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Abstract: Community detection (CD) has become an important research direction for data mining
in complex networks. Evolutionary algorithm-based (EA-based) approaches, among many other
existing community detection methods, are widely used. However, EA-based approaches are prone
to population degradation and local convergence. Developing more efficient evolutionary algorithms
thus becomes necessary. In 2013, Cuevas et al. proposed a new differential evolution (DE) hybrid
meta-heuristic algorithm based on the simulated cooperative behavior of spiders, known as social
spider optimization (SSO). On the basis of improving the SSO algorithm, this paper proposes
a community detection algorithm based on differential evolution using social spider optimization
(DESSO/CD). In this algorithm, the CD detection process is done by simulating the spider cooperative
operators, marriage, and operator selection. The similarity of nodes is defined as local fitness
function; the community quality increment is used as a screening criterion for evolutionary operators.
Populations are sorted according to their contribution and diversity, making evolution even more
different. In the entire process, a random cloud crossover model strategy is used to maintain
population diversity. Each generation of the mating radius of the SSO algorithm will be adjusted
appropriately according to the iterative times and fitness values. This strategy not only ensures
the search space of operators, but also reduces the blindness of exploration. On the other hand,
the multi-level, multi-granularity strategy of DESSO/CD can be used to further compensate for
resolution limitations and extreme degradation defects based on modular optimization methods.
The experimental results demonstrate that the DESSO/CD method could detect the community
structure with higher partition accuracy and lower computational cost when compared with existing
methods. Since the application of the SSO algorithm in CD research is just beginning, the study is
competitive and promising.

Keywords: community detection; hybrid meta-heuristic optimization algorithms; social spider
optimization (SSO); differential evolution (DE); modularity

1. Introduction

Community detection (CD) is a method of dividing a complex network into several
sub-structures. It is widely accepted that a community should have dense intra-connections and sparse
inter-connections [1]. Most of complex networks imply a community structure [2–5]; their vertices are
organized into groups, called communities, clusters, or modules. These include the functional structure
of the protein networks, relationships in social networks, link relation of web pages on the Internet,
cooperative modules in power network systems, and so on. Uncovering the mesoscopic-structure of
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community in complex networks is helpful for understanding complex systems [6–8], where objects
are represented as nodes and the relationships among the objects are represented as edges [1]. Complex
networks have characteristics of discrete distribution and dynamic evolution [9] unlike simple networks
such as lattices or random graphs. Thus, simple modeling and analysis based on network topology
gradually fails to meet the needs of community detection.

Recent studies have paid much attention to community detection and have developed various
algorithms from different perspectives. According to the principle of division, community structures now
can be detected through many different methods, such as division-based [1,10,11], cohesion-based [12,13],
spectral-based [14,15], statistical-inference-based [16,17], and optimization-based [18–26] methods.
Recently, the optimization-based methods have drawn steady attention to community
detection [4,20,27,28]. The community detection problem can be translated into an optimization
problem [29], where modularity function Q [10] is a widely adopted in optimization objective,
even if maximizing Q is usually non-deterministic polynomial hard (NP-hard) [21]. In community
structure detection, optimization is based on the monotonic increase and the approximate maximum
two characteristics of the Q function [30]. Although Q functions are limited in resolution [28] and
extreme degradation [31], they are widely used by researchers. Blondel [32] and Khadivi et al. [33]
found that the design of multi-level, multi-granularity, and weighted methods can ease resolution limits
and extreme degradation. Evolutionary algorithm (EA)-based strategies are effective in optimization
approaches [33]. Compared to other strategies, there are three main advantages. Firstly, EAs are similar
to the simulation network evolution process [34]. Secondly, the multi-level, multi-granularity strategy
of EAs can be used to further compensate for resolution limitations and extreme degradation defects
based on modular optimization methods [35]. Thirdly, they are more suitable for solving complex
and discrete problems (EAs change their current state to the next state with the strategy adopted,
while maintaining some degrees of randomness to ensure the exploration of solution space). However,
in the EA-based for CD algorithm, too much fitness calculation and premature convergence of the
population are still the main obstacles in the community testing process. In addition, maintaining the
diversity of the population and balancing the algorithm convergence is the key issue to improving the
performance of EAs [36].

Thus, researchers have designed a number of algorithms to overcome obstacles [36]. Recently,
the differential evolution (DE) hybrid meta-heuristic-based optimization algorithms of CD research
have made great progress [20–24,27,37,38]. Typically, the parent’s mutation operator of the DE
algorithm is chosen randomly from the population. This is different from other EAs, in which the
probability of all individuals being treated as parents is equal. Such a strategy could damage the
population diversity [2,39–41]. Therefore, Wang [40] presented a new differential strategy, whereby
individuals in the current population are first sorted according to their fitness and diversity contribution
by non-dominant sorting, thus, the promising individuals with better fitness and diversity have
a greater opportunity to be selected as parents in order to achieve a good balance between exploration
and exploitation. However, the above strategy does not evaluate fitness and diversity information in
real time in each generation. If it is used to model the discovery of the community, it may lead to loss
of diversity information and be difficult to converge.

