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Abstract: Rapid urbanization dramatically changes the local environment. A hybrid classification
method is designed and applied to multi-temporal Landsat images and ancillary data to obtain land
cover change datasets. A support vector machine (SVM) classifier is used to classify multi-temporal
Landsat Enhanced Thematic Mapper Plus (ETM+) images that were collected in 2000 at the pixel level.
These images are also segmented with the mean shift method. The impervious surface is refined
based on a combination of the segmented objects and the SVM classification results. The changed
areas in 1990 and 2010 are determined by comparing the Thematic Mapper (TM) and ETM+ images
via the re-weighted multivariate alteration detection transformation method. The TM images that
were masked as changed areas in 1990 and 2000 are input into the SVM classifier. Land cover maps
for 1990 and 2010 are produced by combining the unchanged area in 2000 with the new classes of
the changed areas in 1990 and 2010. Land cover change has continuously accelerated since 1990.
Remarkably, arable land decreased, while the impervious surface area significantly increased.
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1. Introduction

Land cover and land use provide information that improves our understanding of the interactions
between humans and the environment [1]. Land cover influences the energy balance and the carbon
and hydrological cycles and, thus, plays an important role in global change research [2–4]. Land
cover directly affects the physical characteristics of the land surface, such as soil moisture, albedo,
temperature and transpiration, so many scientific studies require information regarding the spatial
distribution and dynamic changes of land cover [5–7]. Many projects, such as the International
Geosphere Biosphere Programme (IGBP), the Global Observations of Forest Cover and Global
Observations of Land Dynamics (GOFC-GOLD) and the Global Rain Forest Mapping (GRFM) project,
have been proposed to understand the land cover and land cover changes [8–10].

During the past two decades, China’s economic development has resulted in the rapid
expansion of urban areas [11–13], and some urban agglomerations have gradually formed, such
as the Beijing-Tianjin-Tangshan (BTT), Wuhan, Yangtze River Delta and Pearl River Delta urban
agglomerations [14]. The dramatic land cover changes around urban agglomerations cause a variety of
problems, such as regional climate change, the urban heat island effect and increased greenhouse gas
emissions [15–19]. Many climate models, such as the Regional Atmospheric Modeling System (RAMS),
the Penn State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model
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(MM5) and the Weather Research and Forecasting Model (WRF), require land cover as input data to
analyze the effects of land cover changes on the climate [20–24]. BTT is the largest urban agglomeration
in North China [14]. Using climate models to simulate the effects of land cover changes on the regional
climate in the BTT region requires long-term land cover products.

Currently, many land cover and land use datasets that cover the BTT region are freely available.
Datasets with resolutions from 300 m–1000 m were primarily developed based on Medium Resolution
Imaging Spectrometer (MERIS), Advanced Very High Resolution Radiometer (AVHRR), Moderate
Resolution Imaging Spectroradiometer (MODIS) and Satellite Pour l’Observation de la Terre (SPOT)
Vegetation [25–28]. These datasets represent the land surface characteristics in different years, but none
of these datasets are continuous from 1990–2010. Furthermore, datasets with coarse resolution have
low classification accuracy, especially in urban areas [21,29,30]. The information from classification
products with 30-m spatial resolution is more detailed than that from coarser products, but the number
of classes in classification products with 30-m resolution is generally lower than what is required by
climate models [1,31,32]. In addition to the above global- and national-scale datasets, many land cover
classifications of Beijing have been conducted, but the other regions in the BTT urban agglomeration
have rarely been addressed [33–36].

Differences between land cover products are more susceptible to classification methods and
classification systems [37]. The land covers must have identical semantics or extremely high
accuracy to monitor any changes [38]. The above-mentioned land covers have obvious differences in
thematic classes, classification methods and data. Comparing inconsistent maps creates unreliable
conclusions [38]. Consistent land covers in 1990, 2000 and 2010 must be developed to understand the
land cover changes from the expansion of the BTT urban agglomeration.

Images from remote sensing satellites have become established as the main basis for the
development of land covers [26,28,39]. Classifications can be divided into pixel-based and object-based
classifications based on pixels or pixel clusters [40]. The ‘salt and pepper’ problem often occurs in
pixel-based classifications, so object-based classifications were developed to reduce the noise [35,41–43].
Segmentation is a critical step in object-based classifications. The segmentation of an image combines
a group of spectrally-similar and spatially-adjacent pixels as an object [44–46]. Generally, some
parameters must be set for image segmentation, such as the spatial scale, bandwidth and shapes;
however, selecting one parameter that is suitable for all land cover classes is difficult [35]. Meanwhile,
integrating expert knowledge and the effective attributes of the objects to be classified is time
consuming [47]. Therefore, methods to combine pixel-based and object-based approaches have been
used in some classifications [31,48–50].

Change detection is an important component of land cover studies. As a post-classification
method, the comparison of classification results can be performed to detect changes [51]. Furthermore,
pre-classification algorithms, such as image differencing, change vector analysis, image regression
and image ratios, have been used to distinguish changed areas between images that are acquired on
different dates [52–54]. Post-classification change detection could reduce the influence of radiometric
calibration and sensor differences between different images, but the detection accuracy greatly depends
on the classification accuracy of each land cover [55,56]. In contrast, pre-classification approaches can
avoid the cumulative errors of the two classification results because only the changed area is updated.
Generally, pre-classification approaches require images that are acquired on similar dates, but the
iteratively re-weighted multivariate alteration detection transformation (IR-MAD) algorithm can be
used to combine the relative radiometric matches and change detection [57]. The IR-MAD algorithm
has no strict limit on acquiring images in the same phenological period. In this study, the IR-MAD
algorithm is used to identify changed areas.

