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Abstract: This paper aims to contribute to the development of valuation models for long-term
investments while keeping an eye on market prices. The adopted methodology is rooted on the
existence of markets for futures and options on commodities related to energy investments.
These markets are getting ever-increasingly liquid with ever-longer maturities while trading
contracts. We discuss the advantages of this approach relative to other alternatives such
as the Net Present Value (NPV) or the Internal Rate of Return (IRR), despite a limited
increase in the complexity of the models involved. More specifically, using the valuation
methods well-known to energy-finance academics, the paper shows how to: break down an
investment into its constituent parts, apply to each of them the corresponding risk premium,
value annuities on assets with a deterministic or stochastic behavior, and value the options
that are available to its owner, in order to get an overall value of the investment project. It
also includes an application to improvement in coal consumption, where futures markets are
used to get a numerical estimate of the parameters that are required for valuation. The results
are then compared with those from traditional methodologies. Conclusions for this type of
investments under uncertainty are derived.
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1. Introduction

Investments in energy assets are characterized by several relevant features. Among them we
emphasize: large sums of money, non-negligible construction periods, long useful lives, uncertainty
(financial, technical, regulatory, ...), maintenance costs. Given the size of the resources committed in
the investments, the huge funding needs until the first revenues arise, and the long useful life of the
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facilities, it is necessary to have a suitable valuation method. Also, we must be aware of the advantages
and shortcomings of each method.

When investing in energy assets, either revenues or costs or both of them depend on the quantities of
commodities produced and consumed. Commodities prices are typically established in spot and futures
markets. These prices and other issues1 are subject to uncertainty, which renders the valuation model
particularly important. A faulty assessment of uncertainty can lead to wrong investment decisions. Thus,
using a (unduly) higher risk premium can push managers to reject (relatively) less risky investments; and
using a (unduly) lower risk premium can push them to accept (relatively) more risky investments.

In order to value these investments, a number of traditional methods are usually adopted. Among
them we can mention the life-cycle cost analysis, simple or discounted payback, benefit cost analysis
(BCA), net present value (NPV) and internal rate-of-return (IRR). The life-cycle cost analysis computes
the discounted costs of construction, acquisition, maintenance and operation over a period of time. This
methodology can be accessed in McCardell [1] and Bhattacharjee [2]. The payback period is the number
of years until revenues exceed the initial disbursement.

These methods, however, typically fail to grapple with the project’s uncertainty in a satisfactory way.
Besides, they make little or no use of spot and futures prices. Nonetheless, a model developed from
the NPV, as the one in this paper, can correctly cope with uncertainty in the absence of flexibilities
or options.

McDonald [3] analyzes to what extent rules of thumb such as payback and hurdle rates can approach
the true value of an investment regarding projects with options under uncertainty. But this would be
more appropriate in the case of small firms according to Graham and Harvey [4]; as they show, both the
IRR and the NPV are used very frequently. These methods are even the most used methods, despite the
supremacy that the capital-budgeting literature acknowledges to methods of valuation under uncertainty.
In particular, the article by Graham and Harvey collets the results from a survey that has been responded
by 392 chief financial officers. They find that 74.9% always or almost always use NPV, while 75.7%
always or almost always use IRR. This report also shows that a large number of firms use company-wide
discount rates to evaluate projects rather than project-specific discount rates.

There is a sizeable body of literature on valuation of derivative assets such as futures and options on
financial assets or commodities. However, this literature tends to be focused on short-term operations;
see for instance Wilmott [5]. Among the works on investment in real assets under uncertainty (or
Real Options (RO) valuation) we mention the books by Dixit and Pindyck [6], and Trigeorgis [7].
Applications of this approach to the energy sector can be found in Ronn [8]. There is also a series
of papers presented at the yearly international conference on Real Options which are available at
http://www.realoptions.org/index.html.

More specifically, there are several papers on valuation of generation assets, some of which
are cited here. Rocha et al. [9] analyze the competitiveness of a thermal power plant in Brazil.
Gollier et al. [10] address the value of modularity in the choice between a large nuclear power plant and a
flexible sequence of nuclear power plants. Näsäkkälä and Fleten [11] value a gas-fired power plant using
a two-factor model for the spark spread. They apply this model to a base load power plant computing
the optimal time to build. They also apply it to assess the possibility to upgrade this plant, at a cost, to
a peak load plant. Abadie and Chamorro [12] analyze the choice between a base load gas-fired power
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plant and an integrated gasification combined cycle (IGCC) which operates in a flexible way (burning
either coal or natural gas) using the cheapest fuel; they derive the optimal fuel prices to invest. Abadie
and Chamorro [13] address the valuation of a base load natural gas combined cycle power plant (NGCC)
and a liquefied natural gas (LNG) facility with several American-type investment options following the
least squares Monte Carlo approach. Deng [14], starting from futures contracts on electricity and natural
gas, values generation and transmission assets. First he assumes a standard geometric Brownian motion
(GBM) and then a mean-reverting model. Deng [15] extends the former model to allow for jumps and
spikes in prices.

This paper deals with investments in a long-lived real asset that consumes or produces a regular flow
of commodities (measured in physical units) over its useful life. This would be the case of a power
plant operating as a base load plant or investments to enhance energy efficiency. These flows of actual
revenues and expenses will depend on the spot market prices over its useful life. And the risk of these
flows will determine their valuation at the current time.

Even without any embedded options (which are addressed by RO analysis), the valuation of this type
of investments depends on market prices. Thus, as a first step we need a stochastic cash flows valuation
model that is consistent with the markets. Then it will be possible to value options by applying this
valuation model to the process that governs commodity prices in the risk-neutral world. This can be
accomplished by means of the numerical methods that are usual in the RO approach. Among them we
have binomial lattices, Monte Carlo simulation, and finite difference methods.

The paper is organized as follows. Section 2 introduces the valuation model that we develop starting
from the NPV. Section 3 discusses the most relevant issues for valuation. Some diffusion models for
price dynamics are analyzed in Section 4, along with the formulas for valuation of futures contracts
and stochastic cash flows, and the consequences of parameter values on the risk of these investments.
Then in Section 5 we address modeling issues such as seasonality, the existence of jumps, and stochastic
volatility with mean reversion; despite being very important in short-term derivatives, they have a very
limited impact on the valuation of long-term stochastic cash flows. While the behavior of the long-run
equilibrium price level is very important for valuation, Section 6 assesses an improvement in energy
efficiency that saves coal consumption by using the former concepts. Section 7 concludes.

2. Development of the NPV for Valuing Stochastic Cash Flows

Traditionally several possible scenarios are considered. For each scenario, the cash flows at any time
are computed and subsequently discounted to the present. The overall sum of all discounted flows in
each scenario yields the NPV. More sophisticated analysis adopt a probabilistic distribution of scenarios
to derive the expected net present value (ENPV) of those scenarios. The expected value of the cash flows
is sometimes difficult to compute. In the case of a GBM this problem is particularly severe if we try to
get the drift rate from historical prices. As shown by Gourieroux and Jasiak [16], it is very difficult to
estimate the drift rate with any confidence. Therefore, it may not be convenient to make an ENPV-based
valuation in some cases, among them the GBM.

There are several problems for computing the NPV; some of them are mentioned below.
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2.1. The discount rate

This is a first problem since typically, and incorrectly, it is kept constant for valuing several projects
which may face different risks. Indeed a constant rate does not take into account that uncertainty can
unfold over time and that managers may be able to make decisions that mitigate risk at a future moment.
Sometimes the firm’s weighted after-tax cost of capital is used; this is given by the following formula:

rD(1 − tax)D + rEE

D + E

where rD is the interest rate on the debt, rE is the expected return on equity, and tax is the marginal tax
rate; D and E denote the amount of debt and equity, respectively. Yet this method will only be suitable
if the projects to be assessed involve a risk which is similar to the firm’s risk2.

