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Abstract: This paper presents a modified approach for high-resolution, highly squint synthetic
aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have
been proposed to solve the azimuth variance of the frequency modulation rates that are caused by
the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not
handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is
proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing
precision. It also introduces a high order processing kernel to avoid the range block processing.
Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for
high-resolution highly squint SAR data.

Keywords: synthetic aperture radar (SAR); linear range walk correction (LRWC);
generalized nonlinear chirp scaling (GNLCS); azimuth depth of focusing (ADOF); focusing precision

1. Introduction

Synthetic aperture radar (SAR) has been widely used as a remote sensing tool as it can provide the
high-resolution images of the interested area during a mission, nearly regardless of weather and time.
Side-looking SAR, with the restriction of the antenna beam pointing direction, can only be applied in
some special areas [1]. The squint SAR, which has an offset angle between the antenna beam pointing
direction and flight path, can be flexibly applied in forehead observation [2–6], for example. The squint
SAR can enhance the survival probability since it accomplishes the monitoring mission without going
through the battlefield. It also has the advantages of associating with multi-mode to achieve some
special applications, such as video SAR [7–12] and increasing revisiting times of the interested area [11].
When compared to the perpendicular broadside SAR, the squint SAR is more attractive and widely
used in the monostatic system, because it provides more flexibility for observing missions of SAR [13].

A number of outstanding and efficient frequency-domain algorithms have been proposed to
solve the perpendicular broadside stripmap SAR imaging in the last fifty years, such as range Doppler
algorithm (RDA), ω− k algorithm, chirp scaling algorithm (CSA), and frequency scaling algorithm
(FSA) [14]. Both the RDA and ω − k have a low efficiency because of the interpolation process to
accomplish the range cell migration correction (RCMC) [15,16]. By using the chirp scaling function,
CSA and FSA reach a relative faster imaging process compared to RDA and ω − k. Since the RDA,
CSA, and FSA are built and derived under the zero Doppler assumption, they can only process the
echo data with a squint angle varying from 0◦ to 5◦. The focusing performances of the aforementioned
three conventional imaging algorithms decrease with the increasing of the squint angle. In comparison
with the perpendicular broadside SAR, new complexities of signal properties are introduced in the
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squint SAR [1]. The squint SAR geometry is also different from the conventional broadside one,
which results in the difficulties in focusing precisely. The key problems of processing squint SAR
data are the compensations of two-dimensional (2D) spatial-variant range cell migration (RCM),
and azimuth-variance of Doppler coefficients [17].

A number of imaging algorithms have been presented for the squint SAR data. Back projection
(BP) algorithm is the most precise imaging algorithm when assuming that the trajectory is obtained
accurately. However, it has the heaviest computational burden among the imaging algorithms [18].
Extended ω − k algorithm can achieve the highest accuracy among all of the frequency domain
processing algorithms. However, its computational burden is much heavier than that of the nonlinear
CS algorithm (NLCSA) [19]. Although the NLCSA is capable of processing the squint SAR data,
it is only available to low/medium squint angle SAR [20]. Then, the extended NLCSA (ENLCSA),
which introduces a new perturbation function to equalize the frequency modulation (FM) rates [1],
is proposed to deal with the highly squint data whose squint angle can be up to 65◦. However,
the azimuth depth of focus (ADOF) for the ENLCSA decreases when the distance of targets deviating
from the reference azimuth position increases. With a 60◦ squint angle and 1m resolution, the ADOF
can only reach 200 m by NLCSA. It is obvious that the ENLCSA cannot be used in the SAR mission
with high resolution and high squint angle requirements. In this paper, a new method is proposed
to solve the deteriorations caused by azimuth variant FM rates for high-resolution and highly squint
SAR. Furthermore, modification is also carried out in range direction to avoid the range sub-block
process with wide swath data.

The remaining part of the paper is organized as follows. Section 2 gives the model of the signal
acquisition for squint SAR and illustrates the processing method of generalized nonlinear chirp scaling
algorithm (GNLCSA); In Section 3, the dot-matrix simulation under high-resolution highly squint
SAR configuration is carried out to validate the proposed algorithm; and, a summary is performed in
Section 4.

