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Abstract: Multi-source remote sensing data were used to generate 500-m resolution cloud-free daily
snow cover images for the Northern Hemisphere. Simultaneously, the spatial and temporal dynamic
variations of snow in the Northern Hemisphere were evaluated from 2000 to 2015. The results
indicated that (1) the maximum, minimum, and annual average snow-covered area (SCA) in the
Northern Hemisphere exhibited a fluctuating downward trend; the variation of snow cover in the
Northern Hemisphere had well-defined inter-annual and regional differences; (2) the average SCA in
the Northern Hemisphere was the largest in January and the smallest in August; the SCA exhibited
a downward trend for the monthly variations from February to April; and the seasonal variation in
the SCA exhibited a downward trend in the spring, summer, and fall in the Northern Hemisphere
(no pronounced variation trend in the winter was observed) during the 2000–2015 period; (3) the
spatial distribution of the annual average snow-covered day (SCD) was related to the latitudinal
zonality, and the areas exhibiting an upward trend were mainly at the mid to low latitudes with
unstable SCA variations; and (4) the snow reduction was significant in the perennial SCA in the
Northern Hemisphere, including high-latitude and high-elevation mountainous regions (between 35◦

and 50◦N), such as the Tibetan Plateau, the Tianshan Mountains, the Pamir Plateau in Asia, the Alps
in Europe, the Caucasus Mountains, and the Cordillera Mountains in North America.
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1. Introduction

Snow cover is an indicator for global climate change. Previous studies have indicated that
approximately 98% of the seasonal snow cover on the earth is located in the Northern Hemisphere [1].
It has relatively large intra-annual and inter-annual variations. With a maximum extent of about
approximately 4.7 × 107 km2, snow cover accounts for approximately 50% of the continental area in
the Northern Hemisphere [2,3].

The snow cover extent has decreased considerably and retreated to higher altitudes, and the
inter-annual snow cover variability has increased [4–7]. The snow-covered area (SCA) in the Northern
Hemisphere from 1970 to 2010 in March and April exhibited a decreasing trend, and, on average,
it decreased by approximately 8 × 105 km2 each decade due to increasing temperatures [8], and the
decay has accelerated during the past 40 years [9]. Snow cover duration exhibits the strongest climate
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sensitivity [10], and temperature increases can postpone the snow cover accumulation date and the
maximum SCA change from February to January, which causes the snow ablation date to arrive earlier
in the spring [11]. From 1967 to 2008, the stable snow cover duration during the winter in the Northern
Hemisphere gradually shortened, decreasing by approximately 5.3 days every 10 years [12]. The high
albedo of snow can significantly reduce the capability of the ground surface to receive solar radiation
and has a positive feedback effect on the climate system; in particular, positive albedo feedback in
the spring period generate a stronger signal in spring snow cover duration [13]. The winter SCA,
duration, snow depth, and resulting variation in the surface albedo have significant influences on the
atmospheric circulation at local and regional scales [14–16]. Between the 1980s and the 21st century,
the SCA decreased at a rate of (−0.55 ± 0.21) × 106 km2 per decade in spring in the Northern
Hemisphere [17,18]. Furthermore, the Intergovernmental Panel on Climate Change (IPCC 2013) has
evaluated the variation in snow cover in the Northern Hemisphere over the past 50 years, and the
SCA during the spring in the Northern Hemisphere has continued to decrease (with high confidence).
In the Northern Hemisphere, the average reduction rate of the SCA in March and April is 1.6% 10−a

and is 11.7% 10−a in June, while the SCA does not exhibit a statistically significant increase in any
month [19].

Remote sensing techniques have the advantages of high temporal and spatial resolution, strong
objective authenticity, low cost, and high effectiveness [20], which provide effective snow cover
parameters for climate models at global and regional scales. These techniques expand the traditional,
limited “point” information to regional information that indicates the actual situation and plays
an important role in large-scale high-precision monitoring of the earth’s snow cover. Although the
GlobSnow data provide information concerning the areal extent of snow (SE) on a global scale
and the snow water equivalent (SWE) for the Northern Hemisphere, the SE product was only
produced between the years 1995 to 2012 with huge gaps and the SWE product did not provide
the areas of mountainous regions and Greenland [21,22]. Currently, Moderate Resolution Imaging
Spectroradiometer (MODIS) data are most widely used. MODIS is aboard the earth observation
satellites Terra and Aqua, which are the main sensors of the Earth Observation System (EOS).
The spatial and spectral resolution are better than the Advanced Very High Resolution Radiometer
(AVHRR) and the temporal resolution is better than the Landsat Thematic Mapper (TM)/Enhanced
Thematic Mapper+ (ETM+). Thus, MODIS is the optimal data source for real-time monitoring
of large-scale SCA with high accuracy [23–27]. The Aqua satellite also carries the improved
multi-band dual-polarized passive microwave radiometer AMSR-E (Advanced Microwave Scanning
Radiometer-EOS). This sensor can provide more microwave band information than previous passive
microwave radiometers, such as the Scanning Multichannel Microwave Radiometer (SMMR) and
Special Sensor Microwave/Imager (SSM/I), and it is less affected by adverse weather conditions.
Because the spatial resolution of AMSR-E is relatively coarse, the AMSR-E data are mainly used
for studies on large-scale snow cover range, snow depth and snow water equivalent (SWE) at both
global and hemisphere scales [28]. In addition, the implementation of the interactive multi-sensor
snow and ice mapping system (IMS) provides another approach for dynamic monitoring of snow
cover, and scholars in China and other countries are currently using this product to monitor snow
cover [29–32]. It is the current representative product for the fusion of multi-source remote sensing
satellites and has broad prospects in snow monitoring by remote sensing [31,33]. However, the overall
accuracy of the IMS is far lower than that of the MODIS [34], and the timing of IMS snow disappearance
lags behind the MODIS during the spring ablation season by several weeks, which may affect our
understanding of the seasonal snow cover cycle and development of parameterization schemes for
climate model [35].

