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Abstract: The study of the microbiome, the totality of all microbes inhabiting the host or
an environmental niche, has experienced exponential growth over the past few years. The microbiome
contributes functional genes and metabolites, and is an important factor for maintaining health.
In this context, metabolomics is increasingly applied to complement sequencing-based approaches
(marker genes or shotgun metagenomics) to enable resolution of microbiome-conferred functionalities
associated with health. However, analyzing the resulting multi-omics data remains a significant
challenge in current microbiome studies. In this review, we provide an overview of different
computational approaches that have been used in recent years for integrative analysis of metabolome
and microbiome data, ranging from statistical correlation analysis to metabolic network-based
modeling approaches. Throughout the process, we strive to present a unified conceptual framework
for multi-omics integration and interpretation, as well as point out potential future directions.
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1. Introduction

The human gut microbiome is a complex biological system that performs several vital functions
for the host, such as digestion and degradation of macromolecules, production of vitamins, and
training of the host immune system. Over the millenniums, humans have coevolved symbiotically
with these gut microbes. They interact with each other primarily through evolutionarily conserved
chemical dialogs that involve different metabolites and pathways [1,2]. The increasingly affordable
high-throughput sequencing technologies have enabled invaluable insights into the structure and
functional potential of the microbiome [3–5]. For instance, metagenomics studies of the gut microbiome
have shown that community structures shift with dietary changes, and that metabolic potentials are
different between obese and lean mice [6,7]. While promising, key limitations of these approaches
(i.e., marker gene sequencing or metagenomics) are their inability to directly measure functional
activity and to identify microbial traits associated with functions. Downstream omics technologies
that analyze the transcriptome (metatranscriptomics), proteome (metaproteomics) and metabolome
(metabolomics) have shown that significant genes identified through metagenomics might not
necessarily be expressed [8,9].

Of the omics technologies, metabolomics plays a key role in connecting host phenotype and
microbiome function [10,11]. Metabolomics is the systematic study of all small molecules within
a biological system. Unlike other meta-omics, metabolites and metabolic pathways are relatively
conserved across species. The gut metabolome consists of metabolites produced from both the host
and the microbial community. Coupling metabolomics with metagenomics has great potential to shift
current microbiome research towards understanding community functions and interactions with the
host. Much work has been done to analyze individual omics data, with many powerful bioinformatics
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tools developed over the past decade to enable metabolome and microbiome profiling [12–17].
In comparison, analyzing multi-omics data is still in its infancy, usually requiring development and
application of advanced statistical algorithms to leverage multiple heterogeneous yet interconnected
data matrices. In this review, we focus specifically on recent progress and applications of different
computational strategies for integration of metabolomics in the context of microbiome studies.

2. Metabolomics Data Integration in the Microbiome

Multi-omics data consists of two or more matrices that share the same sample IDs but
contain different biological variables such as genes, metabolites, or operational taxonomic units
(OTUs). Based on whether they take into consideration prior knowledge, these methods range from
predominantly statistics-based to knowledge-driven integrations (Figure 1). Statistical integration
employs univariate or multivariate analysis to understand correlations between biological variables in
different omics layers, while knowledge-based approaches aim to understand potential mechanistic
links by projecting the significant biological variables identified from individual omics layers into
an existing knowledge base, often represented as interaction networks (such as metabolic networks).
More recent developments aim to directly incorporate prior knowledge into statistical models to
improve both statistical power and interpretability of the results.
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Figure 1. A graphical summary of the major types of computational approaches for integrative
analysis of multi-omics data. These methods range from purely statistical approaches (top) to primarily
knowledge-driven approaches (bottom). Integrating these two approaches may offer great potential
for future development in the field.

2.1. Univariate Correlation-Based Approaches

The simplest approaches for omics integration are univariate correlation analysis to determine if there
are strong linear relationships (Pearson’s correlation) or monotonic relationships (Spearman’s correlation)
between individual metabolites (metabolome) and genes or taxa (microbiome). For instance, Theriot et al.
performed Spearman correlation analysis between the mouse gut microbiome and metabolome to
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identify relationships between metabolite–OTU pairs [18]. Further unsupervised clustering analysis
of these correlations revealed that these metabolite–OTU pairs tend to group together according to
different environmental states [18]. In a multi-omics study of the goat rumen microbiome, Mao et al.
applied univariate correlation methods to create a Pearson’s correlation matrix between genera and
metabolites [19]. The authors identified a clear correlation between altered community structure of the
rumen microbiome and changes in metabolite profiles with increasing carbohydrate intake [19].

While performing univariate correlations is relatively straightforward, these methods suffer from
a high rate of false positives, requiring researchers to control the type I error rate by performing
multiple testing corrections. Also, while associations between metabolites and the microbiome can be
extrapolated, these associations often lack context for interpretation in terms of biological plausibility
and mechanistic insight. Univariate correlation-based approaches are often used together with other
knowledge-based approaches to aid in data interpretation.