2. GNLCSA

2.1. Preprocess in Range Direction by Generalized Chirp Scaling

Assume that target P is an object of the observation. In Figure 1, R(η; R0) is the range between
target P and the sensor at the azimuth time of η. xp is defined as the separation distance bias between
the footprint of the beam center and target P.
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Figure 1. Geometry of squint synthetic aperture radar (SAR). The geometry of a general squint SAR 
provides the model of the signal acquisition. The radar flies along the X-axis with the velocity of rV . 
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Figure 1. Geometry of squint synthetic aperture radar (SAR). The geometry of a general squint SAR
provides the model of the signal acquisition. The radar flies along the X-axis with the velocity of

Vr.
→

OO′ is the vector of the beam illumination. The angle of which away from the X-axis is ( π
2 − θs),

where θs is the squint angle. R0 is the slant range between the sensor and the boresight intersection.
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In4SQP, based on the cosine theorem, the instantaneous slant range R(η; R0) can be given by
the following equation:

R(η; R0) =

√
R2

0 +
(
Vrη − xp

)2
+ 2R0

(
Vrη − xp

)
cos
(π

2
− θs

)
(1)

Assume that a linear FM (LFM) pulse is transmitted by the sensor, and the signal reflected from
target P can be expressed as:

sr(τ, η) = ωr(τ − 2R(η; R0)/c)ωa
(
η − ηp

)
· exp

[
−j 4π

λ R(η; R0)
]

· exp
[
−jπKr(τ − 2R(η; R0)/c)2

] (2)

where τ is the fast time; ηp is the center Doppler moment of target P. c is the speed of light; ωr(•) and
ωa(•) are the antenna patterns in range and azimuth directions, respectively [18]. f0 is the carrier
frequency of the radar. λ = f0/c represents the wavelength of the carrier frequency. Kr is the chirp
rate of the LFM signal. By Taylor expansion, R(η; R0) can be further approximated as:

R(η; R0) ≈ R0 +
cos2 θs(Vrη−xp)

2

2R0
+ sin θs cos2 θs

2R2
0

(
Vrη − xp

)3 − cos2 θs(−3+5 cos(2θs))(Vrη−xp)
4

16R3
0

− cos2 θs(−1+7 cos(2θs) sin θs)(Vrη−xp)
3

16R4
0

−
(
Vrη − xp

)
sin θs + O[η]5

(3)

In Equation (3), the term Vrη sin θs represents linear range walk, which can be compensated by
the function of H1:

H1( fτ , η) = exp
(
−j4π

fτ + f0

c
Vrη sin θs

)
(4)

where fτ is the range frequency. After the linear range walk correction (LRWC) in range frequency
domain, the signal can be given as:

s1( fτ , η) = Wr( fτ)ωa
(
η − ηp

)
exp

(
−j4π

fτ+ f0
c Vrηp sin θs

)
exp

(
−jπ f 2

τ
Kr

)
· exp

(
−j4π

fτ+ f0
c

√
R2

0 + cos2 θs
(
Vrη − xp

)2
)

· exp
(
−j4π

fτ+ f0
c

sin θs cos2 θs
2R2

0

(
Vrη − xp

)3
) (5)

Another way to understand LRWC is shown in the Figure 2. Ta is the synthetic aperture time
of radar in the original sampling geometry. The flight path during the synthetic aperture time of

target P is
→

S1S2. After the LRWC, its equivalent trajectory turns to
→

S1
′S2
′. Accordingly, the equivalent

velocity becomes Vr cos θs. After the LRWC, the signal model can be treated as the “broadside SAR”.
The difference between the broadside SAR and the squint SAR after the LRWC is that the nearest slant
range of the latter also turns to

(
R0 + Vrηp sin θs

)
, which means that the Doppler rates of the squint

SAR after the LRWC are azimuth variant. We define that:

RLRWC = R0 + Vrηp sin θs (6)

With an inverse fast Fourier transform (IFFT) along range direction, we reach the signal of
Equation (5) in 2D time domain:

s′1(τ, η) = ωr(τ − 2(R(η; R0) + Vrη sin θs)/c)ωa
(
η − ηp

)
· exp

[
−j4π

f0
c (R(η; R0) + Vrη sin θs)

]
exp

(
−jπKr(τ − 2(R(η; R0) + Vrη sin θs)/c)2

) (7)
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Figure 2. Geometry of squint SAR after the linear range walk correction (LRWC). The red dot line 
represents the equivalent trajectory of the platform after the LRWC. 
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Figure 2. Geometry of squint SAR after the linear range walk correction (LRWC). The red dot line
represents the equivalent trajectory of the platform after the LRWC.

We can obtain the range history of the target (R(η; R0) + Vrη sin θs) after the LRWC, which is
different from that of the raw squint data. As shown in Figure 2, the LRWC for squint data brings
more benefits when processes the range cell migration (RCMC), range compression (RC), and the
secondary range compression (SRC). In general, to reach the requirement of high-resolution in range
direction, the pulse with wide bandwidth is needed in the SAR system. References [18,21] explain in
detail that the conventional CSA and RDA are not capable of processing the RCMC/RC/SRC with
wide bandwidth. Due to the limited space, this paper will not repeat the methods of precise focusing
along the range direction for the wide bandwidth SAR.

