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Abstract: In this paper, we propose an effective and robust decentralized tracking scheme based on
the square root cubature information filter (SRCIF) to balance the energy consumption and tracking
accuracy in wireless camera sensor networks (WCNs). More specifically, regarding the characteristics
and constraints of camera nodes in WCNs, some special mechanisms are put forward and integrated
in this tracking scheme. First, a decentralized tracking approach is adopted so that the tracking can
be implemented energy-efficiently and steadily. Subsequently, task cluster nodes are dynamically
selected by adopting a greedy on-line decision approach based on the defined contribution decision
(CD) considering the limited energy of camera nodes. Additionally, we design an efficient cluster head
(CH) selection mechanism that casts such selection problem as an optimization problem based on the
remaining energy and distance-to-target. Finally, we also perform analysis on the target detection
probability when selecting the task cluster nodes and their CH, owing to the directional sensing and
observation limitations in field of view (FOV) of camera nodes in WCNs. From simulation results,
the proposed tracking scheme shows an obvious improvement in balancing the energy consumption
and tracking accuracy over the existing methods.

Keywords: target tracking; wireless camera sensor networks; information filter; camera selection;
decentralized; sensor fusion

1. Introduction

Among many surveillance functions of Wireless Sensor Networks (WSNs), tracking a moving
target in a sensing field is a major one that has wide-spread areas of applications, such as habitat
monitoring, traffic monitoring, and intruder tracking [1–3]. In target tracking, the current presence of
moving targets will be detected by sampling the sensed signals (e.g., light, sound, image, or video) [4].
In recent years, with the price of smart camera dropping rapidly, the development of wireless camera
sensor networks (WCNs) has been heavily fostered [5,6]. Hence, a new trend in target tracking is
to deploy sensor nodes with smart cameras to capture, process and analyze image data locally and
to send extracted information back to the sink node [7]. However, the target tracking in WCNs is
greatly different from that in traditional WSNs with respect to camera field of view (FOV), bandwidth
consumption, and multimedia data processing [8]. Therefore, much attention should be paid to some
special target tracking schemes in WCNs.
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Due to the requirement for an uninterrupted and reliable tracking network system, decentralized
or distributed tracking approaches are usually preferred much more than centralized solutions
in WCNs. Distributed approaches, e.g., [9,10], aim to achieve scalability and high fault tolerance
for large networks, where the measurements are maintained in several task nodes across the
tracking network [6]. However, much energy consumption is usually required in task nodes in
terms of processing information data and communicating with their neighbour nodes due to the
consensus algorithms. Hence, decentralized solutions, e.g., [11–14], may be partial to be adopted
for some application situations that use camera nodes with limited energy, since they behave well
in balancing energy consumption and resilience to faults. In such solutions, a task cluster will be
formed and all cluster nodes will detect the target and process locally. Subsequently they forward
information data to the selected CH which fuses different results and acts as the cluster scheduler.
Therefore, the decentralized schemes need measurement integration methods (e.g., Kalman filter (KF),
information filter (IF), particle filter (PF), etc.) and task cluster selection mechanisms.

The tracking algorithms that depend on linear filters, such as traditional KF and IF, cannot be
applied to camera networks, since the target measurements provided by the camera sensors are
non-linearly related to each other [15]. The consensus filter is a popular and efficient method to
take tracking task in a distributed framework, e.g., [10,16,17], but inappropriate to cluster-based
decentralized tracking systems as it requires us to ensure agreement among all neighbouring nodes.
In decentralized systems, some variants of information filter such as extend information filter (EIF) [18],
cubature information filter (CIF) [19] and square root cubature information filter (SRCIF) [20] are
preferred due to the fact that they can distribute the computational burden and be easily extended for
decentralized multi-sensor cooperative state estimation. CIF is derived from EIF and cubature Kalman
filter (CKF) [21]. SRCIF is the square root version of CIF, where the square root covariances matrix is
propagated to make the entire filter robust against round-off errors [19]. In our work, we also employ
SRCIF to integrate different measurements because it is numerically stable and robust compared to
other filter algorithms [19,20].

WCNs tend to evolve into large-scale networks with limited bandwidth and energy resources,
especially for outdoor surveillance applications. Hence, a single target may be viewed simultaneously
by a large number of camera nodes. Decentralized solutions that use numerous task nodes could
improve tracking accuracy at the expense of large communication overhead as well as high energy
consumption, which, however, leads to the reduction of network lifespan. Hence, improving tracking
accuracy and prolonging network lifespan are two conflicting requirements in WCNs with limited
energy. An efficient way to balance the two requirements requires only a desired number of camera
nodes to participate in the tracking task with satisfaction of relevant requirements. Therefore, how
to select appropriate task cluster nodes (including the CH) is of critical importance in decentralized
target tracking, and subsequently is the main goal of our work.

Bernab et al. [22] present an entropy-based algorithm that dynamically selects multiple camera
nodes to balance sensing performance and energy consumption. Additionally, the CH is also
dynamically selected using entropies and transmission error rates therein. Nevertheless, entropy
is a nonlinear metric and its computation is inappropriate for a decentralized approach. In [23],
novel camera activation and CH selection mechanisms that consider transmission errors and use the
trace of information matrix as uncertainty metric are developed, where all camera nodes that their
rewards overtake the cost will be activated to form the tracking cluster. However, both of the above
works assume an omnidirectional sensing model, i.e., the target can be viewed within a circular area
whose radius equals to the sensing range of camera nodes. In practical circumstances, they are hard
to directly apply to WCNs due to the directional sensing and limitations in FOV of cameras. In [7],
the authors propose a surprisal selection method to facilitate the camera nodes to take independent
decision on whether their observations are informative or not, which considers the directional sensing
nature of camera nodes. However, this method fixes the fusion center (FC) and requires the knowledge
of the total number of camera nodes that view the current target.
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Network lifetime and tracking accuracy are two main concerns for target tracking in WCNs.
Work [4] has proposed and proved that a smaller energy balance metric of a network implies a longer
lifetime of the tracking network, given a total amount of energy. Therefore, the balance of energy
distribution should be paid much attention when selecting the task camera nodes and their CH. In our
work, we propose an efficient and robust multi-sensor decentralized target tracking scheme for WCNs.
More specifically, considering characteristics and constraints of WCNs such as directional sensing,
limited energy, observation limitations in FOV of cameras and insufficient computational capability,
we utilise the following mechanisms to efficiently carry out tracking tasks: (1) a more realistic camera
node sensing model; (2) a decentralized SRCIF for fusing different observation results at the CH;
(3) an efficient mechanism for selection of task cluster nodes that balances the energy consumption
and tracking accuracy; and (4) a mechanism that selects the CH by taking a compromise between the
remaining energy and the distance-to-target.