A unique discount rate is usually computed. This is a hard problem when we want to get a reliable
estimate which is consistent with the project’s risks. Obviously, the riskier the investment project, the
higher the discount rate. This applies whatever the source of uncertainty can be (financial, regulatory,
technological, ...). In the particular case of energy assets (with long useful lives), the appropriate discount
rate is a relevant issue for the choice of a valuation methodology which better fits the risks of each
investment project3.

Note also that in some projects the risks can at least partially offset. Consider the case of natural
gas-fired combined cycles (NGCC). If these power plants are the marginal plants that set the price in
electricity markets, this price will somehow mirror their costs. Thus, they will enjoy a relatively stable
profit margin (or spark spread) which renders them as relatively less risky investments (at least as long
as they continue to be the marginal technology most of the time, or their average cost is very close to the
marginal price whatsoever). In this case, though both commodities (electricity and natural gas) involve
significant price risk, their combination in an NGCC power plant exhibits a lower risk; this should be
duly considered in the valuation process.

Though the formula including the discounted cash flows is relatively simple, the computation of the
correct discount rate is a very complex issue. This issue can be avoided by adopting an alternative
valuation method, as described in this paper. It is based on grouping the deterministic cash flows
(discounted at the risk-free rate) and the stochastic cash flows sorted by markets and evaluating them
according to these markets’ prices. This approach sidesteps the problem of the discount rate, which is
no longer necessary to compute4, and is consistent with the risk profile of the project5.

Example. Consider a project with fixed earnings FEt at time t, assumed to be received at the end of
the year. There are also stochastic revenues perceived at t from producing amounts OU i

t of the output
(measured in energy units) which are related to a number of markets i = 1, .., k. Fixed costs are denoted
by FCt. Stochastic costs incurred by consuming IN j

t inputs (measured in physical units) are related to
markets j = 1, .., l. We assume that there are enough futures markets or that we can compute futures
prices F i(Si

0, t) and F j(Sj
0, t) for delivery at time t of the goods involved; superscripts refer to the

specific market, and S0 stands for the time-0 spot price in these markets. In this case, assuming there is
no option embedded in the project, its value over n years is given by:
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n∑
t=0

FEt

(1 + rf )t
+

k∑
i=1

n∑
t=0

OU i
tF

i(Si
0, t)

(1 + rf )t
−

n∑
t=0

FCt

(1 + rf )t
−

l∑
j=1

n∑
t=0

IN j
t F

j(Sj
0, t)

(1 + rf )t

After multiplying the physical quantities by their futures prices, these sums are discounted at the
risk-free rate rf

6. It is the possibility to hedge these cash flows at these prices in futures markets that
allows this type of valuation.

In this example, FEt, FCt and rf are deterministic, while the revenues from the output and the costs
from consumption are stochastic. Yet the latter have a present value according to futures prices and the
interest rate rf .

Everything rests on the existence of futures markets with the required maturities, where prices reflect
the risk premium prevailing in the market. If contracts with the desired maturities are not available, we
can estimate a mathematical model and assume that it will continue to hold over longer time horizons.
Alternatively, it can be estimated with prices from another futures market with longer maturities which is
highly correlated with the market of our interest; Cortazar et al. [17] propose a methodology to estimate
the behavior of a commodity price in terms of another’s.

If expenses and revenues from the commodities are incurred continuously over time another
formulation can be used. In the simple case of one input and one output with stochastic prices,
we have:

OU

∫ n

0

e−rtFOU(t, 0)dt − IN

∫ n

0

e−rtF IN(t, 0)dt +
n∑

t=0

FEt e−rt −
n∑

t=0

FCt e−rt

where OU denotes the amount produced yearly, IN is the amount consumed yearly, and FOU(t, 0) and
F IN(t, 0) stand for their respective time-0 prices in the futures markets for delivery at t. These prices
are discounted at the continuous risk-free rate r. Deterministic cash flows are assumed to be received at
discrete times.

2.2. Optionality

The flexibilities or options available to the manager of a particular project can be of different types.
Trigeorgis [7] distinguishes: option to defer, time-to-build option, option to alter operating scale, option
to abandon, option to switch, growth options, and multiple interacting options. In principle, for valuation
purposes the most relevant ones for the project at hand should be addressed. For example, there can be
an option to temporarily close down the plant, or to abandon it permanently, if revenues do not cover
variable costs (e.g., fuel costs). These options must be valued taking into account the potential costs to
switching from one state to another (open, moth-balled, abandoned) and the probability that the project
becomes again profitable in the future. Optionality is very hard to grasp in NPV computations with a
unique discount rate.

One of the first duties should always be to identify the options embedded in a given investment
project. For example, the option to wait in a project to improve energy efficiency, the option to undertake
investment on a modular basis, etc. The type of options will depend on the intrinsic characteristics of the
project. But the project design itself can be made more flexible, which renders the project more valuable
for the manager.
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When there are options the value of an investment V at the initial time can be expressed as:

V = VI + RO

where VI denotes the value of an immediate investment and RO is the value of the real options. For
example, consider a project that consumes IN units of an input between τ1 and τ2 and produces a yearly
amount OU of an energy commodity between the same dates. The project incurs a deterministic fixed
cost FC(t) between time 0 and τ2 (it includes the cost of the initial investment and its funding). Then
the value V would be:

V (SOU
0 , SIN

0 ) = OU

∫ τ2

τ1

e−rtFOU(SOU
0 , t)dt

−IN

∫ τ2

τ1

e−rtF IN(SIN
0 , t)dt −

n∑
i=0

FCti e−rti

Upon estimation of the parameters in the model adopted for the futures market, this valuation depends
on the time-0 prices of both commodities. Assuming stability of the estimated parameters, we can resort
to numerical methods like two-dimensional binomial lattices and MC simulation. In the former case, it
will be necessary to compute the risk-neutral probabilities; in the latter, we need to generate paths of the
stochastic model where the drift rate has been decreased by the risk premium.

3. Relevant Issues for an Economic Assessment

From an economic point a view a number of issues are relevant. They are developed in the following
subsections. Among them we mention: the costs of the fuels used, the efficiency of generation processes,
the flexibility in the use of alternative fuels, the flexibility in the output products, availability and
reliability of the system, the environmental costs incurred, the value of the options that could be exercised
at a given time, the building costs of the facilities7, the annual maintenance costs, the expected useful
life of the facilities, and other additional issues (consumption of water, easy disposal of pollutants such
as mercury, cheap disposal of certain wastes, etc.).

3.1. Deterministic cash flows

The cash flows from a project can fall in one of two groups: deterministic or stochastic. Clearly
deterministic cash flows must be discounted at the risk-free rate rf . In discrete time, an annuity that pays
A1 dollars at the end of the first year and grows at a yearly rate α (e.g., inflation rate) over τ2 years will
be worth at time 0:

V0,τ2 =
A1

rf − α
[1 − (

1 + α

1 + rf

)τ2 ]
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The value of a perpetual claim would be:

V0,∞ =
A1

rf − α

In continuous time, assuming cash flows follow the pattern F = Aeαt, the annuity between time 0

and τ2 will be worth:

V0,τ2 =
A

r − α
[1 − e(α−r)τ2 ]

This is similar to the expression in discrete time, but in this case r 6= rf .