Based on the above analysis and inspiration, this paper proposes a community detection algorithm
based on differential evolution using social spider optimization (DESSO/CD). In this algorithm, a new
community detection algorithm framework based on social spider optimization (SSO) is presented.
In initializing the population process, nodes in the network are initialized as populations in the SSO
algorithm. In the cooperative operators’ process, the fitness function of the SSO algorithm is defined
according to the local similarity strategy of nodes. The populations are divided into two categories:
elite and non-elite based on the fitness value, which further improves the differential evolution strategy
of the SSO algorithm (the effect of the strategy corresponds to the hybrid differential evolution scheme
proposed in [40]). At the same time, a random cloud crossover model is adopted to keep the diversity
of population. In the mating operator process of DESSO/CD, the mating radius will automatically be
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adjusted according to the fitness value in the dominant individuals. Each generation of the quality
increment of community modularity is used as a criterion for the evolutionary selection operator.
This approach promotes the balance between local exploration and global search, while maintaining the
diversity of the populations can effectively improve the adaptability and efficiency of the CD algorithm.

Therefore, there are three main contributions of this paper. Firstly, a new community detection
algorithm framework based on social spider optimization is presented. Secondly, based on the hybrid
meta-heuristic approach, the population in the SSO algorithm is further differentiated. Thirdly, an
adaptive mating radius strategy fitted by the fitness value and iterative times is presented.

The rest of the paper is organized as follows. In Section 2, we first introduce some background
knowledge and the framework of the DESSO/CD algorithm. Then, the fitness function and evolution
criteria of the proposed algorithm are presented. In Section 3, the SSO algorithm is described in detail.
Our improvements for SSO and the general process steps of the DESSO/CD algorithm are described in
Section 4, and experimental settings and analysis are provided in Section 5. In Section 6, the proposed
algorithms are analyzed and discussed. The last section concludes this paper and threads some future
research issues.

2. Related Work for DESSO/CD

In this section, we are devoted to the description of related work for DESSO/CD. Firstly,
the necessary background knowledge for understanding the proposed algorithm (the definition
of network community used in this paper) is introduced. Secondly, the community detection algorithm
framework based on social spider optimization (SSO/CD) is given. Thirdly, the fitness function and
evolution criteria of the proposed algorithm are presented.

2.1. Definition of Network Community Detection

Community detection is defined in [1,2]. Given network G = (V, E), where V and E represent
the set of nodes and join edges in the network, respectively, for the purpose of the application of the
network it is divided into the set C, (∪1≤i≤kCi=C) ∧ (C ⊆ G). k is the number of divided communities.
The division increases the possibility of the nodes in the same community having a greater connecting
edge [1], as shown in Figure 1.
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Figure 1. Sketch map of network community detection.

2.2. Framework of DESSO/CD Algorithm

The community detection algorithm based on the evolutionary algorithm usually makes the
community mass increase with the iterative selection criteria, with local similarity or aggregation
equivalence as an evolutionary algorithm population of the fitness function value. When the algorithm
converges, the community is divided [20]. Following this idea, the framework of the DESSO/CD
algorithm is shown in Figure 2.
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2.3. Fitness Functions and Community Optimization Incremental Guidelines

2.3.1. Fitness Function of Community Detection

In the evolutionary algorithm, fitness refers to the fitness degree of individuals in the population to
the environment [36]. The fitness value is used to measure the degree of individual fitness. According
to the definition of communities [1], the nodes of the same community are highly similar, while to the
contrary, nodes across communities present low similarity [5,42]. We can we find that when there is
higher similarity between nodes (nodes are initialized as populations in this paper), the fitness value
is larger [22]. When designing CD fitness values, the simple strategy using the Euclidean distance or
Jaccard similarity is not enough [43,44]. It should be noted that similarity of network nodes is closely
related to factors [45] such as number of common neighbor nodes, local influence of nodes, direct or
indirect connected edge, topic correlation network, etc. When dealing with CD problems, researchers
usually use two different preference models to measure the similarity between nodes, as well as global
characteristics and local similarity [46]. In this paper, the local similarity index is used as the fitness
function, because the locally similar approach is more suitable for evolutionary algorithms to achieve
optimal strategies gradually. Here we consider two nodes through the intermediary node in the
network connecting to define similarity. The node i can be connected to the j node through a plurality
of nodes between common neighbor edges (even i and j have no direct connection). If the average
degree of public neighbor nodes between two nodes is larger, then the similarity between the two nodes
is greater. Therefore, the node proximity similarity is defined as

NSij = ( ∑
z∈N(i)∩N(j)

1
kz
)/(

√√√√ ∑
z∈N(i)

1
kz

√√√√ ∑
z∈N(j)

1
kz
) (1)

where N(i) represents the set of neighbor nodes, z ∈ (N(i) ∩ N(j)) represents the common neighbor of
node i and j, kz represents the degree of node z, NSij ∈ [0, 1], and if there is no path between two nodes,
NSij = 0.

This study uses NSij to replace J(Sl) in Formula (9), and the weight ω is modeled as the
minimization problem as

ωl =
[

NSl j −max
{

NSl j

}]
/(min

{
NSl j

}
−max

{
NSl j

}
) (2)
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where j ∈ {1, 2, . . . , Nt}, Nt is the current population of evolutionary algebra, and Fl is the current
population of Nt. Through the above design, vibration perception ability of Vibvl is not only related to
the spider population and Euclidean distance, but it also considers the relationship of the neighbor
node edge. It can effectively improve the spider’s multi granularity and multi-level search ability.