2.2. Azimuth Filter and Coefficients

A 2D fast Fourier transform (FFT) yields the signal of Equation (7) in the 2D frequency domain:

s1
(

fτ , fη

)
= Wr( fτ)Wa

(
fη

)
· exp

(
−j2π fηηp

)
· exp

(
−j4π

( fτ + f0)

c
xp sin θs

)
· exp

(
jΦ
(

fτ , fη

))
(8)

The first exponential term implies the position of target, and the second one indicates the offset
of the target’s position, which can be corrected after the accomplishment of azimuth compression.
Φ
(

fτ , fη

)
represents the phase coupling between the range and azimuth directions.

Φ
(

fr, fη

)
≈ φ0

(
fη

)
R0 +

n

∑
i=1

φi
(

fη , R0
)

f i
τ (9)

In Section 2, it has been discussed that the processing of range dimension is accessible in the

References [18,21]. It is considered that
n
∑

i=1
φi
(

fη , R0
)

f i
τ is eliminated after the processing of range

dimension, so the coefficients φi(i = 1, 2, · · · , n) are not discussed again in this paper. The φ0
(

fη

)
is

shown as the following equation:

φ0
(

fη

)
≈ − 4π

λ −
2πηp

R0
fη +

π
λ

sec2 θs
2V2

r
f 2
η + π sin θs

cos4 θs

λ2

4V3
r

f 3
η − πλ3 (−3+2 cos(2θs))

32V4
r cos6 θs

f 4
η

−πλ4 (−6 sin θs+sin(3θs))

64V5
r cos8 θs

f 5
η + O

[
fη

]5
=

5
∑

i=0
ϕi f i

η + O
[

fη

]5 (10)
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After the RCMC/SRC/RC processing of the signal in Equation (8), the signal in RD domain is
expressed as:

s2
(
τ, fη

)
= ωr(τ)Wa

(
fη

)
· sinc(τ − 2RLRWC/c) · exp

(
jθ2
(

fη

))
(11)

where θ2
(

fη

)
is φ0

(
fη

)
R0. The coefficients ϕ0 ∼ ϕ5 are as follows:

ϕ0 = − 4π
λ ; ϕ1 = − 2πηp

R0

ϕ2 = πλ sec2 θs
2V2

r
; ϕ3 = πλ2 sin θs

cos4 θs

1
4V3

r

ϕ4 = −πλ3 (−3+2 cos(2θs))

32V4
r cos6 θs

; ϕ5 = −πλ4 (−6 sin θs+sin(3θs))

64V5
r cos8 θs

(12)

Also, we define the coefficients ϕi,LRWC and ϕi,s(i = 3, 4, 5 · · ·), respectively.{
ϕi,LRWC(RLRWC) = ϕiRLRWC

ϕi,s = −ϕiVr sin θs
(13)

Substituting the Equation (6) to φ0
(

fη

)
R0, we can rewrite θ2

(
fη

)
:

θ2
(

fη

)
= −

4π
(

RLRWC −Vrηp sin θs
)

λ
− 2πηp fη + ϕ2R0 f 2

η +
n

∑
i=3

(
ϕi,LRWC + ϕi,sηp

)
f i
η (14)

In this paper, the method of series reversion (MSR) is used to enhance the focusing precision
of the algorithm and the ADOF for the high-resolution highly squint SAR. The first step of azimuth
processing is the compensation of high order phase. The effect of high order phase filter (HOPF) is
consistent with the one in [4], which is given as follows:

H2
(

fη

)
= exp

[
−j

n

∑
i=3

ϕi,LRWC(R0) f i
η

]
(15)

Filtered by H2
(

fη

)
, the signal of Equation (8) can be rewritten as:

s3
(
τ, fη

)
≈ ωr(τ)Wa

(
fη

)
· sinc(τ − 2RLRWC/c) · exp

(
j

(
−2πηp fη + ϕ2R0 f 2

η +
n

∑
i=3

ϕi,sηp f i
η

))
(16)

ϕ2R0 can be rewritten as ϕ2R0 = − π
−2V2

r cos2 θs/λ/R0
= − π

Ka
, where Ka is the FM rates along

azimuth direction. In Section 2, we have discussed that the equivalent nearest slant range is RLRWC
after the LRWC. Substitute the Equation (6) to the expression of Ka and expand Ka near ηp = 0:

Ka = − 2V2
r cos2 θs

λ(RLRWC−Vrηp sin θs)

≈ − 2V2
r cos2 θs

λRLRWC
− 2V2

r cos2 θs
λRLRWC

Vr sin θs
RLRWC

ηp − 2V2
r cos2 θs

λRLRWC

V2
r sin2 θs
R2

LRWC
η2

p

− 2V2
r cos2 θs

λRLRWC

V3
r sin3 θs
R3

LRWC
η3

p + O
[
ηp
]4

= KLRWC

(
1 + Ksηp + K2

s η2
p + K3

s η3
p

)
+ O

[
ηp
]4

(17)

KLRWC = − 2V2
r cos2 θs

λRLRWC

Ks =
Vr sin θs
RLRWC

(18)
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It turns that the FM rates of different slant range along the azimuth direction are azimuth variant
according to the Equations (16)–(18). This paper adds a degree of freedom to achieve a coincident FM
rate form of different slant range along the azimuth direction. The turbulent function is expressed as:

H3
(

fη

)
= exp

(
jπ

n

∑
i=3

Xi f i
η

)
(19)

Assume the coefficients ϕ′i,s(i = 3, 4, 5) are proportional to ϕi,s as follows:

ϕ′i,s = ϕi,s/π (20)

Multiplying (19) with (16) results in:

s4
(
τ, fη

)
≈ ωr(τ)Wa

(
fη

)
· sinc(τ − 2RLRWC/c) · exp

(
j
(
−2πηp fη − π

Ka
f 2
η +

n
∑

i=3

(
ϕ′i,sηp + Xi

)
f i
η

))
(21)

The MSR is applied to calculate the solution of stationary phase (SP) of the Equation (21). To ensure
the precision of the solution, this paper reserves a second order form for the solution, which is given as:

fη,SP = Ka
(
η − ηp

)
+

3
2

k3K3
a
(
η − ηp

)2 (22)

We can get s5(τ, η) by substituting the solution of SP into the IFFT form of s4(τ, η):

s5(τ, η) =
+∞∫

fη=−∞
s4
(
τ, fη

)
exp

(
j2π fηη

)
d fη

≈ s4
(
τ, fη

)
exp

(
j2π fηη

)∣∣
fη=Ka(η−ηp)+

3
2 k3K3

a (η−ηp)
2

= ωa(η − ηc)sinc(τ − 2RLRWC/c) exp
(

jπθ5
(

fη

)) (23)

θ5(η) is rewritten as:

θ5(η) = πKa
(
η − ηp

)2
+ πk3K3

a
(
η − ηp

)3
+ 1

4 πK4
a
(
4k4 + 9k2

3Ka
)(

η − ηp
)4

+ 1
4 πK5

a
(
4k5 + 3k3Ka

(
8k4 + 9k2

3Ka
))(

η − ηp
)5

= πKa
(
η − ηp

)2
+ π

5
∑

i=3
pi
(
η − ηp

)i

(24)

The coefficients are as follows:

ki = Yi + ϕ′i,sηp(i = 3, 4, 5)

p3 = k3K3
a

p4 = 1
4 K4

a
(
4k4 + 9k2

3Ka
)

p5 = 1
4 K5

a
(
4k5 + 3k3Ka

(
8k4 + 9k2

3Ka
)) (25)

To compensate the azimuth variance and the difference of Doppler rates along the azimuth,
a high-order nonlinear azimuth chirp scaling filter is applied:

H4(η) = exp

(
jπ

5

∑
i=2

qiη
i

)
(26)
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Multiplying (26) with (23) results in s6(τ, η):

s6(τ, η) = s5(τ, η)H4(η)

= ωa(η − ηc)sinc(τ − 2RLRWC/c) exp
(

jπθ5
(

fη

)
+ jπ

5
∑

i=2
qiη

i
)

(27)

In order to achieve a fast calculation for azimuth compression, an FFT for the Equation (27) yields
the s7

(
τ, fη

)
in RD domain. Also, the solution of SP is calculated by MSR:

ηSP =
fη+ηpKa+

5
∑

i=3

i
2 (−ηp)

i−1
pi

Ka+
5
∑

i=3
i(i−1)(−ηp)

i−1
pi+q2

−

(
5
∑

i=3
P3

i pi(−ηp)
i−3

+6q3

)(
fη+ηpKa+

5
∑

i=3

i
2 (−ηp)

i−1
pi

)2

4
(

Ka+
5
∑

i=3
i(i−1)(−ηp)

i−1
pi+q2

)3

(28)

Expanding (28) near ηp = 0 by the principle of Taylor expansion yields the results:

1

Ka+
5
∑

i=3
i(i−1)(−ηp)

i−1
pi+q2

≈ 1
KLRWC+q2

+
(−KLRWCKs+3K3

LRWCX3)ηp

(KLRWC+q2)
2

+
(−2KLRWCK2

s q2+6K4
LRWCKsX3+18K3

LRWCKsq2X3−9K6
LRWCX2

3)η2
p

2(KLRWC+q2)
3

1(
Ka+

5
∑

i=3
i(i−1)(−ηp)

i−1
pi+q2

)3 ≈ 1
(KLRWC+q2)

3 −
3(KLRWCKs−3K3

LRWCX3)ηp

(KLRWC+q2)
4

+

12(KLRWCKs−3K3
LRWC X3)

2

(KLRWC+q2)
2 −

6(KLRWCK2
s−9K3

LRWCKsX3+
27
2 K5

LRWCY2
3 +6K4

LRWC X4)
KLRWC+q2

η2
p

2(KLRWC+q2)
3

(29)

Then we can get the phase θ7
(

fη

)
of the s7

(
τ, fη

)
after the Taylor expansion:

θ7
(

fη

)
= A

(
q2, q3, q4, q5, X3, X4, X5, fη , f 2

η , f 3
η , f 4

η , f 5
η

)
+B(q2, q3, q4, q5, X3, X4, X5)ηp fη + C(q2, q3, q4, q5, X3, X4, X5)η

2
p fη

+D(q2, q3, q4, q5, X3, X4, X5)ηp f 2
η + E(q2, q3, q4, q5, X3, X4, X5)η

2
p f 2

η

+F(q2, q3, q4, q5, X3, X4, X5)ηp f 3
η + G(q2, q3, q4, q5, X3, X4, X5)η

2
p f 3

η

+H(q2, q3, q4, q5, X3, X4, X5)ηp f 4
η + φres(q2, q3, q4, q5, X3, X4, X5)

(30)

The first term on the right of (30) is the azimuth frequency modulation. The second term is the
real target azimuth position. The third–the eighth term represents the nonlinear geometric deviation
along the azimuth direction. The last term, φres, is the residual phase, which needs to be eliminated
in the applications, e.g., SAR interferometry and differential SAR interferometry. The coefficients are
shown in Table 1.

Table 1. Coefficients for different order.

Coefficients Value

B(q2, q3, q4, q5, X3, X4, X5) − 2πKLRWC
KLRWC+q2

C(q2, q3, q4, q5, X3, X4, X5)
πKLRWC(KLRWCKs+Ksq2+3q3−3K2

1q2X3)
(KLRWC+q2)

3

D(q2, q3, q4, q5, X3, X4, X5) πKLRWC
−2Ksq2

2+KLRWC(−2Ksq2+3q3)+3K2
LRWCq2

2X3

(KLRWC+q2)
3
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Table 1. Cont.

Coefficients Value

E(q2, q3, q4, q5, X3, X4, X5)
πKLRWC

2(KLRWC+q2)
5

 2Ksq2
2(Ksq2 + 3q3) + KLRWC

(
4K2

s q2
2 − 6Ksq2q3 − 27q2

3 + 12q2q4
)

−3K4
LRWC

(
3q3X3 + q2(−9q2

2X2
3 − 4q2X4 + 2ψ′3,s)

) 
F(q2, q3, q4, q5, X3, X4, X5)

−πKLRWC

(KLRWC+q2)
5

(
3Ksq2q3 + 9q2

3 + KLRWC(3Ksq3 − 4q4) + K4
LRWC(9q2

2X2
3 + 4q2X4 − ψ′3,s)

−K2
LRWCq2(3Ksq2X3 + 9q3X3 + q2ψ′3,s)

)

G(q2, q3, q4, q5, X3, X4, X5)
πKLRWC

2(KLRWC+q2)
7



−6KLRWCK2
s q2

2q3 + Ks
(
54q2q2

3 − 8q2
2q4) + 5(27q3

3 − 24q2q3q4 + 4q2
2q5)

)
+K3

LRWC
(
40q2q5 + 27q2

2q2
3X3 + 6K2

s q2(q3 + 2q3
2X3)

)
+2K4

LRWC

(
10q5 − Ksq2

2(27q3X3 + 16q2
2X4 − 9q2 ϕ′3,s)

)
+q2

(
30q2q4X3 + 9q2q3(−2q2X4 + ϕ′3,s)− 4q3

2 ϕ′4,s)
)

−4K5
LRWC

(
−9q2q4X3 + q4

2(−5X5 + 9X3 ϕ′3,s) + 6q3
2 ϕ′4,s

)



H(q2, q3, q4, q5, X3, X4, X5)
πKLRWC

4(KLRWC+q2)
7



Ksq2
(
45q2

3 − 16q2q4
)
+ KLRWC

(
54q2q2

3 − 8q2
2q4) + 5(27q3

3 − 24q2q3q4 + 4q2
2q5)

)
+5
(
27q3

3 − 24q2q3q4 + 4q2
2q5
)
+ K5

LRWC
(
Ksq2

(
45q2X2

3 + 16X4
)
− 48q3X4 − 120q3

2X3X4
)

+K2
LRWC

(
27q3X2

3 + q2

(
−20X5 + 18X3 ϕ′3,s

)
+ 4ϕ′4,s

)
+ K4

LRWCKs
(
36q3X3 + 45q3

2X2
3 + 32q2

2X4
)

+2K4
LRWCKs

(
q3

2(−10X5 + 9X3 ϕ′3,s) + q2
2(81q3X2

3 + 6ϕ′4,s)
)



The coefficients of qi(i = 2, 3, 4, 5) and Xi(i = 3, 4, 5) can be solved by the following equations:

B(q2, q3, q4, q5, X3, X4, X5) = −π
α

C(q2, q3, q4, q5, X3, X4, X5) = 0

D(q2, q3, q4, q5, X3, X4, X5) = 0

E(q2, q3, q4, q5, X3, X4, X5) = 0

F(q2, q3, q4, q5, X3, X4, X5) = 0

G(q2, q3, q4, q5, X3, X4, X5) = 0

H(q2, q3, q4, q5, X3, X4, X5) = 0

(31)

The parameters are solved by Equation (31):

q2 = (−1 + 2α)KLRWC

q3 = 1
3 (−1 + 2α)KLRWCKs

q4 = KLRWC
12

(
K2

s (−3 + 7α)− 3K2
LRWC ϕ′3,s(1− 2α)

)
q5 = KLRWC

60(−1+2α)

(
(9− 50α + 82α2)K3

s + 6K2
LRWCKs ϕ′3,s(5− 24α + 25α2) + 12K3

LRWC ϕ′4,s(1− 2α)2
)

X3 = (−1+4α)Ks
3(−1+2α)K2

LRWC

X4 =
−6αK2

s−3K2
LRWC ϕ′3,s(1−4α)

12(−1+2α)K3
LRWC

X5 =
−3αKs ϕ′3,s−KLRWC ϕ′4,s(1−4α)

5(−1+2α)K2
LRWC

(32)

The coefficient A
(

q2, q3, q4, q5, X3, X4, X5, fη , f 2
η , f 3

η , f 4
η , f 5

η

)
is rewritten as:

A
(

q2, q3, q4, q5, X3, X4, X5, fη , f 2
η , f 3

η , f 4
η , f 5

η

)
=

5

∑
i=1

Ai(q2, q3, q4, q5, X3, X4, X5) f i
η (33)

Table 2 shows the expressions of the coefficients Ai( i = 1 ∼ 5).
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Table 2. Coefficients values in Equation (33).

Coefficients Value

A1(q2, q3, q4, q5, X3, X4, X5) 0

A2(q2, q3, q4, q5, X3, X4, X5) − π
KLRWC+q2

A3(q2, q3, q4, q5, X3, X4, X5)
π(q3+K3

LRWC X3)

(KLRWC+q2)
3

A4(q2, q3, q4, q5, X3, X4, X5)
π

4(KLRWC+q2)
5

(
4(KLRWC + q2)(q4 + K4

LRWCX4)− 9(q2
3 + 2K3

LRWCq3X3 − K5
LRWCq2X2

3)
)

A5(q2, q3, q4, q5, X3, X4, X5)
π

4(KLRWC+q2)
7

 4(KLRWC + q2)
2(q5 + K5

LRWCX5) + 27q3(q3 + K3
LRWCX3)

2

+24(KLRWC + q2)

(
−q3(q4 + K4

LRWCX4)

+K3
LRWCX3(−q4 + K3

LRWCq2X4)

)
+ 27K3

LRWCX3(q3 − K2
LRWCq2X3)

2



The azimuth compression filter is given as follow:

H5
(

fη

)
= exp

(
−

5

∑
i=2

Ai(q2, q3, q4, q5, X3, X4, X5) f i
η

)
(34)

The principle of stationary phase is applied to derive the signal after azimuth compression in the
RD domain. The signal in the azimuth time domain is expressed as:

s(τ, η) = sinc
(

τ − 2RLRWC
c

)
sinc

(
η −

ηp

2α

)
exp

(
−j2πηpη

)
(35)

From the Equation (35), it obtains that the target position after focusing is shifted to(
R0 + xp sin θs, xp/(2α)

)
. Readers can adopt the method of geometric correction to correct the

geometric shift, which has been illustrated in [1].
The generalized chirp scaling algorithm in [4] is the special form of GNLCSA in the case of θs = 0.

The difference between ENLCSA and GNLCSA is that the coefficients and the phase of azimuth
compression in GNLCSA framework are more precise than ones of ENLCSA.

2.3. Block Diagram of GNLCSA

The blocks diagram of the proposed GNLCSA is shown in the Figure 3.
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The steps of the proposed algorithm for high-resolution highly squint SAR are as follows:

Step 1. A range FFT is used to transfer the raw data to the range frequency domain. The data is
multiplied with the filter of LRWC to achieve the processing of “equivalent broadside” in
range direction.

Step 2. range IFFT is implemented to transfer the data after LRWC into the range time domain.
The modified CSA proposed in [18,21], is introduced to process the former high-resolution
squint data, which has the advantages of eliminating the coupling between the range and
azimuth dimensions and enhancing the focusing precision for the range dimension at any ratio
of Br/ f0 (Br is the bandwidth of the transmitting pulse).

Step 3. The high order compensation filter is multiplied with the data after the processing of step 2.
It reduces the deteriorations of focusing caused by the high order phase error.

Step 4. A turbulent compensation filter is multiplied with the data after the processing of step 3 to
achieve a coincident FM rate form of different slant range along the azimuth direction.