On the other hand, typically some cash flows start after a certain period is over, for example, upon
completion of a power plant. Thus, flows take place between τ1 and τ2, the useful life of the facility
being τ2 − τ1. The formula for the time-0 value would be:

Vτ1,τ2 =
A

r − α
[e(α−r)τ1 − e(α−r)τ2 ]

3.2. Stochastic cash flows

In principle, stochastic cash flows should be discounted at a rate r + λ, where λ denotes the risk
premium in the market involved. For instance, if we are dealing with flows of natural gas, the risk
premium would be the one that stems from gas market’s prices. This way, the time-0 expectation of
a cash flow CFt to be realized at time t, related to a unit of the commodity, has a present value P

given by:

P = E0(CFt)e
−(r+λ)t

Therefore NPV-based formulas could be generalized in principle.
But this amounts to assuming that both λ and E0(CFt) can be accurately estimated. Sometimes this

is not very realistic. For example, we could need a value of λ for each term; in reality this would mean
that λ = λ(t).

If we know the futures prices F (S0, t), it is more convenient to use the formulas in continuous time
in order to compute the value of a unit of the commodity to be received in the future:

P = F (S0, t)e
−rt

where S0 denotes the spot price. Hence:

E0(CFt)e
−λt = F (S0, t)

By using the futures markets on energy commodities we have avoided the need to know future cash
flows, which are uncertain, and also the need to compute a suitable risk premium.
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4. Stochastic Models and Valuation of Incomes

Depending on the stochastic model adopted for the spot price, it will be possible to derive a formula
for the futures price and another one for an income. First we calibrate the parameters of the futures
market. Then we get a continuous function F (S0, t) for the price at time 0 of futures contracts maturing
at time t and current spot price S0. This allows to compute easily the value of a yearly income of one
commodity unit between τ1 and τ2 in the following way:

Vτ1,τ2 =

∫ τ2

τ1

e−rtF (S0, t)dt (1)

Note that, since these values can be hedged in the market, futures prices have been discounted at the
riskless rate. The market is assumed liquid enough for this hedge to be possible, be it either on organized
markets or over-the-counter (OTC) markets. In the case of long-term investments, it is also assumed that
the prolongation of the futures curve beyond the furthest maturities available is a good estimate of the
price that would prevail at least on OTC markets. Upon estimation of the parameters in the futures price
equation, it is possible to extend the curve beyond the furthest maturity just by substituting the required
value of t in F (S0, t) further ahead. This approach is developed and justified in a numerical example
with mean reversion in Section 6.

There is another possibility which does not rest on any particular stochastic process. It consists in
drawing a curve that fits the available data (e.g., by means of a cubic spline) and then using this curve as
F (S0, t). The advantage of this method is that it holds exactly for the actual market prices. A potential
shortcoming is that there is little ground to be confident that it will be suitable for maturities that go
beyond the farthest futures contracts available. Also, it would not be compatible with methods that
involve valuation of options.

Next we briefly introduce the stochastic models that are potentially more relevant for valuation of
investments in energy assets.

4.1. The Inhomogeneous Geometric Brownian Motion and the Geometric Brownian Motion

The Inhomogeneous Geometric Brownian Motion (IGBM) model follows:

dSt = k(Sm − St)dt + σStdWt (2)

where:
St: the price of the (underlying) commodity at time t.
Sm: the level to which commodity price tends in the long run.
k: the speed of reversion towards the “normal” level. It can be computed as k = ln 2/t1/2, where t1/2

is the expected half-life, i.e. the time required for the gap between St and Sm to halve.
σ: the instantaneous volatility of commodity price, which determines the variance of St at t.
dWt: the increment to a standard Wiener process. It is normally distributed with mean zero and

variance dt.
We are going to analyze this model since it admits dSt = αStdt + σStdZt as a particular solution

when Sm = 0 and α = −k; i.e., it includes the geometric Brownian motion (GBM) as a particular case8.
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Given that at time 0 the initial price is S0, the expected value of St in the real world is:

E(St) = Sm + (S0 − Sm)e−kt (3)

Hence we get:

lim
k→∞

E(St) = Sm

There is a relation between k and the time t1/2 at which the expected value equals the mid point
between S0 and Sm:

Sm + (S0 − Sm)e−kt1/2 =
S0 + Sm

2

From this expression it follows that:

t1/2 =
ln 2

k

If we want to value an asset that conforms to this model, for high values of k there is no risk. In this
case, for high values of k, cash flows should be discounted at the risk-free rate r. This is so because:

V ar(St) = e(σ2−2k)t

(
S2

0 +
2kS2

m

σ2 − 2k
+

2kSm(S0 − Sm)

σ2 − k

)
+ e−kt

(
2kSm(S0 − Sm)

k − σ2
+ 2Sm(Sm − S0)

)
− e−2kt(S0 − Sm)2 +

2kS2
m

2k − σ2
− S2

m (4)

Therefore:

lim
k→∞

V ar(St) = 0

The variance of St would be almost zero when k is high, despite the existence of a certain volatility
σ which in the short-term can push the value St to levels that are far from the equilibrium value Sm.
Mean reversion, which is a rather usual behavior in commodity prices, dampens the volatility of future
cash flows as compared to a GBM model. This in turn implies a lower discount rate, in particular
when discounting cash flows arising in the long run. Failure to consider this behavior can lead us to
undervaluing long-term investments, such as those in energy assets with decades-long useful lives.

Depending on the value of k in relation to σ2, this model implies:

for
σ2

2
= k :

dV ar(St)

dt
> 0 ⇒ lim

t→∞
V ar(St) = ∞

for
σ2

2
< k : lim

t→∞
V ar(St) =

σ2S2
m

2k − σ2
; if k → ∞ : lim

t→∞
V ar(St) = 0

Thus, the relation between k and σ2 determines the level of risk. Even though the prices on a given
market show a great volatility, a strong reversion to the mean can imply a low level of real risk.
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In the particular case of the Geometric Brownian Motion (GBM) we have:

E(St) = S0e
αt

V ar(St) = S2
0e

2αt(eσ2t − 1)

Here the variance increases with time without bound: lim
t→∞

V ar(St) = ∞.
In order to value investments it is convenient to use the prices on futures markets. These prices give

the expected spot price in a risk-neutral world. For this purpose, the risk premium λŜt (which we assume
to be proportional to Ŝt)9 is subtracted from the stochastic differential equation10; this yields:

dŜt = [k(Sm − Ŝt) − λŜt]dt + σŜtdZt (5)

The expected value, or equivalently the futures price for maturity t, at time 0 is:

F (S0, t) = E(Ŝt) =
kSm

k + λ
[1 − e−(k+λ)t] + S0e

−(k+λ)t (6)

In this case, F (S0,∞) = kSm/(k + λ) would be the long-term equilibrium price on the futures market.
There is a time t∗1/2 at which the futures price reaches the mid value between the spot price S0 and the
equilibrium price in the long run kSm/(k + λ):

kSm

k + λ
[1 − e−(k+λ)t∗

1/2 ] + S0e
−(k+λ)t∗

1/2 =
kSm

k+λ
+ S0

2

Hence we get:

(S0 −
kSm

k + λ
)e−(k+λ)t∗

1/2 =
S0 − kSm

k+λ

2

Similarly to the analysis of the spot price:

t∗1/2 =
ln 2

k + λ

These formulas can be useful to check our estimates. Assume there is a futures markets with a high
enough number of maturities available. Our estimate of kSm/(k + λ) can be easily checked since it
should be the asymptotic value that distant futures prices tend to. On the other hand, if we find that
after some two years futures prices stand midway between the spot price and the equilibrium price, this
means that k + λ = ln 2

2
= 0.3466. In this regard, it is interesting to observe how futures prices change

over time:

dF (S0, t)

dt
= (k + λ)[

kSm

k + λ
− S0]e

−(k+λ)t

This change depends on k + λ: if this sum is high, it takes less time to approach the equilibrium price.
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In the case of the GBM with Sm = 0 and k = −α we have:

F (S0, t) = S0e
(α−λ)t = S0e

(r−δ)t (7)

where δ denotes the convenience yield, which is a rather usual concept in the case of energy
commodities11.