2.3.2. Community Optimization Incremental Criteria

In community detection applications, the modularity Q function [10] has two main functions.
One is the standard for testing quality, and the other is used as the objective function [43]. Although Q
functions are limited in resolution [28] and extreme degradation [31], they are widely used by researchers.
Blondel [32] and Khadivi [33] et al. found that the design of multi-level, multi granularity, and weighted
methods can ease resolution limits and extreme degradation. The Q function value is greater when that
network division is better. The maximum Q function is always NP-hard. Hence, Newman [29] put
forward increment function of modularity considering. He was sure that the value of modularity
would increase when nodes joined the community or the community consolidated. The definition can
be stated as

∆Q = 2(eij − ai ∗ aj) (3)

where eij represents the ratio of the number of edges connecting two vertices to the total number of
edges within the community ai = ki/2m, ki indicates the degree of node after community merging,
m is the number of edges in the network, and A is a network adjacency matrix, m = (∑ij Aij)/2, ki = ∑j Aij.

Based on the characteristics of the community mining process by using the monotone increasing
function of Q, we use ∆Q as a criterion for optimizing operators. If the spiders have been mated for
generations and the Q value has not changed significantly, the algorithm will converge.

3. Social Spider Optimization Algorithms

Cuevas [47] proposed the social spider optimization (SSO) algorithm in 2013. SSO is an intelligent
swarm-based heuristic differential evolution algorithm, which is based on the simulation of cooperative
behavior of social spiders. The SSO algorithm is different from most existing swarm algorithms which
model individuals as unisex entities exhibiting virtually the same behavior [48]. The SSO algorithm
has three steps [47–51] including initializing the population, cooperative operators, and mating
operators. In the SSO algorithm, the search space is modeled as a spider’s web; the optimization of
the problem is equivalent to finding the final position of the spider after the collaboration. The fitness
value corresponds to the ability of the spider to adapt to the environment. When the SSO solves
the problem, the spider position is randomly initialized, and the optimal solution of the problem
is obtained through the interaction of female and male internal cooperative movement (evolution
of population) and marriage process (each generation produces new individuals to replace inferior
individuals). In the evolution of SSO, each individual has the ability to learn at random, as well as
learning from parents and the most recent and optimal individual (Formula (7)). These strategies give
SSO more flexible parameters, stronger adaptability, and a higher searching efficiency. It can maintain
the diversity of the population and obtain better solutions.

Compared to existing EAs, SSO is more competitive [47,48,51,52]. Cuevas has experimentally
tested SSO, considering 19 benchmark functions, and using comparisons with PSO and ABC algorithm
performance. Results have confirmed that SSO is more competitive in solving discrete problems.
In recent works, SSO has been used to solve different sorts of engineering problems. A multilevel image
threshold is proposed based on the SSO algorithm [51]. The SSO is used in solving high-dimensional
dataset clustering [52]. SSO has shown a better effect in solving the above problems. However, since
SSO has only just been proposed, there are few studies related to the applications of the community
detection, and further research is needed in terms of algorithm adaptability.

The SSO algorithm simulates the law of spider swarm movement to achieve optimization. In this
algorithm, the number of females was controlled at 65–90% of the entire population [47]. Every spider
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has a weight according to the fitness value of its solution. A new population of search agents is
generated using the mating operator. Male spiders tend to be attracted toward females according to
a certain radius. This is called the mating radius. After producing new spiders, their fitness values are
calculated and then compared to the worst spider in the population. In each generation, the inferior
spiders will be replaced by the latest and most optimal spiders. The steps of SSO algorithm are as
follows (the detailed process can be found in [47]):

3.1. Initializing the Population

Like other evolutionary algorithms, SSO is an iterative process involving a first step of
randomly initializing the entire population (female and male). The algorithm begins by initializing
the set S of N spider positions [47]. This occurs through initialization of the relevant parameters:
population number N, probability factor PE, and the number of male and female spiders Nm and N f .
The correlation formula is

N f = b(0.9− rand× 0.25)× Nc and Nm = N − N f (4)

where b·c is a downward integer, and rand is the random number of (0, 1).
The relationship between the male and female population of the spiders is

S = F ∪M =
{

S1 = F1, S2 = F2, · · · , SN f = FN f , SN f +1 = M1, SN f +2 = M2, · · · , SN = MNm

}
(5)

where F and M represent female and male populations, respectively, and S is the full spider population.
The formula for randomly generating male and female populations is

Fij = Fj min + rand(Fj max − Fj min) and Mkj = Mj min + rand(Mj max −Mj min) (6)

where Fij and Mkj denote the initialized female and male, respectively; Fj max and Fj min denote the

upper and lower bounds of the j dimension, respectively; and i ∈
{

1, 2, . . . , N f

}
, k ∈ {1, 2, . . . , Nm},

j ∈ {1, 2, . . . , N}.

3.2. Cooperative Operators

3.2.1. Female Cooperative Operator

According to the biological behavior of the social-spider, the male population is divided into
two classes: dominant and non-dominant male spiders. Females attract or exclude other individuals
by vibration, and female spiders can be divided into two groups for individual updates. Their updates
are less than or equal to the probability factor, while PE attracts and vice versa. In reality, the size of
a spider is a characteristic manifestation of executive ability. In SSO, each individual (spider) designs
a fitness weight ωl that represents the solution quality (irrespective of gender). Individual updates are
conducted by

Ft+1 =

{
Ft

i + αVibci(Sc − Ft
i ) + βVibbi(Sb − Ft

i ) + δ(rand− 0.5); rm ≤ PE
Ft

i − αVibci(Sc − Ft
i )− βVibbi(Sb − Ft

i ) + δ(rand− 0.5); else
(7)

Vibvl = ωle−d2
vl that (dvl = ‖Sv − Sl‖) (8)

ωl =

{
1− ([J(Sl)−min{J(Sl)}]/(max{J(Sl)} −min{J(Sl)})); Max
[J(Sl)−max{J(Sl)}]/(min{J(Sl)} −max{J(Sl)}); Min

(9)

where t is the random number of the current iteration, rm, α, β, δ is [0, 1], l ∈ {1, 2, . . . , N};
Sc is an individual nearest to and superior to itself in distance from the individual Fi; Vibvl is the
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vibration perception of individual l to individual v; J(Sl) is the fitness function of the individual Sl
objective function; and dvl is the Euclidean distance between the individual v and the individual l.