Step 5. The MSR is implemented in the azimuth IFFT for the data after the processing of step 4. Then a
nonlinear chirp scaling filter is applied to compensate the azimuth variance.

Step 6. After the processing of the nonlinear chirp scaling, the MSR is also applied in the azimuth FFT
for the data. The azimuth compression filter is used to achieve the focusing of the squint data.
Then an IFFT is applied for the focusing data in the RD domain.

Step 7. The geometric correction is applied in the final step to obtain images matching the geometry of
the signal acquisition.

3. Experimental Results and Discussion

3.1. Experimental Results

The simulation is carried out with the parameters of Table 3.

Table 3. Parameters of simulation.

Parameters Values

Center Frequency ( f0) 8 GHz
Bandwidth (Br) 150 MHz

Sampling Frequency ( fs) 180 MHz
Antenna Size (Dr × Da) 2 m × 1.5 m

Scene Size/km 4 km × 4 km
Targets Distribution (R × A) 9 × 11

Sensor Velocity (Vr) 100 m/s
Pulse Repeat Frequency

(PRF) 300 Hz

Pulse Width (Tr) 30 us
Center Slant Range (R0) 20 km

Squint Angle (θs) 45◦

The flight geometry and dot-matrix targets are shown in the Figure 4.
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The gray dots in Figure 4 represent the dot-matrix targets. To make a clear and fair comparison,
no weighting functions or methods of side-lobe controlling is applied in the algorithms. The results
processed by different algorithms are shown in Figure 5.
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Figure 5. Simulation results processed by different algorithms. The sub-images in each column
correspond to target 1, target 2, and target 3, respectively. (a,c) and (b,d) show the contours azimuth
slice of the results processed by the extended nonlinear CS algorithm (ENLCSA) and generalized
nonlinear chirp scaling (GNLCSA), respectively.
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The three targets focusing performances processed by different algorithms are shown in Table 4,
where the focusing performances include resolution (Res), peak side-lobe ratio (PSLR), and integrated
side-lobe ratio (ISLR).

Table 4. Focusing performances for ENLCSA or GNLCSA.

Algorithm Dimension Performance
Target Index

1 2 3

ENLCSA

Range
Res/m 0.8854 0.8854 0.8854

PSLR/dB −13.2545 −13.2675 −13.2818
ISLR/dB −9.9274 −9.8464 −9.8847

Azimuth
Res/m 1.1294 1.0221 1.0219

PSLR/dB −7.3320 −12.4446 −9.3459
ISLR/dB −9.6334 −9.3022 −6.2756

GNLCSA

Range
Res/m 0.8828 0.8854 0.8854

PSLR/dB −13.2864 −13.2761 −13.3001
ISLR/dB −9.3836 −9.8400 −9.8404

Azimuth
Res/m 1.0115 1.0135 1.0188

PSLR/dB −12.7645 −12.7299 −12.0016
ISLR/dB −9.5608 −9.6637 −9.0291

When comparing the results and performances in Figure 5 and Table 4, it is obvious that the
results achieved by GNLCSA are better than the ones that are processed by ENLCSA. In Figure 5,
the sub-images shown in (a) and (b) indicate that azimuth FM rates are mismatched during the
processing of ENLCSA. The quadratic and cubic phases still exist in a large proportion, which causes
the deterioration of azimuth compression. The focusing performance tends to be worse when the
distance bias that is away from the referenced azimuth position becomes larger. The sub-images listed
in Figure 5c,d are well focused. It is concluded that the azimuth variant FM rates and high orders are
eliminated effectively in different azimuth position, and the azimuth focusing quality and the ADOF
are greatly improved by GNLCSA.

We selected eight points with different azimuth and range position in Figure 4, and signed with
A, B, C, D, E, F, G, and H, respectively. Comparison of the focusing performances of GNLCSA and
ENLCSA on points 1–3 and A–H is performed. The results are shown in Figure 6.
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Figure 6. Focusing performances of different algorithms on 11 points marked in Figure 4. The blue
solid lines with ‘o’ marker are the results of ENLCSA. The red dash lines with ‘*’ marker are the results
of the GNLCSA. (a–c) represent the peak side-lobe ratio (PSLR), integrated side-lobe ratio (ISLR) and
resolution, respectively.

The focusing performances of the 11 points marked in Figure 4 are shown in Figure 6.
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The normalized values of PSLR and ISLR for a precise focusing point (the antenna pattern is
a rectangle) are −13.27 dB and −9.60 dB, respectively. From Figure 6, it can be concluded that the
focusing performances of the GNLCSA are much better than the ones of the ENLCSA. PSLR and ISLR
of GNLCSA are close to the normalized value. In addition, the GNLCSA is also more stable than
the ENLCSA.