The aim of this study is to identify consistent land covers in 1990, 2000 and 2010 in the BTT
urban agglomeration by using Landsat images. The classification system and accuracies of the land
covers should satisfy the requirements of the RAMS climate model. To achieve this goal, we adopted a
hybrid classification approach that integrated the advantages of both pixel-based and object-based
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approaches to classify multi-temporal Landsat images in 2000. The land covers in 1990 and 2010
were produced based on the land cover in 2000 by using the pre-classification change detection
method. The characteristics of the urbanization in the BTT region were analyzed based on these three
land covers.

2. Materials

2.1. Study Area

The BTT urban agglomeration (38◦28′–41◦3′ N, 115◦23′–119◦48′ E) includes 5 cities: Beijing,
Langfang, Tianjin, Tangshan and Qinhuangdao. As the Chinese capital, Beijing promotes the economic
development of its surrounding areas. Similarly, as a municipality, Tianjin represents the economic
center of the Pohai Bay region. The influence of Beijing and Tianjin has served to accelerate the
economic development of the adjacent cities. The location of the study area is shown in Figure 1.
The study area is surrounded by the Taihang Mountains to the west, the Yanshan Mountains to the
north and the Pohai Sea to the east. The main portion of the study area is arable land and is located
in the northeastern area of the North China plain. Wheat and maize are widely planted in the plains
areas, whereas forest and shrub are the major classes of vegetation in the mountainous areas.

ISPRS Int. J. Geo-Inf. 2017, 6, 59  3 of 21 

 

2. Materials 

2.1. Study Area 

The BTT urban agglomeration (38°28′–41°3′ N, 115°23′–119°48′ E) includes 5 cities: Beijing, 
Langfang, Tianjin, Tangshan and Qinhuangdao. As the Chinese capital, Beijing promotes the 
economic development of its surrounding areas. Similarly, as a municipality, Tianjin represents the 
economic center of the Pohai Bay region. The influence of Beijing and Tianjin has served to accelerate 
the economic development of the adjacent cities. The location of the study area is shown in Figure 1. 
The study area is surrounded by the Taihang Mountains to the west, the Yanshan Mountains to the 
north and the Pohai Sea to the east. The main portion of the study area is arable land and is located 
in the northeastern area of the North China plain. Wheat and maize are widely planted in the plains 
areas, whereas forest and shrub are the major classes of vegetation in the mountainous areas. 

 
Figure 1. The map shows the location of the study area in China. The magnified map is a false-color 
mosaic (red-green-blue (RGB): Bands 4, 3 and 2, respectively) of Landsat Enhanced Thematic Mapper 
(ETM) images. The cities of Beijing, Langfang, Tianjin, Tangshan and Qinhuangdao compose the 
urban agglomeration. 

2.2. Data and Pre-Processing 

The Landsat satellite series has continually observed Earth since 1972 and has accumulated an 
enormous number of time series images [38]. Landsat images have been widely used in land cover 
classification because of their stable imaging quality [1,31,32,58–60]. In this study, Level 1  
terrain-corrected (L1T) Landsat images were selected as the primary data source for the land cover 
classifications. The cloud coverage in the selected Landsat images was less than 5%. The Landsat 
images were atmospherically corrected to produce the surface reflectance by using the Landsat 
Ecosystem Disturbance Adaptive Processing System (LEDAPS). LEDAPS uses the 6SV (Second 
Simulation of a Satellite Signal in the Solar Spectrum vector code) radiative transfer code. The aerosol 
characterizations are derived independently from each Landsat acquisition, assume a fixed 
continental aerosol type and use ancillary water vapor [61–63]. The L1T Landsat images were 
processed to surface reflectance products by applying LEDAPS. The influence of the difference in the 
illumination geometry in the Thematic Mapper (TM)/ETM+ images was substantially eliminated. 

Covering the entire study area required TM/ETM+ images from six scenes. The images that were 
used in this study are listed in Table 1. The images that were acquired in 1990 and 2010 were  
Landsat 5 TM images, and those that were acquired in 2000 were Landsat 7 ETM+ images. The data 
quality of Landsat 7 ETM+ images is superior to that of Landsat 5 TM images, so three Landsat 7 
ETM+ images were used for every scene in 2000 [60,64]. Multi-temporal ETM+ images were utilized 
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Figure 1. The map shows the location of the study area in China. The magnified map is a false-color
mosaic (red-green-blue (RGB): Bands 4, 3 and 2, respectively) of Landsat Enhanced Thematic Mapper
(ETM) images. The cities of Beijing, Langfang, Tianjin, Tangshan and Qinhuangdao compose the
urban agglomeration.

2.2. Data and Pre-Processing

The Landsat satellite series has continually observed Earth since 1972 and has accumulated
an enormous number of time series images [38]. Landsat images have been widely used in land
cover classification because of their stable imaging quality [1,31,32,58–60]. In this study, Level 1
terrain-corrected (L1T) Landsat images were selected as the primary data source for the land cover
classifications. The cloud coverage in the selected Landsat images was less than 5%. The Landsat
images were atmospherically corrected to produce the surface reflectance by using the Landsat
Ecosystem Disturbance Adaptive Processing System (LEDAPS). LEDAPS uses the 6SV (Second
Simulation of a Satellite Signal in the Solar Spectrum vector code) radiative transfer code. The aerosol
characterizations are derived independently from each Landsat acquisition, assume a fixed continental
aerosol type and use ancillary water vapor [61–63]. The L1T Landsat images were processed to surface
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reflectance products by applying LEDAPS. The influence of the difference in the illumination geometry
in the Thematic Mapper (TM)/ETM+ images was substantially eliminated.