3.2.2. Male Cooperative Operator

Dominant male spiders have better fitness characteristics (usually regarding size) in comparison
to non-dominant spiders. Dominant males are attracted to the closest female spider in the communal
web. In contrast, non-dominant male spiders tend to concentrate in the center of the male population as
a strategy to take advantage of resources that are wasted by dominant males [47]. According to the size
of the fitness ranking, the male individual update can be divided into dominant and non-dominant.
Dominant individuals attract the opposite sex so that they are close, and have the ability to gather the
middle section of individual male clusters. Individual updates are achieved through

Mt+1 =

{
Mt

i + αVib f i(S f −Mt
i ) + δ(rand− 0.5); ωN f+i ≥ ωN f+m

Mt
i + α((∑Nm

h=1 Mt
hωN f+i )/(∑

Nm
h=1 ωN f+i )−Mt

i ); else
(10)

where ωN f+m indicates the weight in the middle. The male individuals are arranged according to
the weight of descending value. If the male has a weight greater than or equal to that of the middle
position, it is updated by the dominant individual; otherwise, this occurs through the non-dominant
individual. A subset of the population consisting of male-dominated individuals is represented by
TD; S f is the closest individual to Mi, and ∑Nm

h=1 Mt
hωN f+i /∑Nm

h=1 ωN f+i is the average weight of the
male spider.

3.3. Mating Operator

Mating in a social spider colony is performed by dominant males and female members [46].
Under such circumstances, when a dominant male mg spider (g ∈ D) locates a set Eg of female
members within a specific range r (range of mating), it mates, forming a new brood Snew which is
generated considering all the elements of the set Tg that, in turn, has been generated by the union
Eg ∪mg. Male and female spiders have a generational update after mating to produce new individuals
to replace the inferior spider until it meets the conditions. In each of the dominant male mating radii (r),
according to the methods of roulette bets and females after mating to generate new individuals (Snew).
That is, dik ≤ r, dik 5 r, i ∈ Tg,k, k = (1, 2, . . . , D), and D is the total number of individuals dominated
by the male. If the value of J(Snew) is larger than that of the worst individual in the population,
J(Snew) is replaced by Snew. All female individuals are marked in the male mating i radius for the
population Tg,i. The probability that the female individual q in Tg,i is chosen for marriage by the male
individual i is calculated as

PSq = wq/( ∑
g∈Tg,i

wg), q ∈ Tg,i (11)

Marriage radius r is calculated as

r =
N

∑
j=1

(Phigh
j − Plow

j )/2N (12)

where Phigh
j and Plow

j are the upper limit and the lower limit of the jth dimension, respectively.

4. Our Improvement for SSO

4.1. Improvement of Differential Evolution Cooperative Operators

This section aims to improve SSO in two respects: an increase of population difference update
strength, and a random cloud crossover model [50,53] to disrupt the population. In the early stage of
SSO, spiders fall easily into local exploration because of a lack of prior information [51]. Therefore,
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we should increase the dynamics of the global optimal individuals and stochastic learning, so as to
maintain the population diversity and avoid the algorithm being trapped in local convergence. In the
later stage, we should enhance the local search ability of the population and reduce the matching radius
to ensure the fine exploration of local community and further optimize classification accuracy [50].
On the other hand, for poor individuals, we should increase the global search to move closer to the
nearest optimal community, while elite individuals should try to retain good genes and strengthen the
local search [22,36,51]. To avoid population degradation, we propose a random cloud crossover model
to disrupt the population strategy.

4.1.1. Further Improvement by the Elites and Non-Elites

In the SSO algorithm, the female population is divided into two evolutionary strategies—attraction
and repulsion—according to the probability factor PE (Formula (7)). The male population is divided
into two evolutionary strategies according to the size of the weight ω; namely, the dominating
individual and the non-dominated individual (Formula (10)). In the SSO community discovery
application, because the individual location and the adaptation values are different, the natural node
that belongs to the community is also different. Populations are required to have more distinct diversity
characteristics [3,21–24,36–41]. In view of this, we further divide the male and female populations into
two categories—elite and non-elite—which are sorted according to their fitness. Specific definitions
are as follows (take female cooperative operators as an example):

Female elite individual cooperative operators:

Fle
j,new = Fle

j + τ · θb · (1− t/max(t)) · (ST
b − ST−1

b ), J(Fle
j,new) ≥ J(Fle

j ) (13)

Female non elite individual cooperative operators:

Ft+1
i =

{
ψFt

i + αVibji(Fle
j − Ft

i ) + β1Vibbi(Sb − Ft
i ) + β2Vibli(Fl − Ft

i ) + δ(rand− 0.5), rm ≤ PE
ψFt

i − αVibji(Fle
j − Ft

i )− β1Vibbi(Sb − Ft
i )− β2Vibli(Fl − Ft

i ) + δ(rand− 0.5), rm > PE
(14)

where τ is a [−1, 1] random number; θb and ψ are the control factor; and St
b and St−1

b represent the
optimal and suboptimal solutions of the female population, respectively. Fl is a random individual
within an elite individual of the Fle

j (l 6= j 6= b) population.

