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Abstract: To determine the fuel economy and emissions of a vehicle using a chassis dynamometer, the
load to which the vehicle is subjected when it actually runs on a road, or the road load specifications,
must be simulated when the dynamometer is applied. The most commonly used method to measure
road load specifications is coastdown testing. Currently, road load is measured and provided by the
manufacturer of the vehicle. Verification of the accuracy of the manufacturer’s reported road load
specifications by a third party may reveal that the specifications are inaccurate, possibly because of
different testing locations, test drivers or test equipment. This study aims at identifying key factors
that can affect a vehicle’s road load correlation by using experimental design and deriving criteria for
determining the correlation based on the energy difference.

Keywords: road load; coastdown test; fuel economy; energy discrepancy; design of experiment;
evaluation criteria

1. Introduction

Regulations on fuel economy and carbon dioxide (CO2) emissions around the world amid global
warming will continue to be tightened until 2020. In the meantime, an improvement in fuel economy
approximately 4% will be required per year [1]. As automakers have undertaken tremendous efforts
to develop vehicles with higher fuel efficiency, the overall fuel economy of vehicles has improved
continuously over the last five years [2,3]. Such a demand for high fuel efficiency has stimulated greater
interest among researchers regarding the analysis and reduction of road load, which had received
only a fraction of the attention directed to the overall enhancement of engines or transmissions on the
subject of improving fuel economy [4–7].

Although road load is one element of a vehicle’s fundamental performance, accurate and
comprehensive analysis thereof has been highly difficult because the factors influencing it are spread
throughout the vehicle. Studies of road load in vehicles began in earnest in the 1950s. In the 1970s, the
society of automotive engineers (SAE) issued a more systematic, standardized method of performing
a road load test—J1263—based on findings from previous studies. Subsequently, SAE issued J2263
based on the results of studies conducted in the 1980s and 1990s to enhance the accuracy of road load
and raise the overall reliability of the test. Currently, J2263 serves as the standard norm for road load
testing in North America. Both test methods are based on the same method: accelerating the test
vehicle over a certain speed on a sufficiently long, straight, and flat road; shifting the gear to neutral
and letting the vehicle run via inertia only; measuring the duration of deceleration; and translating it
into road load [5,7–9].
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Once the road load is determined, the vehicle’s fuel economy and emissions can be evaluated
using such modes as federal test procedure 75 (FTP-75), highway fuel economy test (HWFET), or new
european driving cycle (NEDC) by replicating the value on a chassis dynamometer. Previous studies,
however, show that inconsistencies often exist between certification test results and actual test results
and point to the use of the flexibility allowed in the manufacturer’s road load test procedures as being
the cause of such inconsistencies [3,10–15].

Additionally, a number of literature sources reveal that a vehicle consumes a lesser amount of fuel
for the test, and emits less CO2 when realistic road load values instead of the official ones are applied
on a chassis dynamometer [16–18]. One of the reasons for a rapidly growing discrepancy between
official and real-world fuel economy and emission values of new passenger cars is weaknesses in
the certification testing schemes and in the compliance protocols. These weaknesses have allowed
vehicle manufacturers to be increasingly able to misuse tolerances and flexibilities, leading to
downward-trending type-approval emission levels that are not matched by a similar decrease in
real-world emission levels—indeed, the real-world values contradict the type-approval results [19,20].
This discrepancy can occur from various factors, such as driving style and conditions [21–23]. However,
about one-third of this gap is explained by vehicle manufacturers systematically exploiting technical
tolerances and inaccurate definitions in the procedures specified for the coastdown tests that provide
conclusive data used to set up the lab equipment for type-approval tests [24,25].

In fact, coastdown testing depends on, among other things, the road surface conditions, any local
change in the flattening or gradient of the road, wheel and tire specifications, vehicle preparation,
tire pressure, test weight, brake drag, air condition, delicate operation of the steering system by the
driver, test equipment, and the data processing method [3,10,11,26–28]. For reducing the use of these
flexibilities, it is necessary to devise a method of how to calculate, quantitatively, the road load values
using coastdown tests.

However, there is no global law or regulation to quantitatively calculate the differences in road
load, which are caused by many different factors. In the U.S., the Environmental Protection Agency
(EPA) states in its guidance letter Compliance Division (CD)-15-04 that it will verify the road load
force specified by manufacturers based on energy loss in the FTP-75 and HWFET modes by using
their production vehicles starting in the 2017 model year [29]. United Nations (UN) global technical
regulation (GTR) No. 15 worldwide harmonized light vehicle test procedures (WLTP—Phase 1(b))
states in the general requirements section that each manufacturer is responsible for the accuracy of
the road load values it specifies [30]. Although the document does not provide criteria for confirming
road load specifications, it is expected that WLTP Phase 2 will step up its efforts to develop such
criteria. In Korea, the applicable regulation regarding fuel economy states that the road load should
be calculated based on energy differences considering fuel economy modes, but fails to provide any
specific method of calculation [31].