Brown et al. [36] used 10 data sources to carry out multi-source snow cover work firstly, and the
results showed a 46% reduction in Arctic snow cover extent in June and a 14% reduction in May over
the period between 1967 and 2008. The fusion of MODIS and AMSR-E data to improve the capability
for remote sensing snow cover identification is a relatively mature algorithm for monitoring snow
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cover [37,38]. Huang et al. [39] combined a digital elevation model to apply the snow line (SNOWL)
algorithm [40] to different elevation regions of the Tibetan Plateau and developed a set of cloud
removal algorithms based on optical and passive microwave remote sensing data to obtain a cloud-free
daily snow cover product. Yu et al. [41] combined MODIS with the IMS snow cover product, and the
overall classification accuracy for the generated cloud-free daily snow cover product reached 94%.

To understand the variation characteristics of snow cover in the Northern Hemisphere in the
future, the temporal and spatial dynamics of snow cover in the Northern Hemisphere was analyzed
during the period from 2000 to 2015, including the number of snow-covered days (SCDs), SCA,
and the snow cover inter-annual variation. In addition, this work aims to establish the basis for further
revealing the mechanism of interaction between temporal and spatial variations in both snow cover
and climate change in the Northern Hemisphere. The objectives of this study are (1) to generate 500-m
resolution daily cloud-free snow cover products with data from MODIS, AMSR-E SWE and IMS snow
product for the Northern Hemisphere from 2000 to 2015; (2) to validate the accuracy of the daily
cloud-free snow cover product; and (3) to analyze and discuss the characteristic trend of snow cover
temporal and spatial dynamics in the Northern Hemisphere in detail.

2. Data

The remote sensing products used in this study mainly included (a) the daily MODIS snow
product (MOD10A1 and MYD10A1, V005 version; the V006 version does not include binary snow
cover products); (b) the land cover type product MCD12Q1; (c) the AMSR-E/Aqua SWE product;
(d) the Landsat-TM product; and (e) the IMS product. Detailed information of the above remote
sensing data is listed in Table 1.

The land cover type product MCD12Q1 derived from the classification system of the International
Geosphere-Biosphere Program (IGBP) was used to study the difference in agreement between the
synthesized snow cover product and Landsat-TM within different land cover types. There are
eleven types of natural vegetation, three types of developed and mosaic lands, and three types
of non-vegetation land. In this study, we reclassified the IGBP into seven major classes: water body,
forest, shrubland, grassland, cropland, barren, and ice and snow, which statistically account for 2.2%,
17.2%, 16.9%, 24.9%, 17.8%, 13.8% and 7.2%, respectively. Because the MODIS snow cover classification
product is affected by the land cover, we used the reclassified land cover product to analyze the
influence of the different land cover types on the classification accuracy of the synthesized snow
cover product to establish a foundation for further improving the classification accuracy of MODIS
snow cover.

Table 1. The information of remote sensing data.

Dataset Resolution Period Distribution Reference

MOD10A1/MYD10A1 500 m from the date of release until 31 December 2015 NSIDC [42]
MCD12Q1 500 m 1 January 2008 USGS [43]
AMSR-E 25 km 1 September 2002 to 2 September 2011 NSIDC [44]

Landsat-TM 30 m 1 January 2000 to 31 December 2015 (28 scenes in total) USGS [45]

IMS
24 km 1 January 2000 to 31 August 2002

NSIDC [33]4 km 2 September 2011 to 1 December 2014
1 km 2 December 2014 to 31 December 2015

NSIDC: National Snow and Ice Data Center; USGS: United States Geological Survey.

