof is significant and the corresponding histogram of the
gable roof presents a bimodal distribution; the difference in the grayscale of vegetation coverage is
large as a result of the bare ground and trees; and, the spectral measure of snow is evident throughout
almost the entire grayscale interval. We classified the image in Figure 10b using the FCM method.
According to the similar grayscale measure criterion, the regions with a similar spectral measure will
be classified as the same region. When we adopt the FCM method, ice is misclassified as water due
to the similar grayscale between ice and water. For the house classification, because the dissimilarity
measure, as defined by the Euclidean distance, which is sensitive to noise and outliers, applies the
FCM method, the pixels of the brighter part of the roof are misclassified as snow, which has a similar
grayscale measure because of the greatly changed brightness feature on both sides of the roof. For the
vegetation classification, we could not classify this area using the FCM method because of the complex
grayscale feature in the region. Among these classification methods, the FCM method shows the
lowest classification quality, with a total accuracy of 0.691 and a Kappa coefficient of 0.505.

Among all of the methods in this paper, the FCM and HMRF-FCM methods are unsupervised
classification methods, and the rest ones are supervised. Among the supervised classification methods,
the maximum likelihood method can not model the bimodal characteristics of buildings because
its histogram is a unimodal symmetric curve. Therefore, regarding the classification of a building’s
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roof when we adopt the maximum likelihood method, the roof on the light side will be completely
misclassified as snow, which has a similar grayscale. When compared with the Gaussian membership
function and the maximum likelihood method, the fitting of the weighted average method is more
accurate. As the training data histogram of the light and the backlight side of the gable roof presents
a bimodal distribution, even for the maximum uncertainty interval that was obtained by the use of
interval type-2 fuzzy membership function model in accordance with the 3σ criterion, the training data
histogram of the light side cannot be included within the range of the interval type-2 fuzzy membership
function model. Therefore, the weighted average method, Gaussian membership function method,
and the maximum likelihood method present a similar classification quality for house classification.
Similarly, the neighborhood weighted average method cannot obviously improve the quality of
house classification.

Regarding water and ice, when we adopt the standard FCM method and the HMRF-FCM method,
we carried out the classification based on the minimum distance between the pixel spectral measure
and the cluster center. According to this principle, the similar spectral measures will be classified
as the same category. Therefore, water and ice cannot be distinguished by the use of the standard
FCM method and the HMRF-FCM method because of the similar grayscale measures. Except for
the previous two methods, all of the methods that were used in this paper are supervised sampling
methods, and the classification is carried out according to the characteristic distribution curve of ice
and water in line with the maximum membership principle. As the corresponding distribution curve
of spectral measure varies with the category of the ground object, the classification of water and ice can
be achieved by all of the methods that were used in this paper, except for the FCM and HMRF-FCM
methods. The classification accuracy of water and ice by use of all the supervised classification methods
that are in this paper is higher than that of the standard FCM method and the HMRF-FCM method,
as shown in Table 3.

Regarding the classification of snow, all of the methods, except for FCM, misclassify the backlight
side of the gable roof as snow. The classification quality of the snow cannot be improved by
the HMRF-FCM method, the maximum likelihood method, the weighted average method, or the
neighborhood weighted average method.

The grayscale feature of the homogeneous region in the vegetation area is complex because of the
existence of low plants, trees, and bare ground. Regarding the classification of vegetation when we
adopt the FCM method, according to the similarity of spectral measure, the pixels that have a similar
measure with ice will be misclassified as ice, the pixels that have a similar measure with houses will
be misclassified as houses, and only a small part of the area can be correctly classified. Therefore,
the FCM method presents the lowest accuracy for vegetation classification. For the HMRF-FCM
method, the salt-and-pepper noise in the vegetation area can be greatly reduced with the consideration
of neighborhood pixels, presenting an obviously higher classification quality than the FCM method.
Because the bare ground that has a similar spectral measure with houses is misclassified as a house,
the classification quality of the HMRF-FCM method is obviously lower than the other methods.
High-resolution remote sensing image classification is suitable for multiple coverage types and
large scale.

Among all of the supervised classification methods, the classification decision of the maximum
likelihood method is based only on the Gaussian feature of the image, whereas the classification
decision of the weighted average method is based on the primary (Gaussian function), upper, and
lower membership functions. Therefore, the weighted average method is superior to the maximum
likelihood method for the classification of vegetation. On the other hand, the proposed method is
generally applicable. In the follow-up work, the proposed method will be applied to the classification
of different types of high-resolution remote sensing images (such as multi-spectral images, SAR images,
etc.) and other tasks, such as feature extraction, target identification, etc., in order to demonstrate its
wide applicability.
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The fitting models for the three ground objects in Figure 10c have the following features: the
grayscale difference of the building’s roof is clearly visible because of the high-resolution features;
the spectral measure almost covers the entire grayscale measure interval; the training data histogram
shows an irregular distribution; the training data histogram presents an independent double Gaussian
distribution as the surface of the water in the lower right corner of Figure 10c is frozen; and, the image
size of Figure 10a–c are 256 × 256 pixels, 256 × 256 pixels, and 1024 × 1024 pixels, respectively, so the
image size of Figure 10c is four times larger than that of Figure 10a,b.
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For the classification of buildings, we could not visually compare the classification quality of the
methods in this paper. However, by comparing accuracy in Table 3, it is evident that the proposed
method can obtain higher classification accuracy than the maximum likelihood method. For the
classification of vegetation, the shadows within the building areas are misclassified as water by all
of the methods in this paper. The building areas covered by vegetation, the shadows of buildings
that have similar pixel grayscale with water, and the shadow features cannot be handled by the
classification methods that are based on pixels. When we adopt the FCM and HMRF-FCM methods,
we assumed the regions to be classified are subject to Gaussian distribution, and we could carry out
the image classification according to the minimum similar measure principle. Therefore, the buildings
and the corresponding shadows that have large differences in grayscale measure will be misclassified
as water when we adopt the FCM method, leading to an overclassification of water, which reduces the
total classification accuracy. For the HMRF-FCM method, although the salt-and-pepper noise can be
effectively handled, the regional noise is further enlarged and the overclassification phenomenon is
further aggravated, presenting lower total classification accuracy than that of the FCM method.