Video SAR has great advantages in the applications of ground moving target indication (GMTI),
for it can form a series of consecutive frames. Video SAR needs images at different squint angle to
form the video sequence. Also, it requires a high focusing quality and a fast imaging ability for each
frame. The simulation results show that the ENLCSA is not accessible to the focusing requirements of
the scene size (4 km × 4 km) for squint SAR (the squint angle is 45 degree). It means that the ENLCSA
cannot be applied in the video SAR with the parameters in Table 3, but the GNLCSA can be done.

3.2. Discussion

As the azimuth variance of equivalent range cannot be formatted in the RD domain,
the approximation is adopted during the compensation of high order phase in the filter of H2

(
fη

)
.

The phase error of the compensation plays an important role in the AODF and the focusing precision,
which can be expressed as:

∆Ψerror =

(
∞

∑
i=3

ϕi,LRWC(RLRWC)−
∞

∑
i=3

ϕi,LRWC(R0)

)
f i
η (36)

According to the Equation (36), we do the simulations to inquire the potential limitations of
GNLCSA. Figures 7 and 8 show the phase error of targets in the edge (the distance depart from the
referenced azimuth position is 2 km), varying with the azimuth resolution or the squint angle at
different wavelength.
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Figure 7. Phase error of targets in the edge (the distance departing from the referenced azimuth position
is 2 km and the squint angle is 45◦) varies with the azimuth resolution and wavelength. The blue solid
line with ‘o’, the red dash line with ‘*’ and the cyan lineation line with ‘∇’ are the results with the
wavelength equaling to 0.06 m, 0.03 m and 0.015 m, respectively.



Sensors 2017, 17, 2568 14 of 15

Sensors 2017, 17, 2568  14 of 16 

 

According to the Equation (36), we do the simulations to inquire the potential limitations of 
GNLCSA. Figures 7 and 8 show the phase error of targets in the edge (the distance depart from the 
referenced azimuth position is 2 km), varying with the azimuth resolution or the squint angle at 
different wavelength. 

0.5 1 1.5 2
0

2

4

6

8

10

12

14

16

18

Resolution/m

P
ha

se
 E

rr
or

/ra
d

 

 

=0.06m
=0.03m
=0.015m

0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 
Figure 7. Phase error of targets in the edge (the distance departing from the referenced azimuth 
position is 2 km and the squint angle is 45°) varies with the azimuth resolution and wavelength. The 
blue solid line with ‘o’, the red dash line with ‘*’ and the cyan lineation line with ‘ ’ are the results 
with the wavelength equaling to 0.06 m, 0.03 m and 0.015 m, respectively. 

30 35 40 45 50 55 60
0

1

2

3

4

5

6

7

8

9

10

11

Squint angle/degree

P
ha

se
 E

rr
or

/ra
d

 

 
=0.06m

=0.03m

=0.015m

40 42 44 46 48 50

0.5

1

1.5

2

2.5

3

 

 
Figure 8. Phase error of targets in the edge (the distance departing from the referenced azimuth 
position is 2 km and the azimuth resolution is 1 m) varies with the squint angle and wave length. 
The blue solid line with ‘o’, the red dash line with ‘*’ and the cyan lineation line with ‘ ’ are the 
results of the wavelength equaling to 0.06 m, 0.03 m and 0.015 m, respectively. 

From Figures 7 and 8, it is obvious that the phase error decreases when the wavelength 
descends. In the process of SAR imaging, it can be neglected if the phase error is smaller than / 4 . 

Figure 8. Phase error of targets in the edge (the distance departing from the referenced azimuth position
is 2 km and the azimuth resolution is 1 m) varies with the squint angle and wave length. The blue
solid line with ‘o’, the red dash line with ‘*’ and the cyan lineation line with ‘∇’ are the results of the
wavelength equaling to 0.06 m, 0.03 m and 0.015 m, respectively.

From Figures 7 and 8, it is obvious that the phase error decreases when the wavelength descends.
In the process of SAR imaging, it can be neglected if the phase error is smaller than π/4. In general,
it can conclude that the GNLCSA is invalid in the occasions that the wavelength is greater than 0.06 m.
Furthermore, the GNLCSA is unavailable for the applications of the low carrier frequency. It will
greatly decrease the AODF and the focusing precision in those occasions. Contrastively, the GNLCSA
can be applied in the occasions (the squint angle can be up to 60◦ and the azimuth resolution can be
smaller than 0.8 m) when the wavelength is smaller than 0.015 m.

4. Conclusions

With the advantages of flexible observation, the squint SAR with the multi-mode is widely used
to accomplish different monitoring missions. The GNLCSA proposed in this paper derived the new
perturbation function and the nonlinear chirp scaling function by the method of series reversion. Also,
it modifies the procedures of the processing in the range dimension to avoid the tedious range block
processing in ENLCSA [1]. In general, from the perspective of the algorithmic framework, the NLCSA
and ENLCSA are special forms of the proposed algorithm. The simulation results indicate that the
ADOF and the focusing precise have been well improved in the areas apart from the azimuth reference
position with the process of the GNLCSA.
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