Currently, road load data are measured and provided by the vehicle manufacturer. Regardless of
whether the manufacturer uses the allowed flexibility given in the test procedures, testing by a third
party to verify the data provided by the manufacturer may result in different road load data because
of different test sites, test drivers, test devices, and/or methods of data processing.

The main objective of this study is to identify key factors that affect a vehicle’s road load correlation
based on data obtained via road load correlation test between two test bodies after considering evaluation
criteria for determining the correlation based on the energy difference, and give the compliance protocol
concept for precise verification of the road load values specified by manufacturers. Thus, we removed
the flexibility elements that may cause differences in road load data, such as the condition of the test
vehicle; identified three key factors for determining the correlation between road load data provided
by two test bodies (test site, test driver, and test devices); determined the orthogonal array based on
design of experiment (DOE) full factorial design; and conducted a coastdown test according to the
order and the J2263 test standard before statistically analyzing the results of the test. For the analysis,
we derived criteria for determining the road load correlation based on energy differences.
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2. Theoretical Approach

2.1. Coastdown Analysis Model

The coastdown analysis model, according to the J2263 test standard used in this study, is very
well-known and expressed as shown in Equation (1), and preliminary analysis depending on this model
is conducted using linear regression to identify individual coefficients (Am, Bm, Cm, a0, a1, a2, a3, a4)
with minimum errors based on Me, dV/dt, V, Vr, dh/ds, and R, given all measured data. Data with
excessive deviations are then excluded before linear regression analysis is performed again to calculate
the individual coefficients. These coefficients are subjected to compensation for temperature and
ambient pressure in accordance with regulations to be translated into final ones [26,31,32]. Meanwhile,
road grade effect was not considered because coastdown testing was performed on a flat road in
this study.

Me

ˆ

dV
dt

˙

“ Am ` BmV ` CmV2 `
1
2

RAV2
r

´

a0 ` a1Y` a2Y2 ` a3Y3 ` a4Y4
¯

˘Mg
ˆ

dh
ds

˙

(1)

where:

Me Effective vehicle mass (kg)
dV/dt Acceleration (m/s2)
V Vehicle velocity (km/h)
Am Coefficient of mechanical drag (N)
Bm Coefficient of mechanical drag (N/(km/h))
Cm Coefficient of mechanical drag (N/(km/h)2)
R Air density (kg/m3)
A Frontal area (m2)
Vr apparent wind speed relative to vehicle (km/h)
Y Yaw angle of apparent wind relative to direction of vehicle travel (deg)
a0, . . . , an Coefficients for aerodynamic drag, as a function of yaw angle (deg´n)
M Mass of vehicle (kg)
g Gravitational constant 9.80665 m/s2

dh/ds Sine of slope

Equation (1) above is based on studies conducted in the 1980s or 1990s and a paper published
in 1995 (ABCD-method) [33]. This modeling is designed to enhance the degree of the test and
distinguish mechanical resistance and aerodynamic drag by measuring wind in real-time with
an onboard anemometer installed 2 m ahead of the test vehicle and correcting the influence of wind to
a greater extent.

2.2. Criteria for Confirming Road Load Correlation

2.2.1. Five Criteria for Determining Road Load Correlation

In this study, we considered five criteria for determining road load tolerance that can be used
when a third party verifies road load specifications provided by a manufacturer [34,35]. Table 1 shows
the criteria. The first criterion relates to the individual energy differences depending on the FTP-75 and
HWFET modes, which are fuel economy test modes used in the U.S. and Korea, whereas the second
relates to the energy loss difference calculated by combining 55% of the energy loss from the FTP-75
mode and 45% of the energy loss from the HWFET mode.

Figure 1 shows how the energy loss considering the FTP-75 and HWFET test modes is calculated
based on the first and second evaluation criteria given in Table 1 for determining road load tolerance.
Additionally, this one explains that power loss is calculated by multiplying the driving mode’s target
speed (profile) by the road load force and then integrating it against time to determine the final energy
loss due to the road load.
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Table 1. Evaluation criteria of road load tolerance. RLHP: road load horsepower.

No. Evaluation Criteria Remark

1 Energy loss difference considering the fuel economy test cycle (individual) -
2 Energy loss difference considering the fuel economy test cycle (combined) -
3 Road load force difference considering the coastdown speed range 15–115 km/h
4 RLHP difference at 50 mph -
5 Each road load coefficient difference (f 0, f 2) -
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Figure 1. Calculation procedure of energy loss.