Estimation of the parameters in Equation 6 or 7 allows us to model the behavior of the futures market
for terms or maturities that are well beyond those of available contracts (so we have no prices for the
distant future). But there is a potential shortcoming: substituting the parameter estimates in Equation 6 or
7 can provide futures prices that are slightly different from actual prices of traded contracts. Nonetheless,
this is not a major problem for valuing an annuity in the long run, since small differences tend to cancel
each other. In the case of an IGBM process, from Equation 6 we can deduce that lim

t→∞
F (S0, t) = kSm

k+λ

provided k + λ > 0. If k is very high, the limit equals Sm.
An energy asset will typically provide profits starting from date τ1 and will have a useful life of τ2−τ1

years. Given that we want to compute the present value Vτ1,τ2 of an annuity between τ1 and τ2, we use:

Vτ1,τ2 =

∫ τ2

τ1

e−rtF (S0, t)dt =

∫ τ2

τ1

e−rt

[
kSm

k + λ
[1 − e−(k+λ)t] + S0e

−(k+λ)t

]
dt

Vτ1,τ2 =
kSm(e−rτ1 − e−rτ2)

r(k + λ)
+

S0 − kSm

k+λ

r + k + λ
(e−(r+k+λ)τ1 − e−(r+k+λ)τ2) (8)

For very high values of k this formula reduces to:

Vτ1,τ2 =
Sm(e−rτ1 − e−rτ2)

r
In the case of a GBM it translates into:

Vτ1,τ2 =
S0

r − α + λ
(e−(r+λ−α)τ1 − e−(r+λ−α)τ2) (9)

4.2. Other models

There are a number of stochastic models. In the case of an Ornstein-Uhlenbeck model, the formulas
for the annuity are the same as in the IGBM model. We can also cite Schwartz [18] one- and two-factor
models. From the corresponding formulas for the futures price we can compute the value of an annuity,
in this case applying numerical methods.

In this paper there is no presumption that a given model is better than other. Within the same family
of models (e.g., mean-reverting models with the same number of factors), suitability can depend on the
commodity involved and the sample period considered. The models presented here at greater detail have
been chosen because they allow to derive an analytic solution for the value of an annuity.

5. Long-Term Valuation vs. Short-Term Valuation

When a short-term option or futures contract on an energy commodity is valued, a number of relevant
issues must be considered; and they can add a great deal of complexity to the valuation model. Among
them we can mention:
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(a) Seasonality: it is very usual in markets such as the market for natural gas, because of demand’s
behavior.

(b) Stochastic volatility: typically, observed volatility is not constant.
(c) Mean reversion: as seen above, if the commodities involved in the determination of the cash flows

show mean reversion, it is an essential input to the valuation process12.
(d) Jumps: they are very usual in the markets for electricity.
(e) Behavior of the long-term equilibrium price.
Depending on the particular commodity considered, most of the above issues should be taken into

account in a short-term valuation. This can make it much harder to calibrate the model with market data.
Besides, on some occasions the estimates can be rather unstable, thus leading to frequent calibrations.

Now consider an energy asset which consumes or produces a given energy good or service at an
almost constant rate over time. If we need to choose a model for long-term valuation of this asset, some
features will be very important, whereas others become almost irrelevant. Next we show that, under mean
reversion, seasonality, jumps, and stochastic volatility are almost negligible for this kind of valuation.
Therefore, the model can be specified rather properly by restricting ourselves to the short-term behavior
with or without mean reversion and, if necessary, the dynamics of the long-term equilibrium price13.

5.1. Seasonality and valuation of annuities

We are going to analyze the relevance of seasonality for different types of models14.
(A) There is a first group of models based on the spot price.
If the model for the futures price F (S0, t) has been calibrated with a deseasonalised series, seasonality

can be imposed by adding a deterministic term f(t). In this way, for a current spot price S0 of the
commodity, we have that a futures contract with maturity at t has a value f(t) + F (S0 − f(0), t), where
S0 − f(0) is the time-0 deseasonalised value.

If we must compute the value of an annuity we use:

Vτ1,τ2 =

∫ τ2

τ1

e−rtf(t)dt +

∫ τ2

τ1

e−rtF (S0 − f(0), t)dt

the second integral is the same as in the former cases, but now applies to the deseasonalised series.
When τ2 À τ1 and τ2 − τ1 equals an integer number of years, the first integral is:∫ τ2

τ1

e−rtf(t)dt ≈ 0

Usually an integer number of years of useful life is assumed. Anyway, the exact dates τ1 and τ2 are
uncertain (sometimes the precise month when operations start cannot be learnt in advance). Thus, it is
more convenient to abandon this procedure and work directly with the deseasonalised series instead.

(B) A second group of models is based on the natural logarithm of the spot price:

ln St = g(t) + Xt

where at the initial time X0 = ln S0 − g(0). The variable Xt stands for the deseasonalised series of the
log prices.
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The formula for the futures price in this case is:

F (S0, t) = eg(t)F (eX0 , t)

The integral can be solved by numerical methods:

Vτ1,τ2 =

∫ τ2

τ1

e−rt+g(t)F (eX0 , t)dt

As an example, consider the prices on the NYMEX futures market for natural gas on 5/14/2009; they
are plotted in Figure 1. From both discounted and un-discounted seasonality patterns it can easily be
deduced that, for an integer number n of years, n

∫ τ1+n

τ1
e−rtf(t)dt ≈ 0 without any need for an explicit

solution to f(t). Even with a non-integer number of years we have:∫ τ2

τ1

e−rtf(t)dt ¿
∫ τ2

τ1

e−rtF (S0 − f(0), t)dt

For the data in Figure 1, it is possible to get the un-discounted value of seasonality as the area between
the blue curve and the horizontal axis (with positive or negative signs). The discounted value (at a 3.5%
rate) of seasonality (which also resembles a smoothed sinusoid) is given by the area between the brown
curve and the horizontal axis. We can get these values for a set of whole years from June-2009 to
June-2021, yielding:

Figure 1. Futures prices of natural gas on NYMEX 05/14/2009.
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Table 1. Seasonal component June-2009 to June-2021 ($/million Btu year).

without discounting discounted at 3.5%

0.021 0.008

In Figure 1 the value of an annuity from time τ1 to τ2 will be given by the area below the underlying
(i.e., deseasonalised) black curve discounted at the rate 3.5% between dates τ1 and τ2. This figure also
shows that it is possible to derive graphically a rather accurate value of an annuity between τ1 and τ2

without the need to estimate the model’s parameters. However, estimation of the parameters would be
essential in the valuation of options.

As can be seen in the figure, there are prices over 12.5 years, yet the investments we want to value
have a very long useful life in addition to a construction time. For example, in the case of a NGCC power
plant, construction takes 2.5 years and the plant’s life stretches over 25 years. In such cases, estimation
of the parameters in the futures market model and their application in the formula for the futures price
with a longer maturity t could be used for valuing investments.

5.2. Jumps and valuation of annuities

Certain energy products may show jumps in their prices and their spot markets are characterized by
great volatility. See, for instance, the French electricity market Powernext (Paris). The base load15 prices
from 11/27/2001 to 05/17/2009 are displayed in Figure 2. The peak load prices are plotted in Figure 3;
they show a higher volatility.