This paper focuses on balancing energy consumption and tracking accuracy in single target
tracking in dense WCNs. Note that some problems such as boundary detection, losses of data
packets and recovery of the lost target are assumed to be out of the scope of the paper. Our main
contributions are:

• Proposing a greedy on-line decision mechanism to select task cluster nodes based on the defined
contribution decision (CD) which quantifies the expected information gain and the energy
consumption. This mechanism dynamically changes the weight of energy consumption in CD
according to the related remaining energy of the node in a current candidate node set.

• Designing an efficient CH selection mechanism that casts such a selection problem as
an optimization problem based on the predicted target position and the remaining energy.

• Analysing the probability of a target precisely detected by camera nodes when selecting suitable
task cluster nodes and their CH, in consideration of the inaccuracy of the predicted next
target position.

• Integrating all proposed mechanisms into a decentralized tracking scheme in order that these
mechanisms can be implemented efficiently and steadily.

The rest of this paper is structured as follows. In Section 2, we formulate some tracking problems
in WCNs and discuss main system models. Section 3 introduces a decentralized SRCIF algorithm
for measurement fusion. The proposed mechanisms of cluster node selection and CH selection are
detailed in Sections 4 and 5, respectively. Section 6 illustrates the decentralized tracking scheme which
integrates all proposed mechanisms. In Section 7, we evaluate the proposed mechanisms and compare
them with state-of-the-art methods. Section 8 concludes the paper and discuss our future work.

2. Problem Formulation and System Models

2.1. Problem Formulation and System Overview

As shown in Figure 1, in this work, a single target (e.g., human, animal, low-speed vehicle) and
lots of camera sensor nodes are assumed to be located in a 2-D plane network. We consider a dense
network consisting of N calibrated and cheap camera sensor nodes C = {c1, c1, · · · , cN}, each of
which is assumed to have sufficient capacity to execute simple image processing techniques with
limited energy. The task of the camera nodes in the network is to monitor the given environment and
to track an object. Additionally, we assume that all sensor nodes are in three states, namely active, alert
and sleep state. If a node is a cluster node, it will stay active to track the target in the current timestep.
Meanwhile, if a node that could detect that the current target does not belong to the current task cluster,
it will turn into the alert state which could be quickly activated if necessary. Those nodes that could
not view the current target will be put into sleep state to save energy, but periodically awaken to sense
the target. Once they detect the target in their field of view (FOV) at timestep k, they will turn into alert
state. Note that each node is only in one of the three states during one timestep. Figure 2 describes the
relationship of three state models.
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Figure 1. A target tracking scenario in a wireless camera sensor network. The target is viewed by many
nodes, but only some of them form the tracking task cluster and the remaining nodes turn into the alert
node. In addition, the nodes that could not view the target will turn into the sleep state to save energy.

Active
(CM or CH)

Alert Sleep

Task

No Task

No Task
Detect the target ,

but no cluster node

Target is not detected

Figure 2. The state transition process model.

While a mobile target is going through the monitored area, some of the camera nodes that are
sensing the target will be activated to form a single-hop cluster. Each cluster has a cluster head (CH),
which acts as the scheduler of cluster. The cluster members (CM) acquire and process a frame locally
and send the results to the CH for data fusion in the current timestep. Subsequently, the CH will
select some suitable camera nodes to be activated for the next tracking timestep. In order to ensure
all camera nodes which sense the same target can communicate well with each other, we suppose
synchronized and delay-free communication with a range twice the sensing radius. Furthermore,
we also assume that there is no communication loss and all communication links are reliable so that
the information can be readily shared. The key symbols in this paper are summarized in Table 1.
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Table 1. Key symbols and notations.

Symbol Notation Symbol Notation

xk target state vector at timestep k wk process noise vector at timestep k

Q covariance matrix of wk zi
k measurement vector of ci at timestep k

hi measurement model of camera node ci R covariance matrix of vk

f target motion model vk measurement noise at timestep k

Hi homography matrix of ci h̄i the field of view (FOV) of ci

Zi zones of FOV of camera ci ρi sensing probability of target detected by ci

Tk position of target at timestep k `k set of task cluster nodes at timestep k

Eas
i energy consumption of ci (CM) Eas

ch energy consumption of cluster head

Eal
j energy consumption of cj in alert state P covariance matrix of xk

y information vector Y information matrix

SY triangular square-root matrix of Y Sp triangular square-root matrix of P

Γk set of camera nodes that view the d(ci, Tk) distance between node ci and target
target at timestep k at timestep k

Nc number of camera nodes in Γk Na number of camera nodes in `k

D contribution decision G normalized information gain

Ci energy consumption ei current remaining energy of ci

α weighting factor of information gain β weighting factor of energy consumption

ψ weighted combination Rs sensing range

tr trace operation pi position of camera node ci

2.2. Motion and Measurement Model

The considered motion model and measurement models for camera networks, in this paper, are
similar to those used in [24]. A 4-dimensional vector, xk = [xk, ẋk, yk, ẏk]

T , denotes the target state
at discrete timestep k, where (xk, yk) is the current target position and (ẋk, ẏk) is its current velocity.
δ is the constant sampling time interval between two successive measurements. Thus, the mobile
target is described by a 2-D nonlinear motion model with the discrete time dynamic state equation
given as follows:

xk =


xk−1 + δẋk−1 +

δ2

2 ẍk−1
ẋk−1 + δẍk−1

yk−1 + δẏk−1 +
δ2

2 ÿk−1
ẏk−1 + δÿk−1

 , (1)

where ẍk−1 and ÿk−1 represent the acceleration of target in x and y coordinates at timestep k − 1.
∇k−1 = [ẍk−1 ÿk−1]

T is considered as the noise vector, modeled by the zero-mean independent and
identically distributed (IID) white Gaussian with covariance matrix Qa = diag(q̃x, q̃y). Subsequently,
the motion model of target can further be written as [7]

xk = f (xk−1) + wk−1 = Axk−1 + wk−1, (2)

where wk−1 is the process noise vector at timestep k − 1, assumed the IID white Gaussian with
covariance matrix
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Q =


q̃xδ4/4 q̃xδ3/2 0 0
q̃xδ3/2 q̃xδ2 0 0

0 0 q̃yδ4/4 q̃yδ3/2
0 0 q̃yδ3/2 q̃yδ2

,

and A is the state transition matrix:

A =


1 δ 0 0
0 1 0 0
0 0 1 δ

0 0 0 1

 .

The measurements can be given by the pixel coordinates of the center of the target in the image
plane of the camera and the time elapsed between the two successive measurements [24]. As the static
cameras are previously calibrated, there exists a homography to calculate the object’s position on the
ground plane. The measurement model can be defined as:

zi,k =

[
xi,k
yi,k

]
= hi(xk) + vk, (3)

where (xi,k, yi,k) denotes the pixel coordinate of the target in the image plane of camera ci at timestep k,
vk is the measurement noise, which is considered to be Gaussian with zero mean and covariance matrix
R = diag([σ2, σ2]), and hi(xk) is the the pixel coordinates based on the homography Hi corresponding
to camera ci, which is given by

hi(xk) =

[
hi

1(xk)

hi
2(xk)

]
=


Hi

11xk + Hi
12yk + Hi

13

Hi
31xk + Hi

32yk + Hi
33

Hi
21xk + Hi

22yk + Hi
23

Hi
31xk + Hi

32yk + Hi
33

 , (4)

where (hi
1, hi

2) is the pixel coordinates of the target in the image plane of camera ci and the
values Hi

11, · · · , Hi
33 are the elements of homography matrix Hi. Since we assume static cameras,

the homography of cameras do not change with time k and the moving target.