Covering the entire study area required TM/ETM+ images from six scenes. The images that
were used in this study are listed in Table 1. The images that were acquired in 1990 and 2010 were
Landsat 5 TM images, and those that were acquired in 2000 were Landsat 7 ETM+ images. The data
quality of Landsat 7 ETM+ images is superior to that of Landsat 5 TM images, so three Landsat 7 ETM+
images were used for every scene in 2000 [60,64]. Multi-temporal ETM+ images were utilized in the
classification for 2000 to reduce spectral confusion. The scene selection was based on the vegetation
dynamics of the target land cover types over a growing season. Crops in the study area could be
harvested twice in one year. However, some arable lands were cultivated only once in one year.
Multi-temporal images can compensate for cropland classification errors from harvesting or an absence
of planting and capture agricultural changes during the crop’s life [65]. Multi-temporal images also
make full use of phenological differences in different classes. The three acquisition dates of the ETM+
images covered the early, peak and late growing seasons [66]. The choice of appropriate acquisition
dates would facilitate maximizing the differences between types. The major green vegetation in
the BTT region was agricultural crop. Considering the phenology of the crops and the maximum
separability among dry farmland, paddy field and forest, the three acquired dates were in March,
August and October. We experienced difficulty selecting three temporal images in one year because of
the influences of clouds and rain. Therefore, high-quality images that were acquired in the previous
or following year were selected. One Landsat 5 TM image was selected for every scene in 1990 and
2010. An extra TM image was added for scene 121/33 in 1990 to compensate for the influence of
cloud coverage.

Table 1. TM/ETM+ images that were used in this study. The acquisition dates comprise the year,
month and day. All of the images for 2000 were ETM+ images, whereas those for 1990 and 2010 were
TM images. The images that were acquired on 27 August 1993 for 121/33 were used to complement
areas that were influenced by cloud cover.

Path/Row 121/32 121/33 122/32 122/33 123/32 123/33

Acquired
time

09/23/1991 08/19/1990 07/30/1992 07/30/1992 09/07/1992 05/26/1989
08/27/1993

05/02/2000 06/19/2000 05/25/2000 05/12/2001 05/16/2000 05/16/2000
06/19/2000 09/07/2000 08/11/1999 09/01/2001 08/02/1999 07/01/1999
09/07/2000 10/12/2001 11/01/2000 11/01/2000 10/21/2000 12/10/2000
09/27/2010 09/11/2010 08/30/2009 08/30/2009 09/22/2009 09/22/2009

In addition to the Landsat images, which constituted the primary data source, Shuttle Radar
Topography Mission (SRTM) digital elevation model (DEM) data were included in the classification [67].
Forest, shrub and grass were easily confused with agricultural crops in the study area because of
the spectral similarity in the Landsat images. However, these forest, shrub and grass were mainly
distributed in mountainous areas, and agricultural crops were mainly distributed in plains in the study
area. A large difference in slope was observed between the two terrains. In addition, the Conversion of
Cropland to Forest Program (CCFP) has been implemented by the Chinese government since 1999 [68].
In the CCFP, cultivated land along steep slopes is converted into forest, shrub and grass [69]. Therefore,
any forest, shrub and grass on mountains exhibits obvious slope differences between cultivated lands.
Raw three-arc-second-resolution DEM data were mosaicked and re-projected to the same projection as
the TM/ETM+ images and then cut to the size same as each scene. The DEM was resampled to 30-m
horizontal resolution by using the nearest neighbor resampling method. The Landsat images and the
slopes from the DEM were used as the input data for the SVM classifier. Only the Landsat images were
used when using the SVM to train the samples, and the accuracy of 5-fold cross-validation was 87.98%.
When the slope data were added, the accuracy reached 92.63%.
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3. Methods

The study area included many rural settlements that belonged to the impervious surface class.
During the growing season, these rural settlements were extensively sheltered by trees that were
planted in streets or courtyards. During the dormant season, the spectral characteristics of the rural
settlements were similar to those of the bare arable land. This complicated environment reduced the
classification accuracy of rural settlements when using pixel-based classification methods, and rural
settlements were typically subject to omission errors. The segment object was the cluster of pixels
of various classes. The characteristics that described a single pixel were not suitable to the object.
Using the SVM to classify the segment objects required more characteristics. Image segmentation was
performed and combined with the SVM classification results to improve the classification accuracy of
the impervious surface class [31,70].

The flow diagram of the classification process is shown in Figure 2. During classification, the
multi-temporal ETM+ images from 2000 and the slope data were first classified scene-by-scene by
the SVM classifier. The pixel-based and object-based approaches were integrated to improve the
accuracy of the impervious surface. Therefore, the mean shift algorithm was used to segment the three
multi-temporal Landsat ETM+ images to generate objects. The segmented objects were combined
with the SVM classification result to revise the impervious surface class. The pre-classification change
detection method was used to find the changed area; thus, one of the three images from 2000 was
selected for comparison with images from 1990 and 2010 by using the IR-MAD approach [52,57].
Only the areas on the Landsat images from 1990 and 2010 that were masked by the changed area were
classified with the SVM classifier. The land cover for 2000 was updated with the classification results
of the changed area to develop the land cover for 1990 and 2010.
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iteratively re-weighted multivariate alteration detection.