2.2. Multivariate Correlation-Based Approaches

Although significantly more complex than univariate methods, multivariate approaches can
simultaneously consider interactions between and within data matrices. Due to the high-dimensional
nature of omics data, dimension-reduction methods have become the predominate methods to perform
statistical integration. For the remainder of this section, consider two data matrixes, X (n × p) and
Y (n × q), where n represent the same individuals or samples, and p and q represent different sets of
omics variables.

Dimension-reduction techniques aim to reduce large number of variables into a handful of new
components or principal variables, with minimal loss of information. Multivariate methods for omics
integration are usually extensions of commonly used dimension reduction techniques, including
principal component analysis (PCA) and partial least squares (PLS). PCA is a data-reduction technique
that identifies linear combinations of variables that maximizes the variance within one data matrix (X).
PLS is a supervised method aiming to maximize the covariance between extracted components of X
and Y. Conventional PLS requires users to define X and Y as response or predictive variables, and does
not consider inherent systematic variation that may exist within each dataset that does not correspond
with the outcome [20]. An extension of PLS, two-way orthogonal PLS (O2–PLS), disregards matrix
assignment and treats X and Y as equals. The O2–PLS separates the variation in each dataset into
three blocks, joint, unique and residual, and is then able to identify significantly predictive features
of the joint variation [20–22]. For instance, El-Aidy et al. used O2–PLS for pair-wise integration of
metabolomic, transcriptomic and metagenomic data of germ-free mice undergoing colonization of
normal mice gut-microbiota [23]. The authors identified strong correlations between early microbial
colonizers and variations in urine metabolites, as well as correlations between colonic tissue metabolites
and the upregulation of genes involved in O- and N-glycan biosynthesis and degradation [23].

Canonical correlation analysis (CCA) [24] and co-inertia analysis (CIA) [25] are two other
multivariate correlation methods often employed for omics integration. CCA is a feature-extraction
method that identifies the best linear combination of X and Y that maximizes the correlation between
components. To perform CCA, variables within the data set should be linearly independent, and the
number of samples should not be less than the number of variables. Both assumptions are usually
not met in omics data. To address this limitation, sparse variations of CCA have been developed
including sparse CCA (sCCA) [26], kernel CCA [27] and a regularized version of CCA (RCCA) [28].
Kostic et al. used a sparse version of CCA to integrate the gut microbiome and the gut metabolome
of infants predisposed to type 1 diabetes (T1D) [29]. The authors identified a canonical variable that
consisted of increased Ruminococcus and decreased Veillonella abundances that correlated significantly
with increased Sphingomyelin and decreased lithocholic acid levels [29]. The authors suggested that
these T1D-associated bacteria promote a pro-inflammatory microbiome through such metabolites that
permits the pathogenesis of T1D [29].
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Co-inertia analysis (CIA) [25] was initially used in ecological studies and has since been used for
omics integration. It describes the co-structure between two datasets by maximizing the covariance
between components. CIA first performs a data-reduction technique such as PCA or correspondence
analysis on X and Y separately, and then constrains the resulting components so that the squared
covariances between X and Y are maximized. In a simpler sense, CIA can be considered as a PCA of
the joint covariances of X and Y [30]. Hill et al. used CIA to examine the relationship between urinary
metabolites and metagenomic data from the gut microbiome in pre-term and full-term infants [31].
The study identified significant covariance between the metabolomic and metagenomic data, with
distinct separation between the pre-term infants from the full-term infants [31]. Liu et al. also used
CIA to evaluate the covariance between the metabolites and genes of obese and lean humans [32].
The covariance between the genes and metabolites showed clear separation patterns between these two
groups, and microbes differentially enriched were associated with tyrosine, phenylalanine, glutamate
and branched-chain amino acids [32].

Procrustes analysis (PA) is a statistical technique that utilizes data-reduction methods such
as PCA and CCA for visual integration of omics data [33]. PA is a fast and simple visualization
technique that superimposes the principal components of two datasets at the low-dimensional space
and allows researchers to quickly examine the congruency of their multi-omics datasets. For example,
McHardy et al. [34] performed PA between metabolome and microbiome data to determine the
strength of the inter-omics relationship, and showed that the microbiome and metabolome were more
similar in the cecum compared to the sigmoid. To investigate the roles of fermented food exposure in
humans [35], Quinn et al. also applied PA on 16S rRNA microbiome data and metabolomics data to
gain an integrated look at the relationship between the microbiome and metabolome. PA on its own is
not sufficient to draw strong conclusions, but can be complimented with other multivariate methods
such as CCA [35].