2.3. Camera Node Sensing Model

All camera sensors are assumed to have the same sensing range Rs which depends on the imaging
capabilities of the sensor and be put at the same height in the target areas. Typically, by projecting the
3D visual sensing cone of the camera ci onto the 2D field, the FOV of the camera ci, denoted h̄i, can be
approximated by a fan with radius Rs.

In real scenarios, the surveillance area needs to be deployed with massive camera nodes to achieve
good tracking results, but cheap cameras may have to be used to save money. As a result, those cheap
cameras will not be able to well detect the target in every region of their FOV. See the illustration
in Figure 3.

We assume that camera node ci can precisely view the target with the probability ρi. If the target
position at timestep k, Tk, is inside the Z1

i which is close to the ci, then 0 < ρ(1) < 1, because it is possible
that only a little part of the target can be viewed by the ci. Similarly, if the target is located inside the
Z3

i , the view of it in ci may be too little to be precisely sensed, thus 0 < ρ(3) < 1. Hence, the probability
of the target being precisely sensed by ci yields

ρi =


ρ(1) < 1 if Tk ∈ Z1

i
ρ(2) = 1 if Tk ∈ Z2

i
ρ(3) < 1 if Tk ∈ Z3

i
0 if Tk /∈ Zi,

(5)
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and the relationship between the target and Zi is given by
Tk ∈ Z1

i if d(ci,Tk) ≤ ζ1Rs & Tk ∈ h̄i
Tk ∈ Z2

i if ζ1Rs< d(ci,Tk) ≤ ζ2Rs & Tk ∈ h̄i
Tk ∈ Z3

i if ζ2Rs< d(ci,Tk) ≤ Rs & Tk ∈ h̄i
Tk /∈ Zi if Tk /∈ h̄i,

(6)

where d(ci, Tk) is the distance between node ci and target Tk and 0 < ζ1 < ζ2 < 1.

C

Figure 3. Sensing model in WCNs. Some camera sensors are deployed inside the surveillance area and
h̄i is a fan-shaped area with central angle α = 90◦. The zones of FOV of camera ci, Zi = {Zn

i ; n = 1, 2, 3},
are shown with different sized grey shapes. Target in Z2

i can be well viewed by ci, but not well viewed
in Z1

i and Z3
i because their distance is too close or too far.

To be clear, the probability of the target being accurately sensed by node ci, ρi, is only taken into
consideration in cluster nodes and cluster head selection phases to acquire a better cluster, which will
be described in the corresponding sections. However, once a camera node is activated as a cluster
member or cluster head, we deem that its measurements are accurate and reliable everywhere in
its FOV.

2.4. Energy Consumption Model

The proposed energy consumption model is based on the power and activation times of
a three-state model [25]. Cluster nodes, in active state, always have their cameras and radio on
to acquire and process information data about the target and transmit or receive data between
themselves and their neighbours, which results in most of the energy consumption. Sensor nodes in
the alert state could receive data from their neighbours and periodically acquire and process data.
Meanwhile, sensor nodes spend most of their time in sleep state during which nodes only periodically
sense the target, which consumes the least energy among the three states [23].

Some symbols are necessary to model the energy consumption of camera nodes in these
three states. Similar to [26,27], we suppose a joule (J) to be the energy expenditure for a camera
node acquiring a frame and each frame processing produce, on average, bt bits for transmission,
p is the average energy in joule (J) required for processing and producing 1 bit of information to be
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transmitted, and t and r is the average energy in joule (J) consuming in transmitting and receiving
1 bit, respectively.

(1) Active state. Let Eas
i denote the energy consumption of node ci in active state. According to

previous descriptions, the nodes in active state will acquire, process, receive and transmit data.
If node ci is selected as CM, it will acquire and process the data about current target state, and
then transmit its results to its CH. After receiving the data from the current CH, it also processes
them locally and sends the packet including the processing results and the status data of ci to
the CH. Suppose that the amount of the packet is also bt. Then, the total energy consumption for
ci at each timestep is

Eas
i = rbr + a + 2(p + t)bt, (7)

where br is the average amount of the bits received from the CH. If node ci acts as the CH,
besides the above actions, it needs to fuse different measurements from its CMs. Thus, its total
energy cost yields

Eas
ch = 2(rNa + p)bt + a + (u + t)br, (8)

where Na is the number of its CMs and u is the average energy for fusing and producing 1 bit data.
(2) Alert state. Nodes in alert state could receive data from the current CH, process and transmit its

results to the current CH. Therefore, the total energy cost for alert node cj becomes

Eal
j = rbr + (p + t)b0

t , (9)

where b0
t is the number of data for cj to transmit.

(3) Sleep state. When a node is put into sleep state, most functions of the node are disabled. Only
its sensing modules (e.g., camera sensor) could work periodically. To simplify system models,
we assume that there is no energy consumption in the sleep state.

3. Decentralized SRCIF Algorithm for Measurement Fusion

In this section, we briefly introduce the process of the decentralized square root cubature information
filter (SRCIF) algorithm which is used to fuse measurements from different sensor nodes. The SRCIF
have many desirable properties compared to other filter algorithms, such that it is numerically stable
and robust as well as easy to extend for multi-sensor state estimation [19]. For more theory details
about the SRCIF, see [19,20,28].

The information filter are parametric RBFs, which uses the information matrix Y and information
vector y at timestep k:

Yk|k = Pk|k
−1 (10)

yk|k = Yk|kxk|k = Pk|k
−1xk|k, (11)

where P is the covariance matrix of the Gaussian distribution that represents the estimated state and
x is the state vector of the target. Let Yk|k and Pk|k be

Yk|k = SY,k|kST
Y,k|k (12)

Pk|k = Sp,k|kST
p,k|k, (13)

where SY,k|k and Sp,k|k are the triangular square-root matrixs of Yk|k and Pk|k, respectively. From
Equations (10), (12) and (13), we can obtain that

SY,k|kST
Y,k|k = (Sp,k|kST

p,k|k)
−1 = S−T

p,k|kS−1
p,k|k. (14)
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Hence, we get the relationship of square roots of the error covariance matrix and that of the
information matrix

SY,k|k = S−T
p,k|k. (15)