3.1. Classification System and Training Samples

Considering the spatial resolution of the TM/ETM+ images and the requirements of some climate
models, the classification system comprised 9 classes that referenced some existing classification
systems: forest, shrub, grass, dry farmland, paddy field, bare land, impervious surface, aquatic
vegetation and water bodies.

The training samples were primarily collected by visual interpretation of the ETM+ images
from 2000 with reference to Google Earth. The rest were collected from field observations in 2000.
The sample points that were collected by visual interpretation were first randomly distributed in the
six scenes. Then, a polygon that included pixels with the same class was manually drawn at a single
point location. If the random sample was not in a pure pixel cluster, we selected a nearby polygon
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with the same class as the random points. Some land cover classes, such as water bodies, bare land
and paddy fields, had lower area proportions in the study area. If only random samples were used,
the sample counts of these classes would be significantly lower than those of the other classes. More
samples were added by artificial selection for the classes with lower area proportions to mitigate the
influence of these unbalanced sample counts. Finally, 327 polygons (26893 pixels) were identified.

The samples were identified by visual interpretation and drawing polygons, so the classes of
samples may have included mistakes. All of the samples were input into the SVM classifier that was
trained with the same samples to check for mistakes. If the predicted class was not the same as that
input, the class of the sample was subjected to additional checks. If the class of the sample was correct
according to Google Earth images, the class was retained, even if the SVM classifier output a different
class. If the class of the sample was incorrect, the class was revised. This process was repeated until we
were confident that the samples included no mistakes.

3.2. SVM Classification

Recently, the SVM classifier has been widely used in remote sensing classification with good
results [71–73]. SVM uses the kernel function to map the spectral feature space to high-dimensional
space and calculates the inner product in this high-dimensional space. SVM performs classification by
using an optimal hyperplane, which is determined based on the limited supporting samples [74]. SVM
can achieve high classification accuracy with relatively small numbers of training samples [73]. In this
study, the Libsvm (Version 3.18) software package was used [75]. This software package can normalize
the input data and search for the optimal parameters. Bands 1–5 and 7 of the Landsat images were set
as the main input data for the SVM classifier. The slope data from the DEM were also included in the
classification. Therefore, the input data for the year 2000 had 19 layers, including one slope layer and
18 bands (each scene corresponded to 6 bands) from the Landsat images of three scenes. Each scene
was individually classified, and the results of six scenes were mosaicked together.

During classification, the 19 layers were normalized by using the scale function, and the radial
basis function (RBF) was set as the kernel function. The Libsvm software package performed numerous
classification tests to search for the optimal parameters by setting the searching step length of the
parameters. Specifically, the samples of every scene were first scaled to the range [−1, +1]. Then,
svm_type was set as c_svc; the 10-fold cross-validation was performed; and the step lengths of the
penalty parameter and the gamma parameter in RBF were set to 1. The iteration termination threshold
was 0.001. SVM classification was conducted once the optimal model parameters were determined.

3.3. Image Segmentation

The mean shift algorithm has been widely used in image segmentation and identification
tracking [76,77]. As a kernel density estimate method, the mean shift does not require prior knowledge
of the number of segmentations and sets no limits on the segmented shape [78]. In this study,
the EDISON V1.1 software was used. The 18 reflective bands of the three scenes of Landsat images were
transformed based on principal component analysis (PCA) to reduce the calculation iterations of the
mean shift. The first three principal components were selected as the segmented layers. The Gaussian
function was taken as the kernel function, and the bandwidths of the geometry space and color space
were set to 15 and 9.5, respectively.

In this study, the segmented object was not set as the input data for the SVM classifier. A set
of appropriate thresholds was used according to the area percentages of the classes within an object
to determine whether the object belonged to the impervious surface class. Forest and dry farmland
were the main factors because the interference factors to the rural settlements mainly included
the trees and dry farmland around or inside the rural settlements. The segmented objects were
overlaid with the SVM classification to refine the impervious surface. Generally, if the area fractions
of impervious surface (Ai), forest (Af) and dry farmland (Ad) within an object met the judgment
conditions, the polygon was designated as an impervious surface. These thresholds were selected
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based on multiple tests. The following rules were designed through the stratified extraction of the
impervious surface:

If Ai ≥ 50%, class = impervious surface, (1)

If 40% ≤ Ai < 50% and 40% ≤ Af < 50%, class = impervious surface, (2)

If 30% ≤ Ai < 40% and 30% ≤ Af < 40% and 10% ≤ Ad < 30%, class = impervious surface (3)

where Ai, Af and Ad are the area fractions of impervious surface, forest and dry farmland, respectively.
The rural settlements were mainly subjected to omission errors, so objects were classified as

impervious surface when the Ai pixels were greater than 50% in a segmented object. If an object had
more than 40% impervious surface pixels and forest pixels, the total pixels of these two classes were
more than 80%. Basically, the rural settlements matched this situation. The majority of impervious
surface objects were identified through these two equations. The proposed Equation (3) considered
that the proportions of rural settlements, trees and farmland were all relatively low.