The aforementioned multivariate methods, much like univariate methods, are biologically naïve,
often resulting in biologically improbable solutions. For instance, changes to the different molecular
layers of the microbiome often do not occur simultaneously, and integration of prior knowledge to
account for such time-scale differences could help remedy this issue. For instance, Garali et al. [36]
recently introduced the regularized generalized CCA (RGCCA) and its sparse counterpart (SRGCCA)
as a multi-block approach for integrative exploratory analysis of multi-omics data. Through the use of
a design matrix, shrinkage parameter and scheme function, SRGCCA/RGCCA encompasses several
known omics integration techniques such as PCA, PLS, CCA and their own extensions as special cases.
Importantly, this method allows for the incorporation of prior knowledge through the design matrix,
which takes into account block connections [36].

3. Knowledge-Based Approaches for Omics Integration

This approach leverages our existing knowledge framework about relationships between
metabolites, species and/or genes to integrate different omics data. This information can be collected
from public databases, through literature mining or by computational predictions. Our knowledge
about the communications between microbial species and their interactions with their host can be
intuitively represented as networks in which metabolites/microbes/genes are presented as nodes and
their known/predicted interactions as edges. Such network representation allows for both intuitive
visual exploration and topological analysis to identify important links or key actors within the microbial
community. One commonly used measure is node degree, which measures the number of connections
between a node and its surrounding nodes. Highly connected nodes (also known as hubs) tend to
have greater influence upon the network [37]. Another useful measure is modularity, which is defined
as a group of nodes that are more densely connected with each other as compared to nodes outside of
that group. These nodes are considered more functionally related within the context. For instance,
Greenblum et al. revealed that the gut microbiomes of obese humans are less modular than their lean



Metabolites 2017, 7, 62 5 of 10

counterparts [38]. Topological approaches together with visualization are frequently used to highlight
key differences between different disease states, and to suggest potential biological mechanisms.

3.1. Correlation/Interaction-Based Community Networks

The simplest method for knowledge-based omics integration is the correlation network, which
is created based on pair-wise relationships between biological entities measured in the omics data.
The pair-wise relationships can be computed directly from the omics data itself or based on third-party
resources. For instance, McHardy et al. [34] used pair-wise Spearman correlation between microbiome
and metabolome data to construct an interaction network of the cecum and sigmoid. Correlations less
than q ≥ 0.2 were removed from the network, and edges were colored based on a positive or negative
correlation. A more biologically motivated approach is to connect two nodes based upon (potential)
shared biological interaction, such as the known/predicted positive or negative impacts of microbial
growth between microbial species based upon potential cross-feeding, collaboration or competition.
For instance, Sung et al. created a metabolite transport network of the gut microbiota based upon an
extensive literature review of the metabolites and macromolecules 567 gut microbiota can import or
export [39]. Using this information, positive or negative pair-wise associations between the microbiota
were calculated and visualized to create a community interaction network [39]. Both approaches have
been successful at identifying novel associations between omics data. However, because they focus
solely upon pair-wise relationships between nodes, they may miss complex interactions within the
microbiome data [40].

3.2. Metabolic Networks

While correlation-based network reconstructions touch upon microbial species interaction,
they are unable to provide more detailed mechanistic information about these interactions.
Metabolic models, which are comprehensive metabolic reconstructions of an organism, are an
alternative to the previous interaction-based network approach. These models can be used as a scaffold
for omics data integration, whereby they provide key mechanistic details surrounding microbiome
function and activity. More specifically, genome-scale metabolic models (GEMs) are complete metabolic
maps of an organism, containing the entire set of metabolic reactions and permitting integration of
metabolomics and metagenomics data in a more biologically meaningful context. While construction of
GEMs is time-consuming, several well-annotated GEMs have been produced for a variety of organisms
including human, mice and recently, human gut microbiome species [41–43]. These GEMs can be
merged to create community-wide metabolic networks, and further linked with tissue-specific host
GEMs to help investigate host–microbiome interactions [44,45].

3.2.1. Topological Analysis of Metabolic Models

The seed set framework [46] is one commonly used topological-based approach for GEM
investigations. This framework applies a graph theory-based algorithm to identify the minimal subset
of exogenously derived compounds required to produce all other compounds within a metabolic
network. Greenblum et al. used the seed set framework in the context of a community gut microbiome
metabolic network, and found that enzymes identified in the seed set were overrepresented in
obese and IBD-associated enzymes [38]. The seed set framework has also been applied to predict
microbe–microbe interactions by computing competition and mutualism scores based upon the
predicted seed set of each microbe–microbe pair at the genus level [47]. Competition scores were
based upon the overlap of seed set compounds, and mutualism scores were based upon the overlap of
compounds that a microbe can consume from which another microbe can provide. This method can be
further extended through the prediction of microbial interactions at the species/strain level, such as
with the recently published resource of GEMs of the human gut microbiota [43].