1. Prediction step of SRCIF

(1) Compute the cubature points (i = 1, 2, · · · , 2n) of timestep k− 1

Øi,k−1|k−1 = xk−1|k−1 + SY,k−1|k−1ξi (16)

where ξi is the i-th element of the following 2n cubature points set

√
n




1
0
...
0

 , · · · ,


0
0
...
1

 ,


−1
0
...
0

 , · · ·


0
0
...
−1


 . (17)

(2) Compute the propagated cubature points (i = 1, 2, · · · , 2n)

Ø∗i,k|k−1 = f (Øi,k−1|k−1). (18)

(3) Estimate the predicted state

x̂k|k−1 =
1

2n

2n

∑
i=1

Ø∗i,k|k−1. (19)

(4) Estimate the square root factor of the predicted error covariance and information matrix

Sp,k|k−1 = Tria([ℵ∗k|k−1 SQ]), (20)

SY,k|k−1 = [(Sp,k|k−1)
−1]T, (21)

where Tria denotes the operation of orthogonal triangular decomposition (for example,
if S = Tria(A), then S is a lower-triangular matrix and AAT = SST, see Section VI of [28] for
more details about the operation of Tria), SQ is a square root of Q and

ℵ∗k|k−1 =
1√
2n

[Ø∗1,k|k−1 − x̂k|k−1 Ø∗2,k|k−1 − x̂k|k−1 · · · Ø∗2n,k|k−1 − x̂k|k−1]. (22)

(5) Compute the predicted information state vector according to the Equation (11)

ŷk|k−1 = SY,k|k−1ST
Y,k|k−1x̂k|k−1 (23)

2. Measurement update step of SRCIF for camera node cj

(1) Compute the cubature points (i = 1, 2, · · · , 2n)

Øi,k|k−1 = x̂k|k−1 + SY,k|k−1ξi. (24)

(2) Compute the propagated cubature points (i = 1, 2, · · · , 2n)

Zi,k|k−1 = hj(Øi,k|k−1). (25)
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(3) Estimate the predicted measurement

ẑk|k−1 =
1

2n

2n

∑
i=1

Zi,k|k−1. (26)

(4) Compute the weighted-centered matrices

ℵk|k−1 =
1√
2n

[Ø1,k|k−1 − x̂k|k−1 Ø2,k|k−1 − x̂k|k−1 · · · Ø2n,k|k−1 − x̂k|k−1], (27)

<k|k−1 =
1√
2n

[Zi,k|k−1 − ẑk|k−1Z2,k|k−1 − ẑk|k−1 · · ·Z2n,k|k−1 − ẑk|k−1]. (28)

(5) Estimate the cross-covariance matrix

Tria(

[
<k|k−1 SR

ℵk|k−1 0

]
) = T =

[
T11 0
T21 T22

]
, (29)

Pxz,k+1|k = T21T11
T, (30)

where SR is a square root of R, T11 ∈ Rm×m and T22 ∈ Rn×n are a lower-triangular
matrix, and T21 ∈ Rn×m (m and n are the dimensions of measurement state and target
motion state, respectively).

(6) Evaluate the square-root information contribution matrix of sensor node cj

S(j)
Y,k|k = SY,k|k−1ST

Y,k|k−1T21T11
T(S−1

R )T (31)

(7) Evaluate the information contribution vector and information contribution matrix of sensor
node cj

y(j)
k|k = S(j)

Y,k|k(S
−1
R )T(z(j)

k − ẑk|k−1) + S(j)
Y,k|k(S

(j)
Y,k|k)

T x̂k|k−1, (32)

Y(j)
k|k = Sj

Y,k|k(S
j
Y,k|k)

T, (33)

where z(j)
k is the target measurement of cj at timestep k.

For a decentralized multi-camera tracking network, suppose Nc camera nodes track the same
target at timestep k. After sensing and processing locally, the nodes will transmit their results
(including y(i)

k|k and S(i)
Y,k|k ) to a local fusion central (FC) simultaneously. Subsequently, the FC node will

fuse these results with its own as follows:

ŷk|k = ŷk|k−1 +
Nc

∑
i=1

y(i)
k|k, (34)

SY,k|k = Tria([ SY,k|k−1 S(1)
Y,k|k · · · S(Nc)

Y,k|k]). (35)

After obtaining the updated information vector yk|k and the updated information matrix Yk|k,
the corresponding error covariance matrix Pk|k and the update target state yield

Pk|k = Y−1
k|k = (SY,k|kST

Y,k|k)
−1, (36)

x̂k|k = Pk|kŶk|k. (37)
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According to the above descriptions, the CH computes ŷk|k and SY,k|k by briefly adding y(i)
k|k,

S(i)
Y,k|k from all CMs with the contributions of its own. The CMs only require us to execute the update step

of SRCIF. Apart from gathering and integrating different measurements, the CH computes the predicted
next state of target and then sends the state to the next cluster nodes. Therefore, the decentralized SRCIF
algorithm could integrate the information data in an arbitrary order and distribute the computational
burden of the measurements update among all the cluster nodes, which can be easily extended for
multi-sensor fusion. Additionally, in the cluster-based tracking network using the decentralized SRCIF,
in contrast to the consensus filter, only the CH requires us to receive the data from its CMs and the
CMs do not need to communicate with other neighbours, which could heavily reduce the energy
consumption resulting in extending the lifespan of the sensor network.

4. Selection of Task Cluster Nodes

In WCNs, each camera node usually has limited bandwidth and energy resources. Additionally,
not all camera nodes that view the target contribute equally to detecting and tracking the target.
Even if a node contributes a lot, it consumes too much energy to work well afterwards. Therefore,
to increase the lifetime of a tracking network, only some camera nodes should be activated to act as
task cluster nodes and some activated nodes should be deactivated to other states. However, this may
lead to a decrease of tracking accuracy compared with traditional methods such that all camera nodes
that view the target are included to integrate as many measurements as possible. Thus, an appropriate
task cluster node selection mechanism should be put forward to balance the tracking accuracy and
network lifetime.

In this section, we present our cluster node activation mechanism which adopts a greedy on-line
decision approach to decide the most suitable task nodes. A camera node will be activated as
a CM or deactivated according to both its measurements and its energy consumption. Therefore,
an online decision mechanism that maximizes the trade-off between information gain and energy
consumption is adopted. Let Γk+1 be a set of camera nodes that view the target at current timestep
k: Γk+1 = {ci : ci ∈ C, 1 ≤ i ≤ Nc}. The size of Γk+1 is Nc which meets 0 ≤ Nc ≤ N. In this work, Γk+1 is
considered as the set of candidate camera node at timestep k + 1, which contains all current cluster
nodes and all alert nodes at timestep k. Let Gi be the information gain deriving from the measurements
of ci and Ci denote its energy consumption if it is activated. Subsequently, the expected contribution
decision (CD) for a candidate node ci at timestep k + 1 can be expressed as

Di,k+1 = αi,k+1Gi,k+1 − βi,k+1Ci,k+1, (38)

where αi,k+1 and βi,k+1 are weighting factors of expected information gain and energy consumption
corresponding to camera ci at timestep k + 1, respectively. Hence, for each node in Γk+1, we calculate
its expected CD, and then rank all candidate camera nodes in descending order according to their CDs.
Finally, some top-ranked camera nodes will be selected from the candidate set to be activated to form
a new cluster for timestep k + 1.