4.1.2. Random Cloud Crossover Model to Disrupt the Population

The results show that the initial population of SSO has good diversity, while the population
diversity is weakened with later evolution, and the algorithm can easily fall into local stagnation.
In order to maintain population diversity, it is necessary to design a new mixing mechanism to avoid
premature convergence. In this paper, we use the cloud model method [50,53] to improve the random
part, so that spiders can shift their positions with smaller probability, and the larger probability is
around them.

The mixing dimension Ws is defined as

Ws = bD× t/max(t)c (15)

where t and max(t) are the current iteration and the total number of iterations. If the new individual
Mi has a mixing dimension of k, that is, Mi(k) the new Mi(k)’ is stirred

Mi(k)
′ =

N

∑
i=1

G(Ex, G(En, Eh))/N (16)

where G(a, b) represents the normal random number with the expected value a and the standard
deviation b, Ex = Xi(k), En = 0.5, Eh = 0.005 [50].
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4.2. Adaptive Mating Radius

In view of the complex characteristics of network data, by improving mating radius, the purpose
of improving local search ability of spiders is achieved. With the increase of the number of iterations,
poor individuals are gradually replaced or merged; then the community division becomes more
and more obvious. At this time, the overall strategy is to reduce the marriage radius appropriately,
and the elite individuals should slow down or even increase their marriage radius with higher fitness.
Therefore, the mating radius was redefined as

rle = r× (2− e
(
ln(2)× t
max(t)

)

)× e
(
ln(3)× J(Mi)

max{J(Mi)}
)

(17)

where r is the marriage radius expressed by Equation (12), t is the current iteration number, max(t) is
the total iteration number, and J(Mi) is the current i individual fitness value.

4.3. Steps of the DESSO/CD Algorithm

After the above improvements, the main steps of the DESSO/CD algorithm are:

Step 1. Initializing the given network data.

1. Population size N, Probability factor PE, Maximum iterations max(t). Initializing Nf, Nm by
2. Formula (4):
3. N f = f loor[(0.9− rand · 0.25) · N] and Nm = N − N f
4. //where rand is a random number between [0, 1] and floor (.) maps a real number to an integer
5. Number.

Step 2. Initializing the spider male and female S, F, and M according to Formula (7).

1. For (i = 1; i < Nf + 1; i++)
2. For (j = 1; j < N + 1; j++)

3. f 0
ij = plow

j + rand · (phigh
j − plow

j )

4. End for
5. End for
6. For (k = 1; k < Nm + 1; k++)
7. For (j = 1; j < N + 1; j++)

8. m0
ij = plow

j + rand · (phigh
j − plow

j )

9. End for
10. End for

Step 3. Calculating the weight of the individual w and sorting.

1. For (l = 1; i < N + 1; l++)
2. For (j = 1; j < N + 1; j++)

3. ωl =
[

NSl j −max
{

NSl j

}]
/(min

{
NSl j

}
−max

{
NSl j

}
)

4. // Where NSij = ( ∑
z∈N(i)∩N(j)

1
kz
)/(
√

∑
z∈N(i)

1
kz

√
∑

z∈N(j)

1
kz
)

5. End for
6. End for

Step 4. Moving female spiders according to the female cooperative operator.

1. The elite and non-elite individuals are divided according to the J(Fle
i,new) ≥ J(Fle

i ) criterion in the population F:
2. For (i = 1; i < Nf + 1; i++)
3. Calculate Vibji, Vibbi and Vibli by Formula (8)
4. If (J(Fle

i,new) ≥ J(Fle
i ))

5. Fle
j,new = Fle

j + τ · θb · (1− t/max(t)) · (ST
b − ST−1

b )
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6. If (rm < PE); where rm ∈ rand(0,1), τ ∈ rand(0,1), θb and ψ are the control factor.
7. Ft+1

i = ψFt
i + αVibji(Fle

j − Ft
i ) + β1Vibbi(Sb − Ft

i ) + β2Vibli(Fl − Ft
i ) + δ(rand− 0.5)

8. Else
9. Ft+1

i = ψFt
i − αVibji(Fle

j − Ft
i )− β1Vibbi(Sb − Ft

i )− β2Vibli(Fl − Ft
i ) + δ(rand− 0.5)

10. End if
11. End if
12. End for

Step 5. Moving female spiders according to the male cooperative operator.

1.
The elite and the non-elite individuals are divided according to the J(Mle

i,new) ≥ J(Mle
i ) criterion in the

population M.
2. For (i = 1; i < Nm + 1; i++)
3. Calculate Vibji by Formula (8)
4. If (J(Fle

i,new) ≥ J(Fle
i ))

5. Mle
j,new = Mle

j + τ · θb · (1− t/max(t)) · (ST
b − ST−1

b )

6. Find the median male individual (ωN f+m ) from M.
7. Else if (ωN f+i ≥ ωN f+m ), where rm ∈ rand (0,1), τ ∈ rand (0,1), θb and ψ are the control factor.
8. Mt+1

i = ψMt
i + αVibji(Mle

j − Ft
i ) + δ(rand− 0.5)

9. Else
10. Mt+1

i = Mt
i + α((∑Nm

h=1 Mt
hωN f+i )/(∑

Nm
h=1 ωN f+i )−Mt

i )

11. End if
12. End if
13. End for

Step 6. Calculating marriage radius according to Formula (17).

rle = r× (2− e(
ln(2)×t
max(t) ))× e

(
ln(3)×J(Mi)
max{J(Mi)}

)

where t is the current number of iterations.