3. Methodology

3.1. Cloud Removal Algorithm

The cloud removal algorithm used in this study has the following three components: (a) the
composition of the daily MODIS snow cover product [46,47]—we conducted the maximum SCA fusion
processing of the data for two products, MOD10A1 and MYD10A1, from the MODIS morning and
afternoon tracks; (b) adjacent temporal composite—we used the snow cover image from the previous
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and posterior day to eliminate the cloud pixels in the snow cover image of the current day, and we
ensure a minimum amount of clouds after these processes; (c) the combination with the SWE [37,38,48]
or IMS product—the AMSR-E daily SWE product (filling the gap—using the AMSR-E images of the
closest date to replace missing data with maximum values)/IMS product are used to completely
eliminate the remaining cloud pixels, thus the accuracy of cloud pixels reclassification were fully
dependent on the accuracy of AMSR-E and IMS. Prior to the procedure, some preprocessing such as
reprojection and resampling (nearest neighbor interpolation) is needed. If the value of SWE exceeds
0 mm or the value of IMS is snow, then the cloud pixel is classified as snow. Using these procedures,
we eliminated all cloud pixels and generated MODIS daily cloud-free binary snow cover images
(MOYDCA) with a spatial resolution of 500 m, which were used to verify the accuracy for the Northern
Hemisphere. The specific flow chart is shown in Figure 1.
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Figure 1. Moderate Resolution Imaging Spectroradiometer (MODIS) daily cloud-free snow cover
products flow chart. Note: Tij, Yij, and Nij, represent the pixel values of the ith column and the jth row
of the current day image, previous day image, and posterior day image, respectively.

3.2. Landsat-TM Snow Mapping

Clouds and snow both have relatively high reflectivity in the visible band but different reflectivity
in the shortwave infrared band. In the shortwave infrared band, clouds have very high reflectivity,
and snow has a relatively strong absorptive feature. Based on this property of snow, snow cover
extractions adopt the SNOWMAP algorithm [49]. We first conducted the radiation calibration and the
Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) atmospheric correction in
ENVI 5.3 (Exelis Visual Information Solutions, Boulder, Colorado, USA). Then, we used the second
and fifth wave bands of the TM images to calculate the NDSI. The calculation method is as follows:

NDSI = (Band 2 − Band 5)/(Band 2 + Band 5), (1)

where Band 2 is the 0.55-µm band of the Landsat-TM image and Band 5 is the 1.64-µm band of the
Landsat-TM image. We set the threshold to 0.40 [17]. The reflectivity of water bodies in the visible band
and shortwave infrared band is very low compared with that of snow. Thus, the water body category
can be eliminated because the reflectivity of snow at the 4th band exceeds 11%. In a Landsat-TM
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image, if NDSI ≥0.40 and the reflectivity of the 4th waveband exceeds 11%, the pixel is identified as
snow. Then, a binary snow cover image with a resolution of 30 m is generated, where 1 represents
a snow-covered pixel and 0 represents a snow-free pixel. We used the Pixel Aggregate tool in ENVI
to resample aggregately the Landsat binary snow cover image using a 500-m grid size. The tool
averages all pixel values that contribute to the output pixel. If the output value exceeds 50%, the pixel
is identified as snow.

3.3. Accuracy Assessment of the Snow-Cover Images

Currently, verification data of satellite product mainly consists of two types, the first is point
data from meteorological observatories, and the second is satellite remote sensing data with higher
resolution that can reflect the true situation on the ground.

Landsat-TM images have a higher spatial resolution than MODIS data. Moreover, the Landsat-TM
and MODIS products used in the validation were for the same day. Therefore, in this study, we used
the snow cover classification images from the TM as the “true value” and evaluated the consistency
between TM and the synthesized snow cover images from MODIS using the Kappa coefficient.
The Kappa coefficient is an index that is often used to measure the agreement or accuracy between two
images, and the calculation method is as follows:

K = (PO − PC)/(1 − PC), (2)

where PO is the actual consistency rate, PC is the theoretical consistency rate, PO = s/n,
and PC = (a1 × b1 + a0 × b0)/(n × n). The total number of pixels in the image is n, the number of
pixels for the snow cover in a TM image of the actual ground situation is a1, the number of other pixels
is a0, the number of pixels for the snow cover in the self-defined synthesized image is b1, the number
of other pixels is b0, and the number of pixels for which the corresponding pixel values of the lattices
in the two images is s.

Klein and Barnett [24] indicated that the Kappa test can be used on five sets to express the
consistency of different levels. For 0 < Kappa ≤ 0.20, the two images have extremely low consistency;
for 0.20 < Kappa ≤ 0.40, the two images have normal consistency; for 0.40 < Kappa ≤ 0.60, the two
images have moderate consistency; for 0.60 < Kappa ≤ 0.80, the two images have a high consistency;
for 0.80 < Kappa ≤ 1, the two images are almost completely consistent.

3.4. Analysis of the Snow Cover Variation

Parametric and non-parametric tests can be used to analyze significance in trends within
hydro-meteorological time series data. Parametric trend tests require data to be independent and
normally distributed and are more sensitive to outliers, while non-parametric trend tests only require
the data to be independent.

The Mann–Kendall method is a non-parametric test that has been frequently used to analyze long
time series data [50–57], and the method can also detect the variation trend of monotonic nonlinear
data without a data distribution requirement [58]. In this paper, the Mann–Kendall method was used
to examine the trend and significance level of the annual SCDs in the Northern Hemisphere at the
pixel scale. For a series Xi = (X1, X2, · · · , Xn) with n samples, the specific test process was as follows:

Z =
S√

Var(S)
, (3)

where
S = ∑ n

i=1∑ n
j=i+1sgn(Xj − Xi), (4)
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sgn(Xj − Xi) =


+1, i f (Xj − Xi) > 0
0, i f (Xj − Xi) = 0
−1, i f (Xj − Xi) < 0

, (5)

Var(S) =
n(n− 1)(2n + 5)−∑m

i=1 ti(ti − 1)(2ti + 5)
18

, (6)

where n is the number of years (n = 16), m is the number of nodes (repetitive data groups) in the series,
and ti is the node width (the number of repetitive data points in the ith repetitive data group).