Then the expected information gain of ci, Gi,k+1, and its weighting factor αi,k+1 are firstly
computed. Different metrics have been proposed to gauge the tracking performance of the information
filter [7,14,22,23]. Among them, the trace (sum of diagonal elements) of the predicted information
matrix Yk+1 computed at timestep k using Equation (33) corresponds to the mean squared error (MSE) of
the updated state. Thus, it can be used to measure the expected information gain. Hence, the expected
information gain of camera node ci at timestep k + 1 can be given by

G0
i,k+1 = tr(Yi,k+1), (39)
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where tr(·) denotes trace operation. For facilitating data analysis and comparisons, we carry on the
normalization calculation to the information gain as follows:

Gi,k+1 = (G0
i,k+1 −G0

min(k + 1))/(G0
max(k + 1)−G0

min(k + 1)), (40)

where G0
min(k + 1) and G0

max(k + 1) are minimum and maximum expected information gain values of
candidate nodes, respectively. In general, a lager Gi,k+1 value implies more useful information gained
by the measurements of ci. In a camera sensor network with limited energy, trace is a linear metric.
Therefore, in the case of our decentralized SRCIF, the CH can simply compute the predicted information
gain of each candidate node resulting in a low burden to the limited-resource camera sensor network.

With respect to the weighting factor αi,k+1, we set it with different values based on both the
predicted position of the target and the FOV of the camera ci. According to Section 2.3, when the target
is located in different zones of FOV of the camera ci, the probability of the target being precisely sensed
by the camera ci, ρi, is different (see Equation (5)). Then the credibility of the information gain from
ci should be also different. Thus, the weighting factor of the camera node ci at timestep k + 1, αi,k+1,
is given by

αi,k+1 = ρi. (41)

Next, βi,k+1 and Ci,k+1 for camera ci at timestep k+ 1 are calculated. Energy has been considered as
the main resource in battery-powered WCNs. Thus, in this work, we only consider energy consumption
as the resource’s consumption. Clearly, a camera node will keep an active state when it is a CM or CH.
Therefore, the predicted energy consumption for camera ci at timestep k + 1, Ci,k+1, is expressed
as follows:

Ci,k+1 = Eas
i , (42)

where Eas
i is the total energy consumption of active node ci during one tracking, computed by

Equation (7). Note that ci cannot be selected as a CM, if its current remaining energy Ec
i ≤ Ci,k+1.

βi,k+1 weights the relative importance between predicted energy consumption Ci,k+1 and expected
information gain Gi,k+1 for ci at timestep k + 1. In traditional schemes, the absolute quantity of
energy usually conducts as an indicate of β (like in work [23]). However, in this work, we set
βi,k+1 dynamically according to the current remaining energy of itself and other candidate nodes.
Ordinarily, the importance of energy for a node varies depending on the current remaining energy of
itself and others. The higher remaining energy a camera node has, the less importance the energy will be.
Thus we adopt the relative amount of energy as an indicate, which is described as follows:

βi,k+1 = a exp(ē0
k+1 − e0

i,k+1), (43)

where a is a constant factor, e0
i,k+1 is normalized predicted remaining energy of ci and ē0

k+1 is the average
normalized predicted remaining energy of candidate nodes at timestep k+1. The normalization process
of remaining energy is the same as that in the information gain. As shown in Equation (43), the camera
nodes with higher remaining energy will be assigned a smaller weighting factor of energy consumption
than those with lower remaining energy.

Note that the selection processes are conducted in the current CH and all candidate nodes just
need to send their information data packets (including their positions, current energy, trace of predicted
information matrix and relationship with the T̂k+1) to their CH separately. The CH does not require any
knowledge about candidate nodes in advance, in contrast to that in [7]. Therefore, this mechanism is
suitable for decentralized implementation of WCNs. Algorithm 1 summarizes the proposed mechanism
for selection of cluster nodes at the end of timestep k.
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Algorithm 1. The greedy on-line cluster node selection mechanism (operate at current CH)

Input: Γk+1, Ec, {ρi; i ∈ Γk+1}, Na.
Output: A camera node set `k+1 that contains Na top-ranked nodes based on their CDs.
1. for each camera node ci ∈ Γk+1
2. Compute αi,k+1 using Equation (41).
3. if ρi > 0 and ei > Eas

i
4. Compute expected G0

i,k+1 using Equation (39).
5. ei,k+1 ← ei.
6. else
7. G0

i,k+1 = 0, ei,k+1 = 0.
8. end if
9. end for
10. Normalize {ei,k+1 6= 0; ci ∈ Γk+1} and {G0

i,k+1 6= 0; ci ∈ Γk+1}, then get set {e0
i,k+1} and set {Gi,k+1}.

11. for Each camera node ci ∈ Γk+1
12. if G0

i,k+1 6= 0
13. Compute βi,k+1 using in Equation (43).
14. Compute its expected contribution decision Di,k+1 using Equation (38)
15. else
16. Di,k = −10, 000.
17. end if
18. end for
19. Sort the set Dk = {Di,k; ci ∈ Γk} in the descending order, and then get a new set `k+1 that contains Na

top-ranked nodes based on expected contribution decision D.

5. Selection of CH

Dynamic cluster formation requires camera nodes to take time-varying states for enabling
decentralized and determining optimal decision where the CH acts as the scheduler. A new CH
for the next timestep is selected at the end of the current timestep. It communicates with its member
nodes to exchange information data, gathers, fuses the data and then determines the next cluster
(including CH and CMs). Hence, tracking performance strongly depends on which node acts as CH.
Our objective is to select a reliable and efficient CH.