Furthermore, the area percentage of the small impervious surface patch may have been less than
30% if a small impervious surface patch was located in a large object. Therefore, the impervious surface
patch would be deleted, even if the impervious surface patch was correctly classified. An extra rule
was set to avoid this situation: if one impervious surface patch comprised more than 10 adjacent pixels,
the impervious surface patch would be reserved regardless of the percentages of the classes in one
object. If an impervious surface patch was deleted, the adjacent class with the largest area would be
assigned to the deleted location.

3.4. Land cover Change

The IR-MAD algorithm was used to detect the changed area, and then, the TM images of the
changed area were classified by the SVM classifier. IR-MAD judged the unchanged pixels by iteratively
calculating the chi-square distribution of the difference in the bi-temporal images [52,57]. The IR-MAD
linearly transformed the original images R and T to new images U and V based on the canonical
correlation analysis (CCA) in Equation (4):

U = aT R, V = bTT, (4)

where U and V are the canonical correlation images, aT and bT are the transform matrixes and R and T
are the bi-temporal images.

The bands of the canonical correlation images were referred to as the canonical variates.
The canonical variates were arranged according to the correlations. If the correlation was relatively low,
this pair of canonical variates had more change information. The differences in each pair of canonical
variables were mutually uncorrelated.

According to the central limit theorem, the differences in the canonical variates approximately
corresponded to a Gaussian distribution, and the sum of squares of the differences in the canonical
variates corresponded to a chi-square distribution [52,57]. The differences in the canonical variates
and the weights of unchanged pixels were calculated by using Equations (5)–(7):

Mi = UN−i+1 −VN−i+1, i = 1, 2, ..., N, (5)

Z =
N

∑
i=1

(
Mi
σMi

)2

, (6)

Pr (no change) = 1− Pχ2;N(Z), (7)

where i is the band of the image, Mi is the difference in the variates, σMi is the standard deviation
of Mi, N is the total number of bands, Pχ2;N(Z) is the χ2 distributed with N degrees of freedom and
Pr (no change) is the weight.
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Pr (no change) was used to weigh each pixel. Then, Equations (4)–(7) were iterated until no
significant changes were observed in the canonical correlations. These pixels could then be determined
as unchanged pixels if their chi-square distribution probability was lower than 0.9 [52].

In this study, we calculated the chi-square images from 2010 and 1990 based on the images from
2000. The threshold was slightly lower than 0.95, which was set by the developer, so some unchanged
pixels were selected in the identified area. Although some extra unchanged pixels were selected,
mostly changed pixels were chosen, so the omission error was reduced.

The samples were collected from the unchanged area to classify the changed pixels with the SVM
classifier. The land covers from 1990 and 2010 were produced by updating the land cover from 2000
with the classification of the changed areas for 1990 and 2010. Figure 3 shows this process.ISPRS Int. J. Geo-Inf. 2017, 6, 59  8 of 21 
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Figure 3. Flow diagram of the land cover change classification.

4. Results

4.1. Accuracy Assessment

The assessment samples were selected through stratified random sampling. Bare land and aquatic
vegetation had the smallest area proportions, so we supplemented some points to these two classes.
The class of the assessment sample was identified by visual interpretation. A total of 526 points from
these nine classes were collected to assess the classification accuracy. The raw assessment points and
error matrixes were shown in supplementary materials. The error matrix was used to calculate the
overall accuracy, Kappa coefficient, user’s accuracy and producer’s accuracy for the three periods [79].
The overall accuracy is the proportion of the area that was correctly mapped. The user’s accuracy is the
proportion of correctly-classified pixels with regard to all of the pixels that are classified as this class in
the classified image. The producer’s accuracy is the proportion of correctly-classified pixels with regard
to all of the pixels of that ground truth class [80]. The overall accuracy, user’s accuracy and producer’s
accuracy were adjusted in terms of the unbiased estimator of the area proportions [80]. The specific
calculation process is shown in Equations (8)–(11) [81]. The results of the accuracy assessment are
shown in Table 2.

p̂ij =

(
Ni.
N

)(nij

ni.

)
(8)

where Ni. is the number of pixels of class i in the entire map, N is the number of pixels in the entire map,
ni. is the number of pixels from a sample of class i and nij is the sample count in row i (map category)
and column j (reference category) in the error matrix of the sample counts.

p̂PA =
p̂ij

p.j
(9)

p̂UA =
p̂ij

pi.
(10)
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p̂OA = ∑ p̂kk (11)

where p̂PA is the corrected producer’s accuracy, p̂UA is the corrected user’s accuracy and p̂OA is the
corrected overall accuracy. p.j is the sum of the p̂ij in column j of the estimated error matrix. pi. is
the sum of the p̂ij in row i of the estimated error matrix. p̂kk is the diagonal value of the estimated
error matrix.

Table 2. Adjusted accuracy assessment of the classifications for the three periods. “Overall” is the
overall accuracy, “Kappa” is the Kappa coefficient, “PA” is the producer’s accuracy and “UA” is the
user’s accuracy.