When n≤ 10, we directly used the statistic S for the two-sided trend test. S > 0 indicates an upward
trend; S = 0 indicates no variation; and S < 0 indicates a downward trend. For a given significance
level, α, if |S| ≥ Sa/2, the trend of the series is significant; otherwise, it is insignificant.

When n > 10, the statistic S approaches the standardized normal distribution, and we used the test
statistic Z for the two-sided trend test. Positive values of Z indicate an upward trend while negative
Z values indicate a downward trend. For the given significance level, α, we looked up the critical value
Za/2 in the normal distribution table; if |Z| > Za/2, the trend of the series is significant; if |Z| ≤ Za/2,
the trend is insignificant.

In addition, we also used Sen’s median method [52,59–61] to analyze the slope for the variation
of the annual SCD. This method calculates the median slope for n(n − 1)/2 pairs of combinations in
a series of length n, and the specific calculation formula is:

β = Median
( xi − xj

i− j

)
, i > j, (7)

where β > 0 indicates the trend is increasing, and β < 0 indicates the trend is decreasing.

4. Results

4.1. Validation of the Daily Cloud-Free Snow Product

The Kappa consistency test method was adopted to analyze the accuracy of the MODIS cloud-free
daily snow cover product obtained in this study. The largest Kappa coefficient between the synthesized
product and the TM binary snow cover product was for the grassland and barren coverage types,
and the coefficient was 0.675 in both cases; the Kappa value for the cropland cover type was 0.604.
The Kappa analysis showed that their agreement was good and exhibited a high consistency. This was
followed by the shrubland coverage type, with a Kappa coefficient of 0.599. The agreement was
relatively good with moderate consistency. The accuracy was relatively poor for the forest coverage
area, with a Kappa coefficient of 0.406, and the consistency performance was normal. Figure 2 compared
the SCA based on cloud-free daily snow cover product and the Landsat-TM binary snow cover product,
and showed the Kappa value for different land cover types. The results indicate that, for the grassland
and barren land cover conditions, the acquired SCA was essentially consistent. The percentage of the
SCA differed by only 0.78% and 0.47%, respectively. For the shrubland land cover condition, the SCA
differed by 2.42%. The difference for the other land cover types was relatively large, and the difference
for the forest land coverage was the largest (15.88%).

Furthermore, we compared and analyzed the difference between the MODIS cloud-free daily
snow cover product and the Landsat-TM snow cover product for different land cover types and the
overall average Kappa coefficients in Asia, Europe, and North America were 0.575, 0.592, and 0.584,
respectively, representing moderate consistency, which were almost close to a high consistency.
Therefore, for such large-scale areas in the Northern Hemisphere, this product has a relatively good
reliability for studying the spatial and temporal dynamic variation characteristics of snow cover.
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Figure 2. Comparison of the cloud-free daily snow product and Landsat Thematic Mapper (TM) for
different land cover types.

The binary snow cover images acquired by Landsat 5 were used to validate the cloud-free daily
snow cover product synthesized in this study. An example on 5 May 2007 is shown in Figure 3.
The MOD10A1 and MYD10A1 images in the validation region are greatly affected by clouds, and the
number of cloud pixels in the two images accounted for 33.21% and 52.68% of the total number of
pixels, respectively. For the latter image, more than half of the validation region was contaminated
by clouds. The SCA in the MOD10A1 image, MYD10A1 image, and MOYDCA-synthesized image
accounted for 2.94%, 1.19%, and 5.56%, respectively, of the total, and the SCA in the Landsat-TM binary
snow cover image accounted for 6.91% of the total. The Kappa coefficients for the three images were
0.494, 0.238, and 0.726, respectively, indicating that the standard snow cover products of MOD10A1 and
MYD10A1 were seriously affected by clouds and that the degree of agreement with the Landsat-TM
classification images was normal. There was moderate consistency between them, although there
was a high consistency between the cloud-free snow cover classification images obtained using the
cloud removal algorithm and the Landsat-TM classification images. This finding indicates that the
cloud removal algorithm proposed in this study has good reliability for the dynamic monitoring of
large-scale snow cover.
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4.2. Spatio-Temporal Variation of SCA in the Northern Hemisphere

Figure 4 shows the variation curve of the maximum, average and minimum SCA in the Northern
Hemisphere from 2000 to 2015. The maximum SCA in the Northern Hemisphere rapidly decreased in
2007, and it declined with fluctuations after reaching a peak in 2008. The variation in the minimum
SCA of the Northern Hemisphere is of particular interest because the area contains perennial snow
cover. Dynamic monitoring of the perennial snow area in the Northern Hemisphere plays a vital role
in monitoring global climate and hydrological changes. Figure 4 shows that both the maximum and
minimum SCA in the Northern Hemisphere exhibited a downward trend during the study period,
and the tendency rates were −0.057% a−1 and −0.045% a−1, respectively. Since 2000, the inter-annual
variation in the SCA of the Northern Hemisphere has exhibited a downward trend with fluctuations,
with an average rate of −0.066% a−1.
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Figure 4. Annual maximum, average and minimum snow-covered area in the Northern Hemisphere
from 2000 to 2015.