According to Section 2.4, the CH requires the most expenditure of energy among the task cluster nodes.
Hence, selecting an appropriate CH could balance the remaining energy distribution of the current
cluster. Furthermore, the smaller energy balance metric of the network implies a longer lifetime of the
tracking network, given a total amount of energy [4]. Additionally, the situation that the selected CH
could not view the target is not our intention but it happens occasionally in WCNs, since there may exit
a great difference between the predicted and true target positions. Therefore, we cast such a selection
problem as an optimization problem based on the predicted target position and the remaining energy
distribution, to determine the CH ch

k+1 as:
ch

k+1 = argmax
∀ci

ψ(ci)

s.t. ei ≥ Eas
ch

T̂k+1 ∈ Z2
i

ci ∈ `k+1

(44)

where ψ(ci) is a weighted combination of d(ci, T̂k+1) and current remaining energy ei for camera node ci.
We define the weighted combination of ci as:

ψ(ci) = θψe(ei) + (1− θ)ψd(d(ci, T̂k+1)), (45)

where
ψe(ei) = (ei − emin

i )/(emax
i − emin

i ); (46)
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ψd(ci) = (dmax(ci, T̂k+1)− d(ci, T̂k+1))/(dmax(ci, T̂k+1)− dmin(ci, T̂k+1)); (47)

θ ∈ [0, 1] weights the energy priority; d(ci, T̂k+1) is the camera-target distance; emax
i = max{ei; ci ∈ `k+1};

emin
i = min{ei; ci ∈ `k+1}; dmax(ci, T̂k+1)) = max{d(ci, T̂k+1); ci ∈ `k+1} and dmin(ci, T̂k+1)) =

min{d(ci, T̂k+1); ci ∈ `k+1}. There are three restrictive conditions in Equation (44). The first condition
requires the remaining energy of node selected as CH must has more than the least energy consumption
of the CH during one tracking. The second condition requires the predicted target to be located in
zone Z2

i of the camera ci if the camera node ci is selected as the CH. Finally, the third condition requires
the candidate CHs to belong to the cluster node set `k+1.

Under the above descriptions, this mechanism prioritizes nodes near the predicted target position
and with more remaining energy. The camera nodes with less energy are not likely to be selected as
the CH, which can delay their death and then lead to a longer network lifetime. Moreover, the nodes
close to the predicted target position under the condition T̂k+1 ∈ Z2

i could view the target well
with a higher probability, given the error of the predicted target position. However, a candidate
CH may not have both the most remaining energy and the shortest distance to the target at the
same time. Hence, the goal of this CH selection mechanism is to make a good trade-off between the
balanced remaining energy distribution and the robust tracking ability. Each camera node ci computes
individually d(ci, T̂k+1) and remaining energy ei, then sends them to the CH. Therefore, the CH does
not require any knowledge about the candidate camera nodes in advance: nodes transmit to the
CH everything the CH needs. Thus it is also efficient and suitable for decentralized implementation
in WCNs. Algorithm 2 summarizes the proposed mechanism for selection of CH at the end of timestep k.

Algorithm 2. Selection of CH based weighted combination (operate in current CH)

Input: Task cluster node set `k+1 and their energy set Ec and positions, predicted target
position T̂k+1.

Output: The CH ch
k+1.

1. Compute the distance between the predicted target position and each camera node ci,
d(ci, T̂k+1)), ci ∈ `k+1 .

2. emax
k ← max({ei; ci ∈ `k+1}), emin

k ← min({ei; ci ∈ `k+1}),
dmax(ci, T̂k+1))← max({d(ci, T̂k+1)); ci ∈ `k+1}),
dmin(ci, T̂k+1))← min({d(ci, T̂k+1)); ci ∈ `k+1}).

3. for each camera node ci ∈ `k+1
4. if T̂k+1 ∈ Z2

i and ei > Eas
ch

5. Compute ψe(ei) as in Equation (46) and compute ψd(ci) as in Equation (47).
6. Compute ψ(ci) using Equation (45).
7. else
8. ψ(ci) = 0.
9. end if
10. end for
11. ch

k+1 ← argmax({ψ(ci); ci ∈ `k+1}).

6. Efficient and Robust Decentralized Tracking Scheme

The proposed decentralized target tracking scheme is divided into three mechanisms, namely
measurements fusion and state prediction, selection of task cluster nodes and selection of CH,
which have been described in detail above. Next, we will integrate these mechanisms into
a decentralized tracking scheme.

All camera nodes are assumed in a sleep mode initially, but periodically awake to detect the target.
Once a target appears in the monitor region boundary, the boundary nodes that sense the target will
activate themselves to execute the tracking task. Meanwhile, the first boundary node that senses the
target will automatically become the CH by broadcasting its information to inform other active nodes.
Subsequently, the first CH will select the next CH and CMs to form a task cluster.
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When the timestep k is up, the CH and CMs all capture the image of the target and perform
SRCIF algorithm locally. After acquiring efficient data, the CMs forward the data to the CH after
a random-delayed time with the conflict detect mechanism, CSMA/CA. The CH then fuses the
received data together with its local measurements to achieve a more accurate current state estimation
of the target. Subsequently, the target state at timestep k + 1 is predicted in the CH and sent to CMs
and all alert nodes. Each node ci ∈ Γk+1 will calculate its trace of the predicted information matrix and
send it with its current state data to the CH. Finally, the CH selects the next CMs and CH based on
the received data. Note that if a CM selected by the last CH could not view the current target, it will
fall into sleep state. However, if the selected CH could not view the current target yet, it will continue
working and fuse different measurements without its own data. The concrete operations of the CH are
described in detail in Algorithm 3, and the corresponding operations of the CMs and alert nodes are
presented in Algorithm 4.

Algorithm 3. Operations in the CH at timestep k

Start: The data x̂k|k−1 and SY,k|k−1 which are from the last CH at timestep k− 1.

1. When the pre-set time is out, obtain the measurement zch
k , compute the y(ch)

k|k and Y(ch)
k|k

based on the measurement update of the SRCIF as described in Section 3.
2. Receive the packets with < y(i)k|k, Y(i)

k|k > from each CMs, and then perform the
information fusion to achieve ŷk|k and SY,k|k as in Equations (34) and (35).

3. Compute Pk|k and x̂k|k as in Equations (36) and (37).
4. Compute x̂k+1|k and SY,k+1|k based on the prediction step of the SRCIF as

described in Section 3.
5. Broadcast the packets with < x̂k+1|k, SY,k+1|k > to its CMs and all alert nodes.
6. Compute its predicted Ŷch

k+1|k+1 based on the measurement update phase of the
SRCIF as described in Section 3.

7. Receive the packets with < ej, ρj, pj, tr(Ŷj
k+1|k+1) > from each camera cj ∈ Γk+1.

8. Select the new task cluster nodes and a new CH from current cluster nodes and all
alert nodes according to the description in Section 4 and 5.

9. Announce the selected CMs and CH with packets that include < x̂k+1|k, SY,k+1|k >.

Algorithm 4. Operations in CMs or alert nodes at timestep k

Start: The data x̂k|k−1 and SY,k|k−1 which are from the last CH at timestep k− 1.
1. for each camera node ci ∈ Γk+1
2. if ci ∈ `k
3. When the pre-set time is up, measure the current target and obtain the

measurement zi
k.

4. Compute the y(i)k|k and Y(i)
k|k based on the measurement update phase of the

SRCIF as described in Section 3.
5. Transmit the packets with < y(i)k|k, Y(i)

k|k > to its CH.
6. end if
7. Upon receiving the packet with < x̂k+1|k, SY,k+1|k >, compute its predicted Si

Y,k+1|k+1
based on the measurement update phase of the SRCIF as described in Section 3.