Step 7. In roulette bets, according to Formula (11) with respect to the probability of selection, in the
male individual mating radius male and female marriages produce new individuals whilst replacing
the worst individuals.

1. For (i = 1; i < Nm + 1; i++)
2. If (Mi ∈ D)
3. Find Ei
4. If (Ei < >“”)
5. Form Snew using the roulette method
6. If (ωnews > ωwo)
7. Swo = Snew
8. End if
9. End if
10. End if
11. End for

Step 8. If the module ∆Q (Formula (3)) does not increase several generations, the algorithm stops,
or go to Step 9.

Step 9. The new individual is stirred by using the cloud model in Formula (16), go to Step 2.

Step 10. The convergent population labels are mapped into community partitions.

5. Experiments and Analysis

The framework of a CD algorithm based on SSO is proposed in this paper. There are two major
improvements in the SSO algorithm from the specific application of CD. In order to verify the validity
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of the DESSO/CD algorithm, this section conducts a comparison with the existing algorithms. In order
to compare the improved performance of the original SSO, we split the frame into four algorithms
according to the different points of the improved SSO algorithm; the CD algorithm based on the original
SSO framework (SSO/CD), the CD algorithm based on further differential SSO framework (DSSO/CD),
the CD algorithm based on improved marriage radius of the SSO framework (RSSO/CD), and the
CD algorithm based on two improved SSO frameworks (DESSO/CD). The other algorithms used for
comparison are some evolutionary and non-evolutionary algorithms, including the CD algorithm based
on simulated annealing [19] (an algorithm proposed by Guimerà and Amaral, GA), the CD based on the
scatter-based genetic algorithm [9] (SSGA), the CD based on differential bat algorithm [9] (Improved Bat
Algorithm Based On The Differential Evolutionary Algorithm, BADE), the CD based on hybrid particle
swarm optimization (PSO) algorithm [54], and the CD based on immune discrete differential evolution
algorithm [35] (IDDE). The comparison of the four algorithms (SSO/CD, DSSO/CD, RSSO/CD,
and DESSO/CD) is to verify the effect of improving the SSO framework. The comparison of other
existing algorithms is to confirm the competitiveness of the DESSO/CD framework.

There are evaluation metrics of accuracy of CD measure. Since the DESSO/CD algorithm uses
modular increment as the evolutionary operator selection criteria, in order to avoid the bias error,
we also use the normalized mutual information (NMI) [55] and modularity Q [10] functions as the
evaluation metrics of accuracy for CD measure, as described in Section 4.1.

The experimental data set is as follows. In the LFR (Lancichinetti Fortunato Radicchi, LFR)
benchmark [56], 10 randomly generated different sizes of the network, six kinds of real network data
sets commonly used in the CD field, and a novel graphical analysis come from the DESSO/CD
algorithm for a set of data collected in an online social network (Sina Weibo network) using
community detection.

The experimental environment involves a PC with an Intel i7 7700 k 4.2 GHz CPU, 16 GB of
memory, and a Windows 7 operating system. The general experimental parameters of this paper
are population size N = 500 (less than the expected number of communities), probability factor
PE = 0.6 [47], and maximum iteration number max(t) = 200.

5.1. Evaluation Metrics of Accuracy for the CD Measure

The modularity function is defined as

Q =
1

2M∑
ij

[
Aij −

kik j

2m

]
δci ,cj (18)

where kik j/2m represents the possibility of node i and j. If ci = cj is connected, Krone function
∆ = 1, or ∆ = 0, and the value of Q is the actual difference between the two proportional expectations.
The two ratios are the proportion of the connection edges between the nodes within the network
community and the proportion of links between the nodes of community in the random network
Q ∈ (0,1). The closer the Q value is to 1, the more obvious the network partitioning community is.

The NMI defines the formula as

NMI(A, B) = 2I(A, B)/[H(A) + H(B)] (19)

I(A, B) = ∑
k

∑
j

P(ωk ∩ cj) log
P(ωk ∩ cj)

P(ωk)P(cj)
(20)

H(A) = −∑
k

P(ωk) log P(ωk) (21)

P(ωk) = |ωk|/N (22)
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where A and B represent two different communities, respectively, A = (ω1, ω2 . . . , ωk),
and B =

(
c1, c2 . . . , cj

)
, I stands for mutual information, and H represents the entropy of information.

If two communities are divided into the same A and B, then NMI(A, B) = 1. If the two partitions of A
and B are more similar, then the NMI value is closer to 1.

5.2. Experiments on Artificial Data

The LFR benchmark [56] is an extension of the GN standard network data set, and is an artificial
network commonly used in current community discovery. The model is defined as

LFRmodel = (N, d, dmax, γ, b, cmin, cmax, on, om, m) (23)

The parameter meaning of LFR and the initial value of this experiment are shown in Table 1:

Table 1. Parameters of the LFR network

Parameter Initial Value Description

N 1000 Number of nodes
d 10 Average degree

dmax 50 Maximum degree
γ −2 Power law distribution of node scale
b −1 Power law distribution of community size

cmin 10 Minimum number of nodes in the community
cmax 50 Number of nodes in the largest community

on 100 Number of overlapping nodes in the community
om 4 Number of overlapping nodes linking communities
µ 0–0.5 Mixing parameter

5.2.1. Experiments of Iterations on LFR Networks

SSO/CD, DSSO/CD, RSSO/CD, and DESSO/CD will be compared in the same LFR networks.
For the sake of fairness, all parameters in the above four algorithms maintain consistency and the
mixing parameters µ = 0.06 in artificial benchmark networks on the LFR (usually µ ∈ [0, 3]), and in the
meantime the network has obvious community structure characteristics: the smaller the µ is, the more
obvious the characteristics of community structure will be. Other LRF parameters are shown in Table 1.
The accuracy of DC (NMI) was detected by increasing the number of evolutionary iterations.