Class
1990 2000 2010

PA UA PA UA PA UA

Forest 87.27 89.33 89.32 89.33 85.67 87.01
Grass 61.29 81.82 62.39 85.19 64.71 83.33
Shrub 72.87 84.44 73.38 82.98 72.36 84.78

Dry Farmland 95.93 88.89 96.10 90.40 95.32 89.60
Paddy Field 71.37 82.93 72.89 90.00 69.55 85.00
Bare Land 69.06 91.49 61.45 95.65 69.36 89.36

Impervious surface 82.43 83.02 86.92 83.93 84.17 80.36
Water Bodies 90.03 93.18 91.35 90.91 94.02 92.68

Aquatic Vegetation 76.26 87.50 75.75 87.18 75.81 87.50

Overall 87.94 89.13 87.76
Kappa 0.85 0.87 0.85

The land cover in 2000 had the highest overall accuracy and Kappa coefficient, which were 89.13%
and 0.87 respectively. The overall accuracies and Kappa coefficients were 87.94% and 87.76% and 0.85
and 0.85 for 1990 and 2010, respectively. Overall, the accuracy for 2000 was higher than that for 1990,
and the accuracy for 1990 was higher than that for 2010; however, the difference was minor. We were
more concerned about the dry farmland, forest and impervious surface in the nine classes. Indeed,
these three classes comprised approximately 70% of the study area and were more seriously affected
by urbanization. The user’s accuracy and producer’s accuracy of these three classes all exceeded 80%.

A sub-area was selected to compare the land cover in 2000 with China’s Land Use/cover Dataset
(CLUDs) for the year 2000 [32]. This sub-area includes mountains and plains in Landsat Path/Row
123/032. The land covers that were classified in this study and the CLUDs are shown in Figure 4.
Figure 4a–c shows the Landsat images in 1990, 2000 and 2010. Figure 4d–f shows the land covers that
were classified in this study for Figure 4a–c. Figure 4g is the CLUD for the year 2000. This CLUD was
derived by visual interpretation [32]. When comparing the land cover in 2000 with the CLUD for the
year 2000, the main differences were the distribution of grass and shrub. The interpreted boundaries of
grass and shrub in this CLUD were artificial drawings. These polygons, which were drawn by humans,
could not adequately present the interleaving and transitions among vegetation. However, if no water
was present in a riverbed, this area would be classified as bare land or grass in the land cover for the
year 2000. In the CLUD for the year 2000, this riverbed was interpreted as a river. This difference
shows the flexibility in visual interpretation.
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error’ indicates that the impervious surface was incorrectly added; and ‘remove correct’ and ‘remove 
error’ refer to correctly or incorrectly deleted impervious surface, respectively. The percentage was 
calculated based on the area of impervious land that was identified by the SVM. Overall, the 
percentage of correct refinement far exceeded the percentage of incorrect refinement. In this sub-area, 
the percentages of impervious surface pixels that were added and removed correctly were 18.99% 

Figure 4. Details of the classifications of the sub-area in the JJT: (a) Landsat 5 TM sub-image at
Path/Row 123/032 that was acquired on 7 September 1992; (b) Landsat 7 ETM+ sub-image that was
acquired on 2 August 1999; (c) Landsat 5 TM sub-image that was acquired on 22 September 2009;
(d–f) classification results for (a–c), respectively; and (g) China’s Land-Use/cover Datasets (CLUDs)
in 2000.

4.2. Impervious Surface Refinement

The impervious surface class from the SVM included many incorrect trivial speckles because this
class is affected by the complexity of the environment. However, integration with segmented objects
effectively reduced these incorrect trivial speckles.
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The impervious surface of a sub-image was visually interpreted with reference to the
high-resolution images to evaluate the effect of the impervious surface refinement. Detailed
information is shown in Table 3. In this table, ‘no change’ means that no changes occurred; ‘add
correct’ indicates that the impervious surface was correctly added to the SVM classification; ‘add error’
indicates that the impervious surface was incorrectly added; and ‘remove correct’ and ‘remove error’
refer to correctly or incorrectly deleted impervious surface, respectively. The percentage was calculated
based on the area of impervious land that was identified by the SVM. Overall, the percentage of correct
refinement far exceeded the percentage of incorrect refinement. In this sub-area, the percentages of
impervious surface pixels that were added and removed correctly were 18.99% and 13.48%, respectively.
The corresponding percentages for incorrect addition and removal were 2.89% and 1.99%, respectively.
Therefore, the accuracy of the impervious surface classification was improved by 27.59%.

Table 3. Changes in impervious surface after integration based on the sub-image.

Identified
by SVM

No
Change

Add
Correct

Add
Error

Remove
Correct

Remove
Error

Pixel count 59,323 50,144 11,263 1714 7997 1182
Area (km2) 53.39 45.13 10.14 1.54 7.20 1.06

Percentage (%) 100.00 84.53 18.99 2.89 13.48 1.99

Figure 5 shows the local impervious surface that was classified by the SVM, the objects that
were segmented by the mean shift method and the refined impervious surface after synthesizing the
SVM and mean shift results. Figure 5a is a false-color Landsat image. Figure 5b shows the vector
boundary of the segmented objects when overlaid onto the sub-image in Figure 5a. The outlines of the
impervious surface are clearly delineated. In Figure 5c, the impervious surface from the SVM contains
many trivial speckles. Figure 5d shows the refined impervious surface. Detailed information regarding
the integration is presented in Figure 5e.
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Figure 5. Objects that were segmented by the mean shift method and the refined impervious surface
after synthesizing the object and SVM results: (a) ETM+ sub-image at Path 123/Row 032 that was
acquired on 21 October 1999; (b) boundaries of objects that were segmented by the mean shift
method (yellow lines); (c) impervious surface that was classified by the SVM classifier; (d) refined
impervious surface based on the integration of the segmented objects and the SVM classification result;
and (e) detailed information regarding the integration.