8. Transmit the packet with < ei, ρi, pi, tr(Ŷi
k+1|k+1) > to the CH.

9. ci will keep active state if selected as a CM or CH, or it falls into sleep state.
10. end for

7. Simulation Results and Evaluation

In this section, we evaluate the proposed mechanisms and compare them with the state-of-the-art
algorithms. To evaluate and analyze the performances of the proposed algorithms, the software
MATLAB is used to simulate the tracking scenario.
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7.1. Simulation Setup

In our simulation, we consider the tracking scenario as shown in Figure 1. A low-speed motion
target (e.g., human, animal) moves in a 500 m × 500 m square area with coordinates from [−250, 250]
to [−250, 250]. The motion of the target is modeled with Gaussian distributed acceleration as given in
Section 2.2. The covariance matrix of motion process noise Qa and covariance matrix of measurement
noise R are assumed to be diag(0.1, 0.1) and diag(5, 5), respectively. The area is covered by a dense
sensor network that contains N = 8000 camera sensor nodes whose FOV is a fan-shaped area with
sensing range Rs = 30 m and central angle α = 90◦ as shown in Figure 3. Without loss of generality,
the initial energy of each camera node distributes uniformly in [0, 1](J), and the energy consumption
model of camera nodes in different states has been described in Section 2.4. Moreover, it is assumed
that there is no wireless transmission error when nodes communicate with each other. To simplify the
simulation, we set the total timesteps of measurements in one tracking K = 100 and the time interval
between two successive measurements δ = 1 s. The homography matrix values of each camera Hi,
in our system, are taken from the camera C6 of APIDIS dataset [29] whose value are:

Hi =

 1930.8939 −89.8033 −2, 393, 800
117.2530 91.8121 1, 022, 700

0.3485 −0.8720 1971.8862

 . (48)

For a fair evaluation on each algorithm, we made a total of Nm = 1000 independent Monte
Carlo runs on each target trajectory. The results of the comparisons are averaged over 1000 different
trajectories with different initializations. Table 2 summarizes other system parameters of this
experimental environment which have been described in Section 2 with their settings and Figure 4
shows some of target trajectories used in our simulation experiment.
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Figure 4. Some of the target trajectories which are used to test our methods in our simulated experiment.
The trajectories are in solid lines with different colors, denoting different motion states of the target.
To simplify the simulation, the spans of all trajectories are set within 100 s.
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Table 2. System parameters of simulation environment and their settings.

Description Symbol Setting

Sensing probability of node ci if the target is inside the Z1
i ρ(1) 0.8

Sensing probability of node ci if the target is inside the Z2
i ρ(2) 1

Sensing probability of node ci if the target is inside the Z3
i ρ(3) 0.8

Weighting factor of energy priority θ 0.7
Weighting factors of detection range ζ1, ζ2 0.1, 0.9
Acquisition cost a 5.0× 10−3 J
Processing cost p 4.4× 10−8 J/bit
Fusing cost u 4.4× 10−8 J/bit
Transmission cost t 2.2× 10−7 J/bit
Receiving cost r 2.92× 10−6 J/bit
Amount of transmission data(CM) bt 160 bits
Amount of transmission data(Alert) b0

t 100 bits
Amount of receiving data from CH br 100 bits

7.2. Decentralized SRCIF for Measurement Fusion

In this section, the accuracy and numerical robustness of EIF-, CIF- and SRCIF-based target tracking
methods for the camera sensor network are compared under our proposed camera selection mechanisms.

With respect to the tracking accuracy comparison, the average root mean-squared error (ARMSE)
in position is adopted as the indication of tracking accuracy, since it yields a combined measure of the
bias and variance of a filter estimate [20]. The ARMSE in position is given by

ARMSE[pos] =

√√√√ 1
Nm

Nm

∑
n=1

1
K

K

∑
k=1

[(xk,n − xk)
2 + (yk,n − yk)

2], (49)

where (xk, yk) is the true position of target at timestep k and (xk,n, yk,n) is the estimated target position
in timestep k at n-th Monte Carlo simulation run. To check the numerical robustness of an information
filter, we also adopt the filter divergence rate, as that used in [20]. The filter is declared to diverge when
the average RMSE in the position of a Monte Carlo run (a tracking action) exceeds a given threshold ∂0.
In this simulation, we set ∂0 to be 3.4.

As shown in Figure 5, the ARMSE in position for EIF-, CIF- and SRCIF-based target tracking
decreases as the number of task cluster nodes Na increases. However, the improvement of tracking
performance diminishes and seems to be trivial after Na > 9. In addition, Figure 5 also shows
that both SRCIF and CIF consistently outperform EIF irrespective of Na. The performance of CIF is
almost identical to SRCIF, since the two are equally based on cubature filter. Figure 6 shows that
the ratio of divergence occurs out of 1000 Monte Carlo runs corresponding to different number of
task cluster nodes. The filter divergence rate of the three algorithms all decrease as Na increases
which can be seen from Figure 6. However, EIF diverges most (Na < 8) and CIF diverges many
times, especially when Na is less than 7. Unlike CIF and EIF, SRCIF only diverges when Na is 3 and 4.
Table 3 summarizes the features of the three methods. From Figures 5 and 6 and Table 3, it can be seen
that SRCIF is superior to other filters considering both the tracking accuracy and numerical robustness.

Table 3. Features of different fusion algorithms.

Fusion Algorithms Tracking Accuracy Numerical Robustness

SRCIF-based tracking high high
CIF-based tracking high moderate
EIF-based tracking low low
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Figure 5. Position errors corresponding to different numbers of task cluster nodes in tracking based on
different filter methods.
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Figure 6. Ratio of divergence corresponding to different numbers of task cluster nodes in tracking
based on different fusion methods.

7.3. Evaluation Results and Analysis of the Cluster Node Selection Mechanism

In this section, the tracking accuracy and energy consumption of the proposed cluster node
selection mechanism (Algorithm 1) are evaluated and analysed in comparison with other relevant
camera activation mechanisms in target tracking. Note that all mechanisms adopt the decentralized
SRCIF to fuse different measurements and the same cluster head selection method as described
in Section 5.

• M1. The CH activates or deactivates a camera analyzing the usefulness of its measurements
and the resources as given in [23], which also adopts an on-line decision making approach that
maximizes the trade-off between sensing gain and resource consumption. This work considers
the remaining energy of each node instead of the relative energy in current candidate cluster to
weight the resource consumption. Additionally, all camera nodes for which the rewards overtake
the cost will be activated.
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• M2. A fixed subset of camera nodes in the task cluster transmit their local information metrics to
the CH. The active camera nodes are selected on the basis of their remaining energy.

• M3. The CH fuses the measurements from all camera nodes that could sense the current target in
the current timestep [24].

From Figure 5, it can be seen that the improvement of tracking performance diminishes and
seems to be trivial after Na > 9. Thus, in this simulation experiment, we fix the number of task cluster
nodes in Algorithm 1 as well as in M2, Na = 9. Figure 7 shows the tracking results under different
target trajectories when using our node scheduling mechanism (Algorithm 1). The true trajectories
of target are in a solid line with different colors and all the estimated target trajectories are in dashed
with green. From Figure 7, it can be seen that the Algorithm 1 performs well in the estimation of target
state under different target trajectories.