As shown in Figure 3, the convergence speed of the algorithm between 30–40 generations of
DESSO/CD has an obvious oscillation period because of the random cloud crossover model to disrupt
the population (Section 4.1.2). Therefore, it can be concluded that algorithm accuracy and convergence
speed improved significantly after mixing the population as described in Section 4.1.2. This point can
also be clearly obtained from the DSSO/CD algorithm for the 50th generation with precision changes.
Moreover, in the later stage of the RSSO/CD algorithm, the spider search efficiency will be further
improved due to the amplification of elite individual mating and mating radius, and the radius of other
individuals being narrow. In addition, RSSO/CD has accelerated the trend of convergence clearly in
the 15th generation.
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Figure 3. Changes in the normalized mutual information (NMI) value in the LFR network with the
increase of evolutionary iterations.

5.2.2. Partitioning Accuracy on LFR Networks

The mixed parameter (µ) values of the LFR network are adjusted by 0.05 with the changing scale,
so that 10 different artificial networks are generated randomly, and then the network can be divided.
The algorithm runs 10 times in each network, taking the average of the precision index (NMI). Changes
of NMI value with increasing µ value in LFR network are shown in Figure 4a, which indicates that
when the network mixed parameter is µ ∈ [0, 3], the network community structure is relatively clear,
and so is the above algorithm. When µ ≈ 0.3, the NMI of SSO/CD and IDDE drops more clearly,
but DESSO/CD still can hold at 0.95 or so.
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Figure 4. Changes of accuracy value with increasing µ value in LFR network. (a) Changes of NMI value;
(b) Changes of the Q value.

In addition, with the increase of µ, the changes of Q value index are shown in Figure 4b.
Obviously, the SSO/CD and DESSO/CD algorithms are better than other algorithms, mainly because
the two algorithms are based on the growth of ∆Q for jumping out of circulation. The accuracy of
SSO/CD and IDDE is relatively close, that is because the SSO algorithm belongs to differential evolution
as IDDE does. In conclusion, the improved DESSO/CD algorithm is more stable and accurate.

5.2.3. Partitioning Speed of LFR Networks

On the LFR benchmark network, with the increase of the number of edges, the data for the
execution time of the test algorithm can be obtained, as shown in Figure 5. The reasons are because
the radius of differential evolution strategy and adaptive matching reduces the calculation of the
fitness function number as well as the random adjustment of learning mechanism based on a cloud
model, which could effectively control the blind search spiders. Therefore, SSO/CD is slightly worse
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than IDDE in convergence, whereas algorithms based on differential evolution (DESSO/CD, IDDE,
SSO/CD) are more efficient than the classical simulated annealing CD algorithm (GA). It can also be
concluded that the adjusted DESSO/CD has better convergence.
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5.3. Real Network Experiment

In the real network experiment, five groups of real networks are used to compare the precision of
the algorithm presented in this study with other existing network algorithms. Moreover, we conduct
some simulation and contrast experiments on network data randomly captured from Sina Weibo.

5.3.1. Partitioning Accuracy of Real Networks

The network data used in real network experiments is shown in Table 2. Amazon and YouTube
are relatively complete networks, while the other two networks are relatively simple. In the same data
set and experimental environment, each algorithm was repeated 10 times, and some experimental data
derived from [20,35]. Tables 2 and 3 have been marked.

Table 2. Real network data sets used in experiments

Name Nodes Edges Communities Description

Karate [57] 34 78 2 Relationships between karate club members
Dolphins [58] 62 159 2 Dolphin behavior network
Football [59] 115 613 12 American Football League network

Jazz [60] 198 2742 unknown Jazz musician network
Amazon [61] 334,863 925,872 75,149 Amazon product network
YouTube [61] 1,134,890 2,987,624 8385 YouTube online social network

The experimental results are shown in Table 3. In the karate network, because the network nodes
and the connection edges are few, each kind of algorithm can maintain relatively high precision.
The standard deviation is also small, so the precision of each algorithm is similar. The edge node
and connection are relatively large in the football networks, and differential evolution algorithm
(DESSO/CD, BADE, IDDE) can maintain high accuracy. However, in a more complex network,
the meta-heuristic algorithm is based on differential evolution (DESSO/CD, BADE) with more obvious
advantages. Overall, DESSO/CD runs on a variety of networks with a more stable performance,
and better adaptability and accuracy.
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Table 3. Q value of real network partition

Networks/Algorithms GA [19] SSGA [20] BADE [20] PSO [54] IDDE [35] SSO/CD DESSO/CD

Karate
mean 0.4067 0.4198 0.4188 0.4200 0.4198 0.4196 0.4196

std 0 0 0.0018 0.0012 0.0001 0.0004 0.0004

Dolphins mean 0.5216 0.5200 0.5129 0.525 0.5282 0.5178 0.5377
std 0.0036 0.004 0.0120 0.0178 0.0189 0.0141 0.0057