4.3. Change Mask

A threshold of 0.9 was manually chosen for the chi-square image based on the IR-MAD algorithm
to extract the changed area. Figure 6 shows the sub-images, which contain complex changes in
various classes. Figure 6a,b is the false-color Landsat sub-image that were acquired on 2 August 1999
and 22 September 2009, respectively. The main classes in the sub-images were an airport, towns,
rural settlements, dry farmland and rivers. The airport site at the center grew almost two-fold from
1999–2009. The bright cyan areas correspond to buildings and roads. Forests are shown in dark red
in the upper corner along the river. A substantial amount of dry farmland (bright red or light cyan)
became impervious surface. Figure 6c is the chi-square image; the grayscale values reflect the intensity
of the changes. The chi-square image exhibited a clear response to these class changes. Figure 6d is



ISPRS Int. J. Geo-Inf. 2017, 6, 59 13 of 21

the mask of the changed area in yellow, and the background is the sub-image in Figure 6a. Clearly,
dramatic changes occurred around the airport.ISPRS Int. J. Geo-Inf. 2017, 6, 59  13 of 21 

 

 
Figure 6. Changed area that was determined by comparing two images: (a) ETM+ sub-image at  
Path 123/Row 032 that was acquired on 2 August 1999; (b) Landsat 5 TM sub-image that was acquired 
on 22 September 2009; (c) chi-square image from the IR-MAD algorithm; and (d) mask of the changed 
area, which is shown in yellow against the background image (i.e., Figure 6a). 

4.4. Land Cover and Change 

The land cover in the BTT region has dramatically changed over the past two decades. The total 
areas of the study region in 1990, 2000 and 2010 were 55,508 km2, 55,660 km2 and 55,855 km2, 
respectively. Thus, the area increased by 152 km2 and 195 km2 from 1990–2000 and from 2000–2010, 
respectively. The increased areas corresponded to sea reclamation and thus were concentrated in the 
coastal region. The increased land from the sea mainly included impervious surface and bare land. 
The land cover maps for the three periods are shown in Figure 7, and the local details are shown in 
Figure 4. 

Figure 6. Changed area that was determined by comparing two images: (a) ETM+ sub-image at Path
123/Row 032 that was acquired on 2 August 1999; (b) Landsat 5 TM sub-image that was acquired on
22 September 2009; (c) chi-square image from the IR-MAD algorithm; and (d) mask of the changed
area, which is shown in yellow against the background image (i.e., Figure 6a).

4.4. Land Cover and Change

The land cover in the BTT region has dramatically changed over the past two decades. The total
areas of the study region in 1990, 2000 and 2010 were 55,508 km2, 55,660 km2 and 55,855 km2,
respectively. Thus, the area increased by 152 km2 and 195 km2 from 1990–2000 and from 2000–2010,
respectively. The increased areas corresponded to sea reclamation and thus were concentrated in the
coastal region. The increased land from the sea mainly included impervious surface and bare land.
The land cover maps for the three periods are shown in Figure 7, and the local details are shown in
Figure 4.
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The areas and proportions of the classes were adjusted to correct for the estimated error based on
the assessment samples. The adjusted areas and proportions are shown in Table 4. The proportions of
each class for the three periods are also shown in Figure 8.

Table 4. Error-adjusted areas and proportions of the classes for the three periods.

1990 2000 2010

Area (km2) Percent (%) Area (km2) Percent (%) Area (km2) Percent (%)

Forest 10,908 19.65 10,832 19.46 11,185 20.03
Grass 1828 3.29 1517 2.73 1328 2.38
Shrub 4504 8.11 5294 9.51 4,435 7.94

Dry Farmland 26,142 47.10 24,882 44.70 23,509 42.09
Paddy Field 3199 5.76 2741 4.92 1717 3.07
Bare Land 441 0.79 520 0.93 792 1.42

Impervious Surface 4842 8.72 6373 11.45 9460 16.94
Water Bodies 3357 6.05 3191 5.73 3131 5.61

Aquatic Vegetation 287 0.52 310 0.56 298 0.53
Sum 55,508 100.00 55,660 100.00 55,855 100.00
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The sum of the areas of dry farmland, forest and impervious surface always exceeded 70% of the
total study area during the two analyzed decades. The most remarkable changes were the reduction in
arable land and the increase in impervious surface between 1990 and 2010. Dry farmland changed
the most significantly from 1990–2000, shrinking by 1260 km2, with its proportion of the total area
decreasing from 47.1% down to 44.7%. Subsequently, dry farmland decreased further to 42.09%
from 2000–2010. The area of paddy fields was approximately 5.76% in 1990 and decreased to 4.92%
and 2.95% in 2000 and 2010, respectively. In contrast, the area of impervious surface increased the
most during the studied period. The area of impervious surface increased from 8.72%–11.45% from
1990–2000 and then to 16.94% by 2010, nearly doubling in only two decades. The increased area of
impervious surface was mostly attributable to the conversion of arable land. Indeed, approximately
90% of the increased area of impervious surface between 1990 and 2000 was originally arable land;
from 2000–2010, this value was approximately 80%.

Compared to the changes seen in the areas of dry farmland and impervious surface, the changes
in the areas of other classes were relatively small. The forest area exhibited a slight decrease from
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1990–2000, followed by an increase of 0.72% by 2010. The decreased forest area was mainly converted
to dry farmland and impervious surface from 1990–2000. Beginning in 1999, China began to convert
cropland to forest, so some dry farmland with steep slopes and some shrub land were converted to
forest land. Although water bodies had some increments (i.e., the enclosed sea), the total area that
was covered by water bodies continuously decreased. Clearly, the water levels of the reservoirs in this
area declined.