-200 -100 0 100 200

x(m)

-250

-200

-150

-100

-50

0

50

100

150

200

250

y(
m

)

Figure 7. Tracking performance in some different trajectories of the target using our proposed node
scheduling mechanism (Algorithm 1). The true target trajectories are shown in a solid line with different
colors and the estimated trajectories are shown in dashed lines with green.

Next, the Algorithm 1 is compared with above mechanisms M1, M2 and M3 under the same
trajectories. Figure 8 shows the averaged error at different timesteps using different camera node
scheduling mechanisms. From Figure 9, we can find that M3 and M1 achieve the lowest mean tracking
error in one timestep (1.3839 and 1.3984 m, respectively) but the highest energy consumption in one
tracking action (11.7215 and 11.5384 J, respectively). The reason for this is that M3 and M1 integrate a large
number of measurements which are transmitted by their numerous cluster nodes (shown in Figure 10).
The mean tracking error of Algorithm 1 is 1.7257 m, higher than that of M3 and M1, but still suitable
for most applications, while its mean energy consumption is the lowest (5.436 J), 53.6% lower than M3
and 52.8% lower than M1. M1 activates all nodes with positive gain-cost balance, which may lead to
numerous task nodes and unnecessary energy consumption. Our camera node scheduling mechanism
only selects Na top-ranked nodes based on their contribution decision. As for the comparison between
M2 and our Algorithm 1, they are both with the same and fixed number of task cluster nodes (Na = 9).
However, Algorithm 1 outperforms M2 in tracking accuracy: 1.7257 m against 1.8543 m with almost
identical energy consumption, because it considers not only the remaining energy of a camera node
but also its the information gain when selecting the next cluster nodes. Table 4 summarizes the features
of Algorithm 1, M1, M2 and M3. Therefore, our method performs the best among the four algorithms
in balancing the tracking accuracy and network lifetime.
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Figure 8. Averaged tracking error of different algorithms at different timesteps. The tracking errors are
averaged over 1000 independent Monte Carlo runs under the same target trajectories.

Table 4. Features of different cluster node selection methods.

Node Selection Methods Tracking Error Energy Consumption

Algorithm 1 moderate (1.7257 m) low (5.436 J)
M1 low (1.3984 m) high (11.5384 J)
M2 high (1.8543 m) low (5.484 J)
M3 low (1.3839 m) high (11.7215 J)
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Figure 9. Comparison between Algorithm 1, M1, M2 and M3: the left figure depicts the mean tracking
error in one timestep and the right one depicts the mean energy consumption in one tracking action.
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Figure 10. Average number of task cluster nodes of different methods at different timesteps under the
same target trajectory.

7.4. Evaluation Results and Analysis of Cluster Head Selection

This section analyzes and compares the proposed CH selection method (Algorithm 2) with the
following methods.

• C1. This method selects the active node that is closest to the estimated target position as the CH,
as in [24].

• C2. In this method, an active camera node that has the highest remaining energy will be selected
as the CH.

We compare our method with C1 and C2 from the perspective of the standard deviation of
remaining energy and the ratio that the selected CH cannot view the target in a tracking action in
a tracking action (100 timesteps). The standard deviation of the remaining energy in a task cluster could
be adopted as the energy balance metric of the networks according to the work [4]. To compare fairly,
all methods use the decentralized SRCIF and camera node activation method as described in Section 4.

Figure 11 shows the comparison results and Table 5 summarizes their features. Algorithm 2
outperforms C2 by 60 percent in the ratio of loss of target: 0.0314 against 0.0780 with an almost identical
standard deviation of the remaining energy. As for the comparison between C1 and Algorithm 2,
the C1 and Algorithm 2 both achieve a good result in the ratio of loss of target in a tracking action:
0.0227 and 0.0314. However, Algorithm 2 outperforms C1 in energy balance metric of network,
which may lead to a longer network lifetime. Therefore, Algorithm 2 makes the best trade-off between
the balanced remaining energy distribution and the robust tracking ability.

It should be noted that under the assumptions in our simulation experiment, our proposed
approach works well when the target speed is lower than 15 m/s. When the target speed is above
15 m/s, the scenario that only few of candidate nodes could view the current target will occur.
Thus, the multi-sensor target tracking scheme using our approach will fail when the target moves too
fast according to our simulation experiment.

Table 5. Features of different cluster head selection methods.

CH Selection Methods Standard Deviation of Remaining Energy Ratio of Loss of Target in a Tracking Action

Algorithm 2 low (0.269) few (0.0314)
C1 high (0.271) few (0.0227)
C2 low (0.269) much (0.0780)
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Figure 11. Comparison between Algorithm 2, C1 and C2: the left figure depicts the averaged standard
deviation of the remaining energy in a task cluster and the right one depicts the averaged ratio of loss
of target in a tracking action.

8. Conclusions and Future Work

In this paper, we considered a cluster-based single target tracking situation in dense WCNs where
the cluster will dynamically change with the moving of the target. Considering some characteristics
and constraints of WCNs, an effective and robust decentralized tracking scheme is proposed in this
paper to balance the energy consumption and tracking accuracy. The tracking scheme integrates
different mechanisms: (1) a more realistic camera node sensing model; (2) a decentralized SRCIF for
fusing different observation results; (3) a greedy on-line decision mechanism to select task cluster nodes;
and (4) an efficient and stable mechanism for selection of cluster head (CH). The proposed scheme
could distribute the computational burden to each cluster node. Furthermore, the computational
burden performed by the cluster nodes (including the CH) is roughly constant regardless of the
cluster size. Therefore, it can be easily extended for multi-sensor collaborative target tracking in WCNs.
Additionally, the proposed scheme selects a fixed number of task cluster nodes based on the defined
contribution decision (CD), which makes it applicable to a sensor network where each sensor node is
resource-constrained. Each mechanism is evaluated and compared with related mechanisms using
state of the art methods. The comparison results demonstrate that the proposed scheme behaves really
well in balancing the resource consumption and tracking accuracy.

In our future endeavors, we aim to carry out our further work on the following aspects.
The first aspect is to investigate the multi-target tracking schemes in WCNs, which will be more
complicated than those in the single target scenario. Then, the recovery mechanism for cases of
emergency or target loss in practice should also be discussed. The third valuable aspect is to investigate
the problem of tracking a high-speed target in WCNs. In addition, the simulation of our approach
is implemented via MATLAB platform, which is not applicable in practical wireless sensor network
nodes where the advanced software is not available in MCU and embedded system. Therefore, one of
our following tasks is the implementation of the solution in C language to use directly in sensor nodes.
Finally, how to reduce the cost of building a tracking network is also a significant subject in our future work.
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