Figure 5 presents a box plot for the monthly SCA in the Northern Hemisphere from 2000 to 2015.
This figure shows that the largest and smallest SCA in the Northern Hemisphere occurred in January
and August, respectively, i.e., approximately 5.5 × 107 km2 (55.38%) and 5.76 × 106 km2 (5.80%).
The 4th report of the IPCC noted that the largest average SCA in the Northern Hemisphere typically
occurs in January, while the smallest occurs in August [62], and this study is consistent with these
conclusions. In addition, based on the figure, the SCA fluctuation in the Northern Hemisphere was
relatively large from February to June, and the fluctuation exhibited a negatively skewed distribution
from February to April, which was mainly concentrated in the spring. This also indicated that the
spring SCA had a downward trend during the study period. The 5th assessment report (AR5) of the
IPCC noted that, since the middle 20th century, the SCA in the Northern Hemisphere has significantly
decreased, indicating that the main cause is the reduction in the SCA in the spring [19].
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Figure 5. Box plots of the monthly averages of snow-covered areas between 2000 and 2015.

The snow cover in the Northern Hemisphere exhibits seasonal variability. We conducted statistical
analyses on the SCA for all four seasons (winter, spring, summer, and fall) in the Northern Hemisphere.
The largest SCA was in the winter, which is typically the main time period for snow accumulation.
Winter was followed by spring and fall, with the smallest SCA occurring in the summer. The trend in
variation for the SCA during the four time periods is shown in Figure 6. Since the early 21st century,
the SCA in the Northern Hemisphere during the spring, summer, and fall has decreased. The reduction
in the magnitude of the SCA has been relatively large in the spring and summer, with tendencies of
−0.108% a−1 and−0.110% a−1, respectively; the SCA has slightly decreased in the fall, with a tendency
of −0.035% a−1. Considering that the global climate has become warmer, the SCA during the winter
in the Northern Hemisphere did not show any obvious variation trend.
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4.3. Spatio-Temporal Variation of SCDs in the Northern Hemisphere

SCDs represent the accumulated number of days of a particular pixel covered by snow during one
year. The SCDs data from 2000 to 2015 in the Northern Hemisphere in Figure 7 showed that the area
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with SCDs ≤ 10 accounted for approximately 3.28 × 107 km2 (33%) of the total area. The SCA of these
regions exhibited an upward trend over the 16-year period, increasing from 3.18 × 107 km2 (32.03%)
in 2000 to 3.46 × 107 km2 (34.86%) in 2015. The area with 120–180 SCDs also exhibited an upward
trend. The region with 10 < SCDs ≤ 60 and SCDs ≥ 180 exhibited a downward trend. The regions
with SCDs ≥ 350 were covered by perennial snow or glaciers throughout the year, and this part of the
snow cover is an important indicator of global climatic change. There was not an obvious change in
regions with other SCDs.
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Figure 7. Area percentage of the different snow-covered days during the 16-year period from 2000 to
2015 in the Northern Hemisphere.

In addition, Figure 8 shows the spatial distribution of the average annual SCDs in the Northern
Hemisphere from 2000 to 2015, and Table 2 shows the percentage by region of different SCDs in Asia,
Europe and North America, respectively. The results indicate that the spatial distribution of the annual
average SCDs was based on latitudinal zonality.

In Asia, the instantaneous SCA with SCDs ≤ 10 was approximately 9.42 × 106 km2 (26.1%),
which primarily occurred near the equator, including Southeast Asia, Southern China, the Tarim
Basin in Xinjiang of China, most of South Asia, Eastern Iran, and the Arabian Peninsula in the
Western Asia. The unstable SCA (10 < SCDs ≤ 60) accounted for 4.98 × 106 km2 (13.8%) of the
total SCA, which mainly occurred in the Korean Peninsula, the Northern and most Western regions
of China, the Southern islands of Japan, and Uzbekistan and its surrounding area in Central Asia.
The stable SCA (60 < SCDs ≤ 350) accounted for the largest proportion, 2.17 × 107 km2 (60.1%), and it
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was mainly distributed in the Northeastern region of Inner Mongolia of China, North of Xinjiang,
the Tibetan Plateau, Mongolia, most of Russia, Northern Kazakhstan, and the Eastern region of Turkey.
The perennial SCA with SCDs > 350 only accounted for 7.22× 103 km2 (0.02%) of the total SCA, and the
areas were mainly distributed in the regions of Severnaya Zemlya in Russia, West of the Tianshan
Mountains in Xinjiang (China), the Kunlun and Himalayan Mountains on the Tibetan Plateau, and the
Pamir Plateau.
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2000–2015 in the Northern Hemisphere.