5. Discussion

5.1. Integration of Pixel-Based and Object-Based Classification Methods

The combination of pixel-based classification and object-based image segmentation was critical
in this study. The land surface characteristics of the study area are very complex. For example, some
agricultural land was not planted, so its spectral characteristics were similar to those of bare land
and buildings. Many greenhouses were located on agricultural land and appeared similar to rural
settlements in the multi-spectral images. Furthermore, buildings in some rural settlements were
sheltered by trees. This situation is not as prevalent in urban areas because buildings are generally
higher than trees. During classification, some rural settlements were classified as several disconnected
components when using the SVM classifier. However, the buildings and trees in these rural settlements
could be segmented as one object. These objects could comprise one or several types of land cover
pixels, so the spectral characteristics of these objects were more complex than those of single pixels.
Therefore, the classification of these objects required more information, such as the shape, perimeter,
area and location relative to other objects. When we attempted to use some object features, such as the
mean, median, maximum and minimum, as the input data for the SVM classifier, the classification
results were not improved relative to those that were only based on pixels. Indeed, the mean, maximum
and minimum values of the objects widely varied, especially for objects with pixels of several classes.
Thus, the identification of objects requires more knowledge, such as the relationship between objects,
the distribution pattern of pixels in an object and the shape of the object. Substantial additional work
is required to explore the knowledge for every class to classify objects with the SVM classifier.

Image segmentation generally requires segmentation parameters to be set. However, large
differences in spatial scale existed between the land cover classes, so properly segmenting the images
for all of the land cover classes with one spatial scale parameter was difficult. In this study, the
segmentation parameters were set to a scale that was suitable for rural settlements to improve
the classification accuracy of the impervious surface. We mainly considered the proportions of
the buildings, trees and agricultural land in a single object to combine the advantages of both
pixel-based and object-based approaches. In this study, the error that was associated with impervious
surface based on the SVM classifier was mainly omission error. Therefore, the thresholds were set to
supplement the impervious surface when combining the SVM classification results and segmented
objects. Finally, the gaps in impervious surface were filled, and the small misclassified patches were
removed. The integrating rules could be easily understood, but the rules were constructed by many
experiments. These rules were empirical rules and should be redesigned for different regions or
different types. In addition, types with large-scale differences will not be adequately segmented
because of the limitations of the segmentation-scale parameters. Self-adaptive segmentation could be a
potential solution.

5.2. Change Detection

Using a consistent classification method is critical to ensure that the classification results for
different periods are comparable. The spectral characteristics of different land covers usually have
some confusion or overlap and are not always separated by a clear-cut boundary. The transitions
between some classes, such as between bare land and sparse grassland and between wetlands and
water bodies, are continuous. Classification errors often appear near the boundaries between these
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classes because of their spectral similarity. Each satellite image has unique Sun-illumination geometry
and weather characteristics. Despite using the same classifier to classify images that are acquired at
different dates, ensuring that the boundaries of the unchanged land cover in the transition region
are similarly identified is difficult. This type of discrepancy in boundary-adjacent areas can result in
errors when comparing land covers between different periods. Generally, only a portion of the land
cover in a region changes over a given period. The error in land cover changes is lower if only the
changed areas are updated and the unchanged areas are retained. However, updating the changed area
particularly relies on the ability to accurately identify the changed area. If the identified changed area
is substantially greater than the actual changed area, the effect of updating is the same as classifying
the entire image. In contrast, the omission error increases if the identified changed area is less than the
actual changed area. If the changed area can be appropriately identified, however, updating only the
changed area ensures that the new land cover product is consistent with the base product.

In this study, the threshold of changed pixels was set slightly lower than the recommended
threshold by the software developer, so the identified changed area was slightly greater than the actual
changed area. This choice was made to reduce the omission error. Overall, the method of updating the
changed area reduced the required computation for the classification and improved the consistency of
the land covers between different periods.

6. Conclusions

China’s urbanization process has continuously progressed, and some urban agglomerations have
formed. This urbanization has led to more frequent and intense land cover changes, thus affecting
the local climate. Multi-temporal Landsat images and ancillary data were classified to extract LCLUC
information for the BTT urban agglomeration.

In this study, the SVM classifier was used to classify multi-temporal Landsat images that were
acquired in 2000. The objects that were identified via image segmentation were integrated with the
SVM land cover classification results to improve the classification accuracy of impervious surface.
The change detection method IR-MAD was used to update the land cover in 1990 and 2010 based
on the land cover in 2000. Finally, consistent land covers were developed for 1990, 2000 and 2010.
Remarkably, the area of arable land in the BTT urban agglomeration decreased over the past two
decades, while the impervious surface area increased. The area of impervious surface increased nearly
two-fold from 1990–2010. Meanwhile, the decreased area of arable land, including dry farmland and
paddy fields, was slightly less than the increased area of impervious surface. The method that was used
in this study was proven to be effective after validating the classification results. Thus, this method
could be used for similar applications.

Supplementary Materials: The following are available online at www.mdpi.com/2220-9964/6/3/59/s1,
Table S1: Error matrix for the year 1990 (unit: point), Table S2: Error matrix for the year 2000 (unit: point),
Table S3: Error matrix for the year 2010 (unit: point).
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