In order to value derivative assets on a spot electricity market it is necessary to develop and calibrate
a complex model like the following16:

dSt = π(St, t)dt + σStdWt + StUtdNt

where π(St, t) is the drift term (which must show seasonality and mean reversion), Nt is a Poisson
process with a given intensity of jumps, and Ut is a random variable that measures the size of the jump.

As a consequence, the formula for a futures contract on a given day F (S0, t) would be complex and
dependent on the former parameters. Nonetheless, it is customary in electricity markets that futures
contracts refer to delivery of one MWh hourly over a given period of time, e.g., one year. Therefore, its
value F (S0, τ1, τ2) for the period between τ1 and τ2 would be:

F (S0, τ1, τ2) =
1

τ2 − τ1

∫ τ2

τ1

F (S0, t)dt

If τ2 − τ1 = 1 year, then this reduces to:

F (S0, τ1, τ1 + 1) =

∫ τ1+1

τ1

F (S0, t)dt

Since this formula is an average of values, it can be expected that futures contracts with delivery time
of one year do not show jumps, and that revenues at times of jumps in electricity prices are included in
this average value; indeed this can be observed in Figure 4 from the European Energy Exchange. Noting
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that time is typically measured in years, the blue area in this figure shows the current price for delivery
of one MWh over six years starting in early 2010. Figure 4 allows to value the profits from producing
and selling (or costs to consuming) electricity while taking into account the market price of risk
for electricity.

Figure 2. Base load electricity prices on Powernext (France).

If we have the price of yearly futures contracts F (S0, τ1+n, τ1+(n+1)), with n = 0, 1, 2, ..,m−117,
the value of an annuity between τ1 and τ2 can be computed as18:

n=m−1∑
n=0

∫ τ1+(n+1)

τ1+n

e−rtF (S0, τ1 + n, τ1 + (n + 1))dt

Another way of testing the non-existence of jumps in the yearly averages is computing the averages
of the spot prices, which appear in Table 2, for the same data as in Figures 2 and 3.

5.3. Stochastic volatility and valuation of annuities

To show the potential impact of volatility on valuation we choose a simple model where the price St

follows a GBM and the variance follows a mean-reverting process:

dSt = αStdt + σtStdWt (10)

d(σ2
t ) = a(σ2

m − σ2
t )dt + bσ2

t dWt



Energies 2009, 2 753

where σ2
m is the expected variance in the long term, a denotes the speed of reversion and b stands for the

volatility of the variance.

Table 2. Average prices of French electricity.

year Base Peak
2002 21.19 25.82
2003 29.22 37.82
2004 28.13 33.71
2005 46.67 56.88
2006 49.29 61.07
2007 40.87 51.49
2008 69.15 82.91

Figure 3. Peak load electricity prices on Powernext (France).

The variance σ2
t has a conditional mean:

E(σ2
t ) = σ2

0e
−at + σ2

m(1 − e−at) (11)

This means that, for high values of a, the variance will quickly return to its equilibrium value; also
E(σ2

∞) = σ2
m. Intuitively, for high values of a as compared to volatility, using σm in Equation (10)
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would be a good approximation for valuing long-term annuities, thus neglecting its behavior in the short
term. Valuation should be undertaken in a risk-neutral context, so the risk premia should be deducted:

dSt = (α − λ)Stdt + σtStdWt (12)

d(σ2
t ) = a(σ∗2

m − σ2
t )dt + bσ2

t dWt

where σ∗2
m is the long-term value of the variance under risk neutrality.

Figure 4. Futures prices of French electricity on EEX (Germany).

Let us analyze the case in which initially S0 = 100 and σ0 = σ∗
m, with α − λ = 0.03 and different

values of σ∗
m, a and b. We are going to derive the present value of an annuity over 20 years by Monte

Carlo (MC) simulation. Namely we run 40,000 simulations over 20 years with 60 steps per year, and
r = 0.035. The results are shown in Table 3.

According to Equation 9 V0,20 = 1, 903.25, which is very close to the values derived by MC
simulation. If volatility is actually stochastic but reverts to an equilibrium value, in most of the cases
involving projects with constant energy flows it can be enough to use a model devoid of this feature.
Note, though, that it may well be very relevant in another type of operations in the short run.
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Table 3. Value of V0,20 under Stochastic Volatility.

a b σ∗
m = 0.20 σ∗

m = 0.40

0.5 0.5 1,904 1,900
0.5 1.0 1,904 1,921
1.0 0.5 1,904 1,899
1.0 1.0 1,904 1,905

5.4. Stochastic dynamics in the long-term level and valuation of annuities

The equilibrium price level in the long run Sm can change over time in a deterministic or stochastic
pattern. For instance, it can be increasing with the inflation rate. Let us consider this model:

dSt = k(Lt − St)dt + σSStdW S
t (13)

dLt = µ(Lm − Lt)dt + ξLtdWL
t (14)

where St denotes the time-t price, and Lt is the equilibrium price level, which behaves according to
Equation 14. k stands for the speed of reversion of price towards its “normal” level; we can compute it
as k = ln 2

t1/2
, where t1/2 is the expected half-life, that is, the time for the gap between St and Lt to halve.

σS is the instantaneous volatility; µ is the speed of reversion of Lt towards its longer-term equilibrium
value Lm; ξ denotes the instantaneous volatility of the equilibrium price. dW S

t and dWL
t are increments

to standard Wiener processes. These increments are assumed to be normally distributed with mean zero
and variance dt. We further assume that dW S

t dWL
t = ρdt.

This model has some convenient implications: there is no chance for St or Lt to take on negative
values; it allows the existence of an equilibrium level, but it is not constant; the expected value of the
long-term equilibrium price remains finite, Lm

19. Further, the stochastic process for commodity price
is similar to the model in Pilipović [19]; yet they differ in that Equation 14 above is of the IGBM type,
as opposed to the standard GBM in Pilipović. This kind of model seems preferable if the equilibrium
price in the longer term is jointly determined by production cost and demand level. The model allows
for market gyrations and wild swings in prices depending on parameter values. Admittedly, it does not
account for discontinuous events that give rise to jumps. However, it also allows, as a particular case,
that Equations 13 and 14 adopt a GBM format, again depending on the values of the parameters. Last,
consistent with futures markets, volatilities do not grow without bound as t → ∞; instead, they approach
a finite value if reversion speed is high enough in relation to volatility.

It can be shown that the expected value of the price is:

E(St) = Lm − k(L0 − Lm)

µ − k
e−µt +

[
S0 − Lm +

k(L0 − Lm)

µ − k

]
e−kt (15)

Denoting the risk premia by λSŜt and λlL̂t, the dynamics in a risk-neutral setting would be:

dŜt = [k(L̂t − Ŝt) − λSŜt]dt + σSŜtdW S
t (16)
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dL̂t = [µ(Lm − L̂t) − λlL̂t]dt + ξL̂tdWL
t (17)

In this context, the expected value of the price may be shown to be:

F (S0, L0, t) = E(Ŝt) =
µkLm

(µ + λl)(k + λS)

(
1 − e−(k+λS)t

)
(18)

+

[
µkLm

(µ + λl)(µ + λl − k − λS)
− kL0

(µ + λl − k − λS)

]
·
(
e−(µ+λl)t − e−(k+λS)t

)
+ S0e

−(k+λS)t

The expected value E(Ŝt) equals the estimated futures price F̂t for maturity t. For an arbitrarily long
maturity, the estimate for the futures price is:

F̂∞ =
µkLm

(µ + λl)(k + λS)
(19)

In this case, the value of an annuity is:

Vτ1,τ2 =
µkLm

r(µ + λl)(k + λS)
(e−rτ1 − e−rτ2)

+
µkLm

(µ + λl)(kg + λg)(k + λS + r)
(e−(k+λS+r)τ2 − e−(k+λS+r)τ1)

+
kL0

(µ + λl − k − λS)(µ + r + λl)
(e−(µ+λl+r)τ2 − e−(µ+λl+r)τ1)

+
kL0

(µ + λl − k − λS)(k + r + λS)
(e−(k+λS+r)τ1 − e−(k+λS+r)τ2)

+
µkLm

(µ + λl)(µ + λl − k − λS)(µ + r + λl)
(e−(µ+λl+r)τ1 − e−(µ+λl+r)τ2)

+
µkLm

(µ + λl)(µ + λl − k − λS)(k + r + λS)
(e−(k+λS+r)τ2 − e−(k+λS+r)τ1)

+
S0

k + r + λS

(e−(k+λS+r)τ1 − e−(k+λS+r)τ2) (20)

The value of Lm in relation to L0 has a great impact on the value of the annuity.
If the long-run equilibrium price follows a GBM, Lm = 0 and µ = −ϕ, then:

Vτ1,τ2 =
kL0

(λl − ϕ − k − λS)(r + λl − ϕ)
(e−(λl−ϕ+r)τ2 − e−(λl−ϕ+r)τ1)

+
kL0

(λl − ϕ − k − λS)(k + r + λS)
(e−(k+λS+r)τ1 − e−(k+λS+r)τ2)

+
S0

k + r + λS

(e−(k+λS+r)τ1 − e−(k+λS+r)τ2) (21)
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In this case, the results are affected by the drift rate ϕ of the GBM and the risk premium λl. A positive
drift leads to a higher annuity value, while a positive risk premium reduces the value of the annuity.

If the long-run growth path is only deterministic, i.e., ξ = 0, λl = 0, and Lm = 0, µ = −ϕ, then:

Vτ1,τ2 =
kL0

(ϕ + k + λS)(r − ϕ)
(e−(r−ϕ)τ1 − e−(r−ϕ)τ2)

+
S0 − kL0

(ϕ+k+λS)

k + r + λS

(e−(k+λS+r)τ1 − e−(k+λS+r)τ2)

this is a generalization to Equation 8, but in this case a higher annuity value results if ϕ > 0. And a high
enough value of k leads to:

Vτ1,τ2 '
L0

(r − ϕ)
(e−(r−ϕ)τ1 − e−(r−ϕ)τ2)

This figure is also higher than that computed from Equation 9 when ϕ > 0. The opposite would
happen if ϕ < 0, which could occur in some instances.

The above computations show the importance of long-term dynamics. Considering it can change
annuity valuation both at present and in the future. It can be later used in a numerical application, like a
binomial lattice or a Monte Carlo simulation.

6. Case Study: Improvement in Coal Consumption

6.1. Case study under uncertainty

As an illustration of this paper, let us analyze the case of an efficiency improvement in the
consumption of coal. In particular, every year (over a given time horizon) the firm can avoid burning a
ton of Appalachian Coal in exchange for an initial investment I per unit of coal saved. The investment
would allow a saving in coal over five years, starting in τ1 = 1 until τ2 = 6, where the dates τ1 and τ2 are
measured on the basis of the time at which the decision to invest is made. Assume also that this option to
invest is only available for one year; it is possible to choose the time to invest. The riskless interest rate
is r = 0.035. The value I is the present value, discounted at the risk-free rate, of all the expenses that
are needed to realize this saving20. The sum saved is further assumed to be the spot price of Appalachian
Coal, so the total savings over five years can be valued by discounting the prices on the NYMEX futures
market.

The prices in Figure 5 show some movements in the last months. This implies a higher volatility, the
size of which we are going to estimate. As explained in Wilmott [5], when ∆t is small, volatility can be
computed as:

σ =

√√√√ 1

(N − 1)∆t

N∑
i=1

(ln Sti − ln Sti−∆t)2

From the series of weekly spot prices between 3/02/07 and 5/15/09 we get an estimate of volatility
σ = 0.3142.
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Figure 5. Spot price of Appalachian coal on NYMEX.

We are going to undertake an estimation with a one-factor model. Mere observation of actual prices
in Figure 6 suggests that the GBM would not be a suitable model, since in this case the futures equation
would be F (S0, t) = S0e

(r−δ)t; this would lead to a growing increase (in absolute value) between
equidistant futures prices if r − δ > 0, which is not the case in Figure 6.

Therefore, next we use a model for the futures market of the IGBM type which is given by Equation 6:

F (0, t) =
kSm

k + λ
[1 − e−(k+λ)t] + S0e

−(k+λ)t (22)

We calibrate the model by comparing the theoretical prices with the actual prices on 5/18/09 so as the
sum of squared errors to be minimum. From the above equation we deduce that we can only estimate
U1 ≡ kSm/(k + λ) and U2 ≡ k + λ; actually we do not need more parameters to value the option to
invest21. We get U1 = 69.3715 and U2 = 0.6905. We have neither computed the equilibrium value Sm,
nor the speed of reversion k, nor the risk premium λ. Yet with the values of U1 and U2 we are able
to value a stochastic income at the current time following Equation (8), now stated in terms of S0, U1

and U2:

V1,6(S0, U1, U2) =
U1(e

−r − e−6r)

r
+

S0 − U1

r + U2

(e−(r+U2) − e−6(r+U2)) (23)

The value U1 = 69.3715 is consistent with the asymptotic behavior of the futures curve in Figure 6. On
the other hand, from U2 ≡ k + λ = 0.6905 we deduce that t∗1/2 = ln 2/(k + λ) = 1.0038; hence, it will
take a year to reach the mid point between the spot price and the long-term equilibrium price. The latter
turns out to be 57.69. It can be seen in Figure 6 that this value is consistent with the graph displaying
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the futures curve. The last price available corresponds to a 4.5 years maturity, at 67.28 $/ton, while the
futures curve estimated for this maturity is 68.33 $/ton. Since U1 = 69.3715 $/ton any value derived
from extending the curve for t > 4.5 will fall between 68.33 $/ton and 69.37 $/ton, which amounts to a
very narrow spread and would be consistent with Figure 6.

Figure 6. Futures prices of Appalachian coal on NYMEX.

Provided the parameters U1 and U2 are stable over time, Equation 23 allows to compute the value of
this annuity if we decide to invest at a particular node of the binomial lattice or a particular point in a
simulation path. It would be enough to replace S0 with the value St derived at that time by computing
Vτ1,τ2(St, U1,U2)

22.
We develop the case study with a (one-dimensional) binomial lattice which supports a stochastic

process with mean reversion. The initial spot price is 46.00 $/ton. Equation 5 showed the behavior of
the commodity in the risk-neutral setting under the model adopted:

dŜt = [k(Sm − Ŝt) − λŜt]dt + σŜtdZt

This can also be written as:

dŜ = (
k(Sm − Ŝ)

Ŝ
− λ)Ŝdt + σŜdZ (24)

We use the following logarithmic transformation of the price: X ≡ ln Ŝ. The resulting derivatives are
Xs = 1/Ŝ, Xss = −1/Ŝ2, Xt = 0, and by Ito’s Lemma:

dX = (
k(Sm − Ŝ)

Ŝ
− λ − 1

2
σ2)dt + σdZ = µ̂dt + σdZ (25)
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where µ̂ ≡ 1

Ŝ
(kSm − (k +λ)Ŝ)− 1

2
σ2 depends at each moment on the current asset value Ŝ; this implies

that the risk-neutral probabilities on the binomial lattice will not be constant.
The time horizon T is subdivided in n steps, each of size ∆t = T/n. Starting from an initial value S0,

at time i, after j positive increments, the value of the commodity is given by S0u
jdi−j , where d = 1/u.