Between 2000 and 2015, the instantaneous SCA in the European region accounted for
7.98 × 105 km2 (7.9%) of the total SCA in Europe. The areas were mainly distributed in the Northern
islands of the Mediterranean, the Iberian Peninsula, and the Western region of France. The unstable
SCA accounted for 2.62 × 106 km2 (25.9%) of the total SCA in Europe and was distributed in Britain,
the Western European Plains, the Central European Plains, the Apennines and Balkan Peninsula,
and the Northern region of the Caucasus Mountains. Similarly, the area of stable SCA was the largest
in Europe, 6.69 × 106 km2 (66.2%), and it was broadly distributed in Central and Northern Europe and
the Alps and Caucasus Mountains. The perennial SCA with annual SCDs > 350 were only distributed
in the Novaya Zemlya of Russia and Svalbard of Norway.
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The regions with SCDs ≤ 10 in North America were mainly the Southern region of the United
States and countries at lower latitudes, which accounted for 3.36 × 106 km2 (13.6%). The unstable
SCA only accounted for 2.12 × 106 km2 (8.6%), and it was distributed in the mid-latitude area of
the United States. The stable SCA accounted for 1.61 × 107 km2 (65.1%), and it was distributed in
Canada, the high-latitude region in the mainland of the United States, and Alaska. The perennial SCA
with SCDs > 350 was mostly in Greenland and Canadian Arctic Archipelago, with an area covering
3.14 × 106 km2 (12.7%) of the total, and this was also the main distribution region of perennial snow
cover in the Northern Hemisphere. Because Greenland remains snow and ice covered during all
season, we do not analyze Greenland.

Table 2. Percentage of different snow-covered days by area in Asia, Europe and North America.

Snow-Covered Days (SCDs) Asia Europe North America

SCDs ≤ 10 26.1% 7.9% 13.6%
10 < SCDs ≤ 60 13.8% 25.9% 8.6%
60 < SCDs ≤ 350 60.1% 66.2% 65.1%

SCDs > 350 0.02% 0.01% 12.70%

4.4. Snow Cover Change in the Northern Hemisphere

We used the Mann–Kendall method to further analyze the SCD variation tendency and its
significance for the different continents of the Northern Hemisphere from 2000 to 2015 at the pixel
scale in Figure 9. Table 3 lists the detailed information. To validate the accuracy of the results, we also
used Sen’s median method to calculate and derive the SCD variation slope for different continents,
and the results were shown in Figure 10. Of note, the areas where SCDs reduction was significant in
the Northern Hemisphere were distributed primarily in mountainous areas at 35◦–50◦N.

From 2000 to 2015, the SCDs over 1.79 × 107 km2 (49.6%) of the area in Asian exhibited
an increasing trend (Z > 0), but the increase was very gentle. The areas with a significant increase only
accounted for 9.03 × 105 km2 (2.5%) (p < 0.05), and they are mainly distributed in the Southeastern
region of Siberia and Kamchatka Peninsula in Russia, Japan, and the Northeastern region of China,
the Sichuan Basin, and Southeastern region of China. The area in which SCDs decreased accounted for
1.02 × 107 km2 (28.3%) of Asia (Z < 0), and the regions with a significant SCD decrease only accounted
for 6.35 × 106 km2 (17.6%) (p < 0.05), which was mainly distributed in the Western mountainous
region of Eastern Siberia in Russia, the Central Siberian Plateau, the Central and Western regions of the
Mongolian Plateau, the Altai, Tianshan, Kunlun, and the Qilian Mountains of China, the Himalayas,
the Southeastern region of the Tibetan Plateau, the Pamir Plateau, the Asia Minor Peninsula of West
Asia, the Great Caucasus, and the Zagros Mountains.

The slope of the SCD variation in the Northern Hemisphere calculated using Sen’s median method
is shown in Figure 10. In Asia, SCDs over 23.8% of the area exhibited an increasing trend (β > 0),
and SCDs over 27.7% of the area exhibited a decreasing trend (β < 0). In particular, the increased SCD
rate for 22.6% of the region was less than 5 day/year, and these regions were mainly distributed across
the Western Siberian Plain, the Southeastern region of Russia, most of Central Asia, the Northeastern
and Central region of China, and some sporadic areas East of the Tibetan Plateau and in Southwest
China. The regions with an increase rate greater than 5 day/year were sporadically distributed in
the West of Japan and the Tibetan Plateau region. The SCD reduction rate in 27.9% of the region
was less than 5 day/year and was mainly distributed in Central Siberia in Russia, the Asia Minor
Peninsula, the Mongolian Plateau, and the Western region of China. The areas where the reduction rate
exceeded 5 day/year were mainly distributed in the Great Caucasus Mountains, the Pamir Plateau,
the Tianshan, Kunlun, and Qilian Mountains in China, the Himalayas, and the Southeastern region of
the Tibetan Plateau. There was a relatively high consistency between the results from Sen’s median
method and the results from the Mann–Kendall method, especially for the spatial distribution of the
tendency variation.



Remote Sens. 2018, 10, 136 15 of 22

The results from combining Figures 9 and 10 indicated that the annual SCD in most regions
of Asia exhibited an increasing trend. From a spatial distribution perspective, the area exhibiting
an upward trend was mainly the unstable SCA with SCDs < 60, while the SCA with SCDs > 180
exhibited a downward trend. This finding indicated that the annual SCD in the seasonal snow cover
distribution area in Asia exhibited an upward trend; the annual SCD in the high-elevation mountainous
regions with the presence of perennial snow exhibited a downward trend.