For the classification of water, its curve with a double independent Gaussian distribution cannot
be accurately fitted by the maximum likelihood method, weighted average method, or neighborhood
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weighted average method. Therefore, the correct classification of the frozen water in the lower right
corner of the image cannot be achieved. Note that the frozen water is also misclassified as vegetation
when we adopt the HMRF-FCM method.

For the computation time, regardless of the time-consumption that is caused by manual
participation, the times that are required for the classification of Figure 10a–c by the maximum
likelihood method and the proposed method are about 1 s, 1 s, and 13 s, respectively. The times that are
required for the classification of Figure 10a–c by the FCM method are about 150 s, 150 s, and 4126.3 s,
respectively, whereas the time that is required by the HMRF-FCM method increases from the original
5 s to about 133 s. Thus, we concluded that the time cost of supervised classification methods is
obviously lower than that of the unsupervised methods for a large map sheet.
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The following conclusions can be drawn by analyzing the classification results of synthetic images
and real high-resolution images:

(1) When the ground object to be classified complies with the standard Gaussian distribution and the
grayscale of the heterogeneous region overlaps a little, the classification accuracy of the maximum
likelihood method, the FCM method, and the weighted average is similar without considering
the spatial relations. The HMRF-FCM method and the proposed neighborhood weighted average
method can further improve the classification accuracy.

(2) When the histogram of homogenous regions presents a continuous asymmetric unimodal,
continuous multimodel, or irregular distribution feature, the weighted average method proposed
in this paper can accurately fit the feature.

(3) The classification decision model integrated with spatial relations that is proposed in this paper
can effectively deal with the salt-and-pepper noise in the image and deal with the grayscale
overlapping in different regions to some extent.
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(4) The time cost of the proposed method is relatively small for a large map sheet. For example,
when the map sheet size increases by four times, the computation time will increase from the
original 1 s to 13 s. Therefore, the method that is proposed in this paper can be applied to the
data processing of large-scale remote-sensing images.

(5) Although the accuracy evaluation of training data can reflect the classification quality of different
classification methods, it can not precisely reflect the classification accuracy of the whole image.

(6) When compared with the traditional methods, the proposed method can improve the classification
accuracy and is suitable for the classification of high-resolution remote-sensing images.

Table 3. The real high-resolution remote-sensing images evaluation.

Images
(Figure 10)

Accuracy
Indicator

Method

Maximum
Likelihood FCM HMRF-FCM Weighted

Average
Neighborhood

Weighted

(a)
Total accuracy 0.878 0.899 0.691 0.812 0.907

Kappa 0.837 0.871 0.505 0.879 0.881
Tims (s) 1.13 156.32 4.64 1.36 1.28

(b)
Total accuracy 0.899 0.691 0.812 0.907 0.912

Kappa 0.871 0.505 0.879 0.881 0.887
Tims (s) 12.7 4126 132.7 13.20 13.15

(c)
Total accuracy 0.737 0.708 0.684 0.728 0.914

Kappa 0.665 0.643 0.614 0.652 0.865
Tims (s) 1.38 192.27 5.35 1.72 1.68

4. Conclusions

This paper proposes a supervised image segmentation method that is based on interval type-2
fuzzy model with the spatial relationship. The proposed method improves the uncertainty expression
for the membership of pixel, solves the problems that is caused by the complicated spatial relevance,
and makes the segmentation strategy more accurately. The experiments show that this method is
effective and feasible. To verify the feasibility and effectiveness of the proposed algorithm, we tests
classification experiments on synthetic images and real high-resolution remote-sensing images using
the proposed method, the type-1 fuzzy membership function model (synthetic images), the maximum
likelihood method, the FCM method, and the HRFCM method. Then, through qualitative and
quantitative comparisons and analyses, we prove that the classification accuracy of the proposed
algorithm can be improved. The proposed method is suitable for the classification of high resolution
remote sensing images with multiple coverage types and a large scale. The asymmetric unimodal
distribution, continuous multimodel distribution, or irregular distribution of homogeneous regions
can be accurately fitted by the proposed method, and the effect of internal noise is suppressed after
considering the spatial relationship, presenting a relatively good classification of high-resolution
remote-sensing images. A blurred boundary appeared at the same time, however. Therefore, to
further improve the proposed algorithm, this will be the focus of future research. On the other hand,
the proposed method is universal in theory. In the further work, the proposed method will be applied
to the classification of different types of high-resolution remote sensing images (such as multi-spectral
images, SAR images, etc.) and other tasks, such as feature extraction, target identification, etc.
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