When ∆t is very small, Equation 6 becomes:

F (0, ∆t) =
kSm

k + λ
[1 − e−(k+λ)∆t] + S0e

−(k+λ)∆t ≈ S0 + kSm∆t − S0(k + λ)∆t (26)

Therefore:

F (0, ∆t) − S0 ≈ [kSm − S0(k + λ)]∆t (27)

Hence:

µ̂ ≡ F (Ŝ, ∆t) − Ŝ

Ŝ∆t
− 1

2
σ2 (28)

Following Euler-Maruyama’s discretization, the probabilities of upward and downward movements
must satisfy three conditions:

• (a) pu + pd = 1.

• (b) E(∆X) = pu∆X − pd∆X =
(

F (Ŝ,∆t)−Ŝ

Ŝ∆t
− 1

2
σ2

)
∆t = µ̂∆t. The aim is to equate the first

moment of the binomial lattice (pu∆X−pd∆X) to the first moment of the risk-neutral underlying
variable (µ̂∆t).

• (c) E(∆X2) = pu∆X2 +pd∆X2 = σ2∆t+ µ̂2(∆t)2. In this case the equality refers to the second
moments. For small values of ∆t, we have E(∆X2) ≈ σ2∆t.

From (a) and (b) we obtain the probabilities, which can be different at each point of the lattice (because
µ̂ depends on Ŝ, which may vary from node to node):

pu =
1

2
+

µ̂∆t

2∆X
(29)

We must be sure that probabilities do not take on negative values.
From (c) there results ∆X = σ

√
∆t; therefore, u = eσ

√
∆t, which guarantees that the branches of the

lattice recombine. The probability of an upward movement at point (i, j) is:

pu(i, j) =
1

2
+

µ̂(i, j)
√

∆t

2σ
(30)

where:

µ̂(i, j) ≡ F (Ŝ(i, j), ∆t) − Ŝ(i, j)

Ŝ(i, j)∆t
− 1

2
σ2 (31)

thus, µ̂(i, j) depends on the value reached by the price Ŝ(i, j).
We divide the year in which the option to invest can be exercised into twelve periods ∆t = 1/12,

which implies ∆X = σ
√

1/12 = 0.0907 and u = 1.0949. Initially, F (46.00, 1/12) = 47.3069 $/ton.
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In this way µ̂(0, 0) = 0.2916 and pu(0, 0) = 0.9640. Since initially X0 = ln 46 = 3.8286, with
probability pu(0, 0) = 0.9640 it will move upwards to X+ ≡ X0 + ∆X = 3.9193, and with probability
pd(0, 0) = 0.0360 it will move downwards to X− ≡ X0 − ∆X = 3.7379. Therefore, in case of going
up Ŝ(1, 1) = S0e

∆X = 50.37, while in case of going down Ŝ(1, 1) = S0e
−∆X = 42.01. Thus, at time i

after j upward movements we have Ŝ(i, j) = S0e
j∆X−(i−j)∆X .

At the initial moment V1,6(46.00, U1, U2) = 292.08 $. The value V1,6(S0, U1, U2) is relatively sensitive
to changes in S0 as Table 4 shows.

Table 4. Sensitivity analysis.

S0 V1,6(S0, U1,U2)

40.00 288.18
46.00 292.08
50.00 294.68
55.00 297.92
57.69 299.67
60.00 301.17

Initially we have computed V1,6(46.00, U1, U2) = 292.08 $. ¿From observation of Equation 23 we
deduce that there is a first term related to the contribution of the equilibrium value which adds 307.26 $,
and a second term related to the difference between the spot price and the equilibrium price in the futures
market which subtracts 15.18 $. They both give rise to the net result above.

The binomial lattice is solved backwards in the following way. At the final moment, there is only the
option either to invest or not to invest. The choice depends on the project value:

W = Max(V1,6(S1, U1,U2) − I, 0)

At earlier times we choose the best of the two alternatives, namely to invest or to continue waiting:

W = Max(V1,6(St, U1,U2) − I; e−r∆t[puW
+ + (1 − pu)W

−])

Figure 7 shows the first two steps of the binomial lattice and the results of the ensuing computations.
Iterating this process a value of the lattice at time 0, W0, will result. This amount is compared

with V1,6(S0, U1,U2) − I . If they are equal it will be optimal to invest at the initial moment; instead,
if W0 > V1,6(S0, U1,U2) − I it will be optimal to wait. By changing the value of I until W0 and
V1,6(S0, U1, U2) − I become equal we compute the critical (or ”trigger”) value I∗ to invest at time 0

under current conditions.
In our example there is no positive value of I∗ for which W0 = V1,6(S0, U1, U2) − I∗. This is

because, presumably, according to the prices in futures markets V1,6(S1, U1,U2) is going to be much
bigger on average then V1,6(S0, U1, U2) even after adjusting for the effect of the riskless rate r, so
it is optimal to wait. With an initial price S0 = 46.00 and an investment outlay I = 200 we get
W0 = 102.66 as opposed to a net present value given by NPV = V1,6(46.00, U1, U2)−I = 92.08. These
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results are the consequence of the parameter values, but they are mainly influenced by uncertainty and
market contango.

Figure 7. Computation by a binomial lattice.

The situation would change substantially if the spot price suddenly increased to S0 = 70.00 while
keeping the same values U1 and U2. In this case W0 = 108.00 with I = 200 and V1,6(70.00, U1, U2) −
I = 107.67; therefore, it would be optimal to invest immediately. It is also possible to derive
a critical value I∗ = 168.74 below which it would be optimal to invest; for this threshold value
W0 = V1,6(70.00, U1, U2) − I∗ = 138.93.

6.2. Case study: NPV and IRR

Now we are going to assess the same case using the NPV and the IRR. To that end in the first case
we will need a discount rate, and in both cases we will need to estimate the expected cash flows. The
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computations are made disregarding futures market prices. We are going to see for what parameter
values we reach an equivalent result.

Let us assume that the analyst, without using market data, thinks that starting from the current price
of S0 = 46.00$/ton it can grow in the physical world at a rate ϕ and that she/he must discount the
investments by adding a risk premium λ to r. The analyst will value the investment according to:

NPV = Vτ1,τ2 − I =
S0

(r + λ − ϕ)
(e−(r+λ−ϕ)τ1 − e−(r+λ−ϕ)τ2) − I

where the disbursement I takes place at the initial moment. In fact, in this approach mean reversion in
prices would be ignored.

Actually, to make the valuation, according to the former equation, the analyst would only need to
choose a value for r + λ − ϕ. See Table 5.

Table 5. Sensitivity of Vτ1,τ2 .

r + λ − ϕ Vτ1,τ2

-0.10 329.80
-0.067 292.08
-0.05 274.70
0.00 230.00
0.05 193.58
0.10 163.77

In order to derive an identical value to that resulting from futures prices it would be necessary a value
r + λ − ϕ = −0.067. Given that we are assuming a riskless rate r = 0.035 it should be ϕ − λ = 0.102,
which would be valid for several combinations. For example, assuming a real expected growth in prices
ϕ = 0.15, the risk premium would be λ = 0.048, so the cash flows would be discounted at a rate
r + λ = 0.083. It seems very unlikely that using firm-level discount rates (instead of project-specific
rates), adjusted by risk, we get a result consistent with the market.