From 2000 to 2015, the areas in Europe where SCDs increased (Z > 0) and decreased (Z < 0) were
essentially the same, i.e., 4.48 × 106 km2 (44.4%) and 4.32 × 106 km2 (42.8%), respectively. The area
with significant SCDs increase, accounting for 3.23 × 105 km2 (3.2%), was distributed in the Western
European Plains, Britain, and Ireland, and the annual SCDs in these regions was <60 days. The area
with a significant SCD decrease, accounting for 5.35 × 105 km2 (5.3%), was mainly distributed in
the Southern region of the Balkan Peninsula and the Alps, and the annual SCDs value was >180.
The variation in the SCD slope in Europe calculated using Sen’s median method is shown in Figure 10.
The increasing trend in the annual SCDs in Northern Europe and most regions of Western Europe was
<5 day/year, while the regions with a decreasing rate of >5 day/year were mainly concentrated in the
Alps and the Balkan Peninsula. The combination of Figures 9 and 10 shows that the overall SCD value
in Europe did not exhibit an obvious upward or downward trend.
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The results from the Mann–Kendall trend analysis indicated that the regions where SCDs in North
America increased and decreased during 2000–2015 were 1.39 × 107 km2 (56.4%) and 7.16 × 106 km2

(29.0%), respectively. The area of the regions with a significant SCD enhancement was 6.67 × 105 km2

(2.7%), which was distributed in the Saskatchewan region of Canada. The regions with a significant
SCD decrease accounted for 1.75 × 106 km2 (7.1%), and the regions were mainly distributed in the
Cordillera Mountains of North America with some relatively scattered areas in the Central and Eastern
areas of Canada. The increasing trend in SCDs in 37.9% of the area was <5 day/year and was mainly
distributed in Southern Canada and the Northern region of mainland United States. The decreasing
rate in SCDs in 27.0% of the area was <5 day/year, and the area was mainly in the Cordillera Mountains
of North America and the Northern region of Canada with some sporadic areas in the Northern islands
of Canada and Greenland. The decreasing rate in SCDs in a few regions in the Western mountainous
area was >5 day/year. The results in Figures 9 and 10 indicate that the annual SCDs in most regions of
North America exhibited an upward trend. The annual SCDs in North America exhibited a gradual
increase with increasing latitude, and the regions where the annual SCDs exhibited a downward
trend were mainly the stable SCA where SCDs were >180, including Northern Canada, the Western
mountainous area of the United States, and Alaska. This result indicated that the annual SCDs for
seasonal snow cover in North America exhibited an upward trend. However, the annual SCDs in
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the stable SCA distributed in the high-latitude areas and high-elevation mountainous areas exhibited
a downward trend. The results derived in this study are consistent with the conclusions of the IPCC
4th assessment report that the warming of the Western mountainous regions in North America has
caused the SCA to decrease.

Table 3. Percent variation by area in Asia, Europe and North America based on the Mann–Kendall method.

Continent
Increase

No Change
Decrease

Significant Not Significant Significant Not Significant

Asia 2.5% 47.1% 22.1% 17.6% 10.7%
Europe 3.2% 41.2% 12.8% 5.3% 37.5%

North America 2.7% 53.7% 14.6% 7.1% 21.9%

5. Discussion

The synthesized snow product is a fusion of multisource data in order to improve the existing
standard snow cover and snow water equivalent products. Optical remote sensing products have high
spatial resolution, but they are seriously affected by clouds. Passive microwave data are available
that penetrate clouds, but these data have coarse resolution. On this basis, the biggest innovation in
this study is that the optical product MODIS with the assistance of the passive microwave remote
sensing products AMSR-E and IMS were used to integrate the advantages of different cloud removal
algorithms and generate a large-scale cloud-free daily snow cover product at high resolution (500 m)
for the Northern Hemisphere.

This study of the variation characteristics of the temporal and spatial dynamic in snow cover
covering 2000–2015 provides further evidence supporting significant snow declines in the Northern
Hemisphere. This conclusion is also consistent with the previous studies, which indicated that the
variation SCA in the Northern Hemisphere was well-defined during the 20th century [4,5,9,11,13,63].
Snow cover trends are significantly dependent on latitude, elevation, and the increasing spring solar
radiation that can reinforce snow melting processes [12]. Average stable snow cover duration has
decreased at a rate of 5.3 days decade−1 in the Northern hemisphere, and variations in this region
are attributed primarily to a progressively earlier offset, which has advanced poleward at a rate of
5.5 days decade−1 [12]. The decrease of −0.58 × 106 km2 decade−1 in spring snow cover across
the period 1967–2014 provides further evidence that the Northern Hemisphere is experiencing large
reductions in springtime snow cover that are particularly strong over the past decade [64]. Moreover,
other researchers also reported that the earlier loss of spring snow cover in the Northern Hemisphere
is linked to the rise in surface air temperatures [65]. These spring air temperature increases will
continue to advance snow cover declines and thus may further affect the spring snow offset dates in
the Northern Hemisphere.