Football
mean 0.5911 0.5277 0.5513 0.605 0.6046 0.5406 0.6133

std 0.0062 0.0057 0.0085 0.0038 0.0042 0.0069 0.0045

Jazz
mean 0.4439 0.4411 0.4511 0.4431 0.4448 0.4441 0.4651

std 0.0137 0.0109 0.0098 0.0074 0.0082 0.0101 0.0039

Amazon
mean 0.3876 0.3885 0.4041 0.3845 0.3987 0.3815 0.4153

std 0.0151 0.0090 0.0103 0.02018 0.0079 0.0125 0.0081

YouTube
mean 0.4012 0.4279 0.4315 0.4215 0.42131 0.4110 0.4501

std 0.0102 0.0081 0.0093 0.0112 0.0097 0.0104 0.0074

5.3.2. Novel Graphical Analysis of Real Social Network Partitioning

Using the method provided by Yibochen [62], based on Sina Weibo opened by Application
Programming Interface (API), we specified an account to capture a set of relational list data under the
theme of sports. The experiment captured 517 Weibo accounts and their mutual data. Since the number
of communities, the degree of node distribution, clustering coefficients, and other information in the
experimental data are unknown, the test can also check the performance of the algorithm without
prior information.

IDDE, SSO/CD, and DESSO/CD use the method of the target data classification experiments.
The influential leading nodes in the community are detected as described in [63]. Igraph software is
used to zoom in and render the five influential leader nodes, as shown in Figure 6. The community
discovery using the SSO algorithm is better than IDDE, and the improved DESSO/CD is best. As shown
in the diagram, the Weibo data captured will be divided into two parts: football and basketball,
while each area shows a team based on community division, where the enlarged nodes show the
opinion of influential leaders in the community.
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6. Discussion

6.1. Convergence Analysis

The computational cost of DESSO/CD has three main parts: fitness calculation, population
iteration convergence, and incremental community computing. The time complexity of fitness
calculation is the sum total of each generation of population, since the cooperative iteration of operators
is multi-population differential expansion and the number of iterations of convergence and incremental
community computing are exponentially reduced. The parameter max(t) is not the final number of
iterations; it is a much larger estimate than the actual value. Although the random cloud crossover
model strategy may disturb the population, and the convergence rate of each generation will be
affected, the total number of iterations is reduced. So the convergence speed of the algorithm is
generally improved (the comparison can be seen in Figure 3).

6.2. Comparative Analysis

EAs have been widely employed for solving community optimization problems, as they can
utilize the evolutionary rules of biological intelligence to effectively explore and optimize. However,
there is a conflict in maintaining the diversity of the population and accelerating the convergence of the
algorithm to an optimum. Repeated fitness calculations are also time-consuming. In contrast to other
EAs, with DESSO/CD each individual is modeled considering gender and dominance. DESSO/CD
defines individuals with different properties, performing different behaviors virtually. In this case,
it promotes the possibility of adding new and selective operators as a result of considering individuals
with different characteristics. Such a fact allows the incorporation of computational mechanisms to
avoid critical flaws such as premature convergence and an incorrect exploration–exploitation balance
commonly presented in both the PSO and the GA algorithm. In Table 3, the comparison can be seen.

Furthermore, the population fitness is defined by local similarity of nodes, so that each generation
of community label segmentation is gradually made clear. The community quality increment criterion
is defined as a component of the Q function and is used to screen populations. In contrast to the
traditional time Q function optimization method, the strategy of this paper is optimized generation by
generation, and each population is optimized in different ways and with multi-granularity. In this way,
the resolution problem of the Q function can be overcome and the algorithm accuracy can be improved.

7. Conclusions

On the basis of improving the SSO algorithm, this paper proposes a community detection
algorithm based on differential evolution using social spider optimization (DESSO/CD). Community
detection is achieved by simulating spider cooperative operators, and marriage and operator
selection. In this algorithm, nodes in the network are initialized as populations in the SSO algorithm.
The similarity of nodes is defined as the local fitness function and the community quality increment
is used as the screening criteria for evolutionary operators. Each individual has the ability to learn
at random. Meanwhile, the populations are divided into two categories—elite and non-elite—based
on the fitness value. Spider populations are further differentiated for cooperation. Since fitness and
diversity information is simultaneously considered to select the operators, a good balance between
exploration and exploitation can be achieved. A random cloud crossover model is adopted to maintain
the diversity of the population. The mating radius will be adjusted automatically according to the
fitness value in the dominant individuals. Each generation of the quality increment of community
modularity is used as a criterion for the evolutionary selection operator. Thus, this strategy not only
ensures the search space of operators, but also reduces the blindness of exploration. On the other
hand, the multi-level, multi-granularity strategy of DESSO/CD can be used to further compensate
for resolution limitations and extreme degradation defects based on modular optimization methods.
It could detect community structure with higher partition accuracy and lower computational cost.
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Experiments on artificial and real-world networks show the effectiveness and efficiency of DESSO/CD.
In comparison with other methods, EA algorithms also confirm that DESSO/CD’s flexibility is better.

DESSO/CD is a method of community detection based on local neighborhood expansion. It has
less dependence on parameters, better adaptability, higher efficiency, and shows greater accuracy.
This study is competitive and promising. Since the CD approach is based on SSO, the key points are
setting of the fitness vectors and the screening criteria for evolutionary operators. This plays a vital
role in maintaining the distribution of the population. The organizational dimension of the edges and
nodes within the community is diverse. Indeed, the fitness values based on the objective function still
result in many contradictions and conflicts in practical operation. However, in the future, we will focus
on the application of multidimensional fitness values in the SSO-based CD algorithm and intelligent
systems in fuzzy, neutrosophic, inconsistent, and dynamic environments [64–68].
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