On the other hand, with the NPV we are not valuing the optionality. For instance, if we have I = 150

we will accept the investment project right now for a wide range of values of r + λ − ϕ, which would
not be optimal when the option to wait is considered.

In this same case, when I = 150 we can compute the IRR as the value such that:

I =
S0

(IRR − ϕ)
(e−(IRR−ϕ)τ1 − e−(IRR−ϕ)τ2)

If we think that ϕ = 0.15, we will get a value IRR = 0.2769 (or 27.69%), which may seem enough
to invest in a project, but again we are forgetting the option to wait.
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6.3. Case study: σ = 0

When σ = 0 there is no uncertainty and hence no risk, so it must be λ = 0. In this case, E0(St) =

F (S0, t). In this situation it is possible to determine the optimal time to invest T ∗ which does not
necessarily coincide with the initial time.

In this case U1 = Sm and U2 = k. The spot price at the optimal investment time T ∗ is given by:

ST ∗ = U1 + [S0 − U1]e
−U2T ∗

This way the present value of the investment undertaken at T ∗ is

[V1,6(ST ∗ , U1, U2) − I]e−rT ∗
= [

U1(e
−r − e−6r)

r
+

ST ∗ − U1

r + U2

(e−(r+U2) − e−6(r+U2)) − I]e−rT ∗

= [
U1(e

−r − e−6r)

r
+

[S0 − U1]e
−U2∗T ∗

r + U2

(e−(r+U2) − e−6(r+U2)) − I]e−rT ∗
(32)

where we assume a constant value of I through time.
Differentiating with respect to T ∗ and equating to zero we get:

T ∗ = − 1

U2

ln
rI − U1(e

−r − e−6r)

(S0 − U1)(e−(r+U2) − e−6(r+U2)

For the values of the case study we can easily get T ∗ = 1.0045. It is slightly longer than a year, which
is the term when the opportunity to invest is available. Since the present value of the future investment
is increasing until T ∗ = 1.0045, in fact the optimal time to invest will be the final moment T ∗ = 1.00.
This case shows that, even without volatility, and therefore without risk, it may be suboptimal to invest
at the initial time despite NPV > 0. Market contango does not promote immediate investments to
enhance energy efficiency even if a zero risk premium were assumed (because of a hypothetical absence
of volatility).

7. Conclusions

In this paper we have analyzed how to value investments in energy assets that continuously produce
and/or consume certain commodities which are traded in futures markets. The existence of ever more
liquid futures markets, with contracts with ever longer maturities, makes it possible to value real assets
consistently with futures prices.

We have discussed the weaknesses and difficulties of using other alternative approaches such as the
NPV when only one rate is used to discount cash flows and both expected flows and risk premia must be
estimated. As we have shown, a model which links each cash flow to its market manages to reflect the
risks of a project when there are no options, and is the starting point to value different types of options.

We have analyzed several usual procedures to model futures markets. We have also derived the
corresponding formula for valuing stochastic incomes using the valuation methods well-known to
energy-finance academics. We have seen the reduced impact of short-term phenomena like seasonality,
jumps or stochastic volatility, on these long-term valuations. Nonetheless, they would be essential for
the valuation of short-term derivatives.
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Similarly, we have seen that the long-run equilibrium price in a risk-neutral setting is of paramount
importance as an input to the valuation of investments with long lives. We have also analyzed the
impact of reversion to the mean on the valuation of cash flows; specifically, a strong reversion entails
a lower risk.

Last, we have developed a valuation exercise of improvement in coal consumption to illustrate the
above mentioned concepts. The results of the example show the impact of uncertainty and the shape of
the futures curve on decision making when there is some option at hand, like the opportunity to delay an
investment to improve energy efficiency. In these cases, high uncertainty coupled with market contango
can make that, even with a zero cost of the investment in efficiency (it could be subsidized), some
investments are not undertaken on sole economic rationality grounds. Even in situations of certainty,
it could be optimal to postpone an investment if the market shows contango. Therefore, promotion of
investments to enhance efficiency should take into account these issues to be more effective since, unless
these investments are undertaken, higher CO2 emissions will be poured to the atmosphere. Last, we
have seen that it is highly unlikely that a valuation based only on the NPV or the IRR provides results
consistent with the market if market information is neglected; this holds irrespective of whether there are
options or not. Similarly, valuations should take into account the information embedded in the futures
curve, i.e., if the market shows backwardation or contango, to avoid misleading values. Clearly there is
a need for a deeper analysis when the long-term equilibrium value is not constant.
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Notes

1. Consider, for example, the time to build a nuclear power plant, which has shown a strong volatility
in the last years because of risks that sometimes had not been taken into account initially.
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2. The NPV and IRR methods are explained in Dean [20]. But, as the author admits (though it is not
developed in his paper), the hardest issue to assess is risk. In real applications it must be included
in the valuation together with the options embedded in the project. The NPV would be the starting
point.

3. The impact of a high discount rate on the valuation of long-term investments is addressed in Salahor
[21] and Laughton et al. [22].

4. Though it is possible to compute it if one wants so. See Salahor [21].
5. A method of this type, though with a different approach, is analyzed in Laughton et al. [22].
6. The value rf is the riskless interest rate on a 365-days basis; it is slightly different from the

continuous rate r. For a flat zero-coupon curve r = ln(1 + rf ) holds, so discounting can be
equivalently accomplished either by multiplying by 1/(1 + rf )

t or by e−rt.
7. If construction costs are high and the construction period is several years long then investments

will need funding presumably at a high rate. Also, it will take some time until revenues allow to
service the debt and pay the principal back.

8. Some additional reasons are: (a) This model satisfies the following condition (which seems
reasonable): if the price of one unit of the asset reverts to some mean value, then the price of
two units reverts to twice that same mean value. (b) The term σStdZt precludes, almost surely, the
possibility of negative values. (c) The expected value in the long run is: E(S∞) = Sm; this is not
so in Schwartz [18] model, where E(S∞) = Sm(e−

σ2

4k ).
9. If it is specified as a fixed amount independent of Ŝt, the risk premium would only be λ, and the

formulas derived would be slightly different.
10. The value of λ can be negative in certain cases.
11. δ reflects the profits enjoyed by the owner of the physical commodity, as opposed to the holder

of a futures contract. It is equivalent to the dividends received by the holder of a firm’s stock (as
opposed to the holder of a stock option).

12. In case the model for a given commodity is not mean reverting but GBM, the existence of a
convenience yield should be considered.

13. Note that under very fast mean reversion the model in the end behaves as if it stayed constant at
this equilibrium value.

14. Lucia and Schwartz [23] analyze the different forms of modeling seasonality and develop an
estimation for the Nordic Power Exchange.

15. The term “base load” refers to the type of load for the delivery of electricity or the procurement of
electricity with a constant output over 24 hours of each day of the delivery period. The term “peak
load”, instead, refers to the load type for the delivery or procurement of electricity at a constant
load over 12 hours from 08:00 am until 08:00 pm on every working day (Monday to Friday) during
a delivery period.

16. See Geman [24], particularly chapter 11, which deals with Spot and Forward Electricity Markets.
17. We consider m years of useful life.
18. For simplicity we assume that τ2 − τ1 = m is an integer number of years.
19. In this model E(Lt) = Lm + (L0 − Lm)e−µt, which implies E(L∞) = Lm.
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20. For a particular number of tons saved per year, the results would be proportional to those in this
example.

21. Though in this case the estimation has been done for just one day, it is possible to do it also with
the futures prices on several days to test for the stability of the parameters U1 and U2 when the
initial spot price changes, or even to calibrate a more complex model (this is beyond the scope of
this paper).

22. Where τ1 and τ2 are measured from time t.
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