The data sources adopted in the above studies were mostly the National Oceanic and Atmospheric
Administration’s the National Environmental Satellite, Data and Information Service (NOAA’s
NESDIS) digitized weekly data of the SCA or re-analysis data with low spatial and temporal resolution.
Although these data can reflect the trend in snow cover to some extent, the accuracy is not high,
and there has not been an analysis on the latest variations in snow cover in the Northern Hemisphere
for the 21st century. The findings of this study are consistent with previous studies, but, more
importantly, this study contains more detailed information at a higher resolution. It should be noted
that the conclusion of this study is the trends in places with shorter snow cover days are positive and
those with longer are negative; the reason may be due to the inverse temperature trends in Northern
Hemisphere continents [66]. Nonetheless, further work is needed to analyze the relationship between
variations in snow cover and temperatures under conditions of climate-warming in detail.

Utilizing the MODIS V005 snow product to produce a cloudless snow cover products is a relatively
mature algorithms [37,38,46–48]. Still, the MODIS V005 snow product is a bit outdated and the V006
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product offers the NDSI instead. For future work, we plan to introduce the new V006 product in the
later time series. Meanwhile, a longer time series of data is needed to more clearly understand further
definitive conclusions concerning trend characteristics in the Northern Hemisphere.

The accuracy of integrated products is consistent with the standard products in the areas without
the cloud cover. On this basis, cloud pixels were reclassified for the cloud-covered areas. Although the
combination of MODIS and AMSR-E/IMS can take advantage of both high spatial resolution of optical
data and cloud transparency of passive microwave data, the combination might reduce the spatial
resolution of MODIS products because cloud pixels in MODIS are replaced by AMSR-E/IMS images,
which have coarse spatial resolution; therefore, the accuracy of the cloud pixel reclassification fully
depends on the accuracy of AMSR-E and IMS. In previous studies, AMSR-E and IMS data were widely
used for monitoring snow, and both of them have relatively high accuracy [28–31]. On the other
hand, because of the poor performance in the forest area, the Kappa test of integrated snow products
shows moderate consistency with Landsat, and snow monitoring in this regions also remains a major
problem for virtually all types of global remote sensing snow products, for which overall accuracy were
seriously affected due to the forest canopy [37]. The overall result is still not satisfying, although the
accuracy of snow monitoring can be improved by correcting for the vegetation index [67]. For future
improvement of the snow mapping algorithm, the influence of snow physical characteristics, forest
density and solar radiation in forest regions needs to be further discussed in order to improve the
accuracy of large-scale snow monitoring.

6. Conclusions

Along with the constant threat of global climate warming, studies related to cryosphere change
have become hot topics with increasing interest from researchers. Large-scale variations in snow cover
are important indicators of climate change, and snow cover can also affect global- and regional-scale
radiation and energy equilibrium because of its high reflectivity. In this study, we combined the MODIS
standard daily snow cover products MOD10A1 and MYD10A1 with the passive microwave remote
sensing data of the AMSR-E SWE product and the data of the multi-source remote sensing product
IMS to develop a new snow cover mapping algorithm to obtain a cloud-free daily snow cover product
for the Northern Hemisphere. Moreover, we used Landsat-TM images to validate the accuracy of the
cloud-free daily snow cover product synthesized in this study, and the average Kappa was 0.581 with
moderate overall consistency. By completely removing cloud interference, we effectively improved the
capability to correctly monitor snow cover range over a large scale, although different land cover types
can affect the accuracy of the product. This new product was used to analyze the characteristics of the
temporal and spatial dynamic variations in snow cover across the Northern Hemisphere, including
SCA, SCDs, and snow cover inter-annual, monthly, and seasonal variations. The conclusions of this
study include the following aspects:

(1) The maximum, minimum, and annual average SCA in the Northern Hemisphere all exhibited
a downward trend with fluctuations. The variation trend in snow cover in the Northern
Hemisphere exhibited significant inter-annual and regional differences.

(2) The largest average SCA in the Northern Hemisphere occurred in January, while the smallest
was in August. For the monthly variations, between 2000 and 2015, the SCA in the Northern
Hemisphere for January, July, and October exhibited an upward trend, while the SCA in February,
March, April, June, August, and December exhibited a downward trend. As for the seasonal
variation, the SCA in the Northern Hemisphere during the spring, summer, and fall seasons
exhibited a downward trend. The reduction magnitude of the SCA was relatively large in the
spring and summer, and the SCA in winter did not exhibit an obvious trend.

(3) The spatial distribution of the annual average SCDs was based on latitudinal zonality. The upward
trend region was mainly confined to the mid- to low-latitude seasonal SCA with unstable
snow cover.
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(4) A decreasing trend in the SCA was observed in regions with perennial snow cover, including
the high-latitude or high-elevation mountainous regions in the Northern Hemisphere (between
35◦ and 50◦N), such as the Tibetan Plateau, the Tianshan Mountains, the Pamir Plateau in Asia,
the Alps in Europe, the Caucasus Mountains, and the Cordillera Mountains in North America.
Overall, the perennial snow in the Northern Hemisphere is transitioning to seasonal snow cover.
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