Topological analysis could be used to perform gene/reaction knockouts within in-silico
community metabolic network reconstructions [48]. In this case, omics can easily be integrated
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to create state-specific metabolic reconstructions, with the overlay of measured genes/metabolites
to determine the presence or absence of reactions. Graph-based algorithms could then be applied to
identify the effect of removing certain genes/metabolites/reactions, such as the loss of functions or the
decreased production of compounds. This novel topological-based method could identify potential
biomarkers or key genes/metabolites to be targeted for future in-vitro experiments.

3.2.2. Community Metabolic Models

Predicted relative metabolic turnover (PRMT) is a network-based modeling method that was
initially created to predict community metabolic function solely from metagenomic information. It uses
metagenomic information such as the relative abundance and average enzyme function counts per
phyla to infer the metabolic potential of each phyla, which is then used to model the community
metabolome via calculated PRMT scores [49]. This method was first used to investigate the role of
microbial communities in the Western English Channel [49]. Using PRMT, the authors accurately
predicted the metabolic turnover of microbial communities with seasonal changes, and identified
bacteria that were highly correlated with the consumption or production of certain metabolites [49].
More recently, PRMT has been extended to include metabolomics data to correlate changes in microbial
communities with changes in the measured community metabolome (MIMOSA) [50]. The authors
adapted the PRMT method to use estimated gene abundances from metagenomic data to produce
community-wide metabolic potential (CMP) scores for each metabolite and sample. These CMP scores
represent the relative capacity of community members to produce or consume metabolites based
upon a priori metabolic information for each species such as from GEMs or KEGG. The authors then
compared variations in calculated CMP scores to variations in measured metabolite levels. They used
this information to estimate well-predicted metabolites, whose predicted CMP scores are sufficiently
explained by the metabolic potential of the microbiome community. Using the CMP scores for each
metabolite, they also estimated key species and genes required for their production [50]. This method
could be further enhanced through the inclusion of host dynamics, gene expression information to
create more accurate CMP scores, and inclusion of reversible reactions to aid metabolite prediction.

4. Summary and Future Perspectives

In this review, we have discussed statistical approaches and knowledge-based frameworks
for integrating metabolomics into current microbiome data analysis and interpretation. Currently,
researchers need to have a deep understanding and programming skills to use multivariate statistical
methods, which represent significant barriers for their wider applications. Easy-to-use bioinformatics
tools are urgently needed to address this gap. Similarly, it is far more pragmatic to focus on metabolic
network topology and connectivity patterns to analyze the microbiome. The use of prior biological
knowledge to reconstruct networks is one of the most intuitive methods, giving appropriate context
for data interpretation. This approach does have its limitations, however; because it is based upon
existing network knowledge, it does not identify de-novo relationships.

There are two promising approaches that show great potential for integration of the metabolome
and microbiome. The first are probabilistic graph models such as Bayesian network (BN) models,
which are popular knowledge-based network approaches. BNs are graphical models that represent
probabilistic causal relationships between variables, and aim to identify the most probabilistic
network that is predictive of the observed data. Bayesian networks were recently used to model
the succession of bacterial colonization in the infant gut [51], and Zhu et al. [52] integrated
metabolomics and transcriptomics data to create probabilistic causal network models of cell regulation
in yeast. BN models of the microbiome integrated with multiple omics are promising though
have yet to be achieved. Constraint-based modeling is the second method for metabolomics and
microbiome integration that performs simulations of the microbiome. A well-known constraint-based
modeling method is flux balance analysis (FBA), which simulates the flow of metabolites within a
biological system [53]. Through the inclusion of many parameters such as enzyme kinetics, reaction
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fluxes and stoichiometry, FBA can be used to simulate microbial growth or predict metabolite
production. Multispecies constraint-based models are however still in their infancy, and are limited
to understanding interactions between only a few microbes [54–57]. Multispecies models are further
complicated by determining the correct compartmentalization of species within a biological system,
as well as choosing an optimal community objective function. The amount of knowledge required to
perform constraint-based modeling on such a large and complex scale such as the gut microbiome is
unrealistic at the current stage. Modeling the microbiome using this method would be computationally
intensive, thereby limiting the utility of this method to small-scale community network reconstructions.

The aim of this review is to raise awareness of the current computational approaches for metabolomics
integration with microbiome data. Statistical correlation-based and biological network-based approaches
for omics integration have been discussed together with their application examples and potential limitations.
A multifaceted approach that utilizes several approaches that complement one another may help gain
deeper insights into microbiome function. Furthermore, integration of prior knowledge will ground
results into a more realistic environment and reduce false positives. Bioinformatics tools that integrate
statistics, visualization and biological knowledge in a user-friendly interface will greatly facilitate
integration of metabolomics within current microbiome studies.
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