The third criterion is related to the difference between the average road load forces (or road energy)
calculated at 21 speed points set by dividing the range of 15–115 km/h, which is used for this study,
into 5 km/h segments. The fourth criterion relates to the difference in road load horsepower (RLHP)
under a condition of 50 mph used by the EPA in the U.S., and the fifth criterion relates to the difference
in rolling resistance coefficient f 0 and aerodynamic coefficient f 2 among the road load coefficients.

To compare how the five criteria listed above are different, author-defined road load values
were used for both the target and confirmed cases. Table 2 shows the results from the comparison.
During the calculation, driving speeds of less than 10 mph were regarded as zero. This is because the
analysis of the vehicle’s full force can be performed only at speeds over 10 mph because the road load
coefficient f 0 is merely a result that is determined by extrapolation.

Table 2 shows calculation example of the energy difference between the target road load and
the value from the verification by a third party. When the first criterion for determining the road
load tolerance is applied, energy loss is 14.9% in the FTP-75 mode and 10.6% in the HWFET mode,
respectively. When the second criterion is applied, it is 12.6%. When the third and the fourth criteria
are applied, energy losses are 12.2% and 10.8%, respectively. When the fifth is applied, differences of
29.6% and 0% occur at f 0 and f 2, respectively.

This suggests that the calculation may produce different results depending on which criteria are
used for determining road load tolerance. Consequently, criteria for determining road load tolerance
must be specified before the manufacturer’s road load data are to be verified by a third party.

2.2.2. Limitations of Methods Using a Fuel Economy Test Mode

Methods for calculating energy loss using fuel economy test modes (the first and second criteria
given in Table 2) may produce different results when the manufacturer and third-party verification body
apply different driving schedules, durations of driving, speed sections where speed is regarded as zero,
methods of unit translation, or otherwise. To address such inconsistencies and present an unambiguous
method for determining road load tolerance, this study derived the constant of a road load coefficient.
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Table 2. Calculation example for the evaluation criteria of road load tolerance. FTP-75: federal test procedure 75; and HWFET: highway fuel economy test.

Evaluation Criteria
Brief Description Calculation Result

Over Target Road
Load Coefficient (A)

Calculation Result
Over Confirmed Road

Load Coefficient (B)

Road Load
Difference (%)

((B´A)/A ˆ 100)
RemarksTarget Road

Load Coefficient
Confirmed Road
Load Coefficient

Coefficients
f 0 (N) 120.1 155.7

- - - -
f 1 (N/(km/h)) 0.636 0.691

f 2 (N/(km/h)2) 0.0309 0.0309

1. Energy loss difference
(individual)

FTP-75 test cycle 4505.7 (kJ) 5175.6 (kJ) 14.9 Most important
criterionHWFET test cycle 6251.1 (kJ) 6911.6 (kJ) 10.6

2. Energy loss difference
(combined)

0.55 ˆ FTP-75 energy loss + 0.45 ˆ

HWFET energy loss 5291.1 (kJ) 5956.8 (kJ) 12.6 -

3. Road load force difference
(15–115 km/h)

Averaged road load force for 21 points
considering coastdown speed range 6726.7 (N) 7549.3 (N) 12.2 -

4. RLHP diference at 50 mph
(EPA) RLHP at 50 mph 8.3 (kW) 9.2 (kW) 10.8 -

5. Each road load coefficient
difference

f 0 coefficient 120.1 (N) 155.7 (N) 26 -
f 2 coefficient 0.0309 (N/(km/h)2) 0.0309 (N/(km/h)2) 0
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2.2.3. Deriving the Constant of Road Load Coefficients

To test the fuel economy and emissions using a chassis dynamometer, the road load of the test
vehicle is expressed as a quadratic function of vehicle speed:

RL pRoad Loadq “ f0 ` f1v` f2v2 (2)

Energy (ERL) loss due to road load while the test vehicle runs on a driving schedule on a chassis
dynamometer can be calculated as follows:

ERL “

ż

p f0 ` f1v` f2v2q ˆ dS “
ż

p f0v` f1v2 ` f2v3qdt

“ f0 ˆ

ż

vdt` f1 ˆ

ż

v2dt` f2 ˆ

ż

v3dt

“ f0 ˆ
ÿ

pv∆tq ` f1 ˆ
ÿ

pv2∆tq ` f2 ˆ
ÿ

pv3∆tq

(3)

where S is the distance of travel, and t is time.
In Equation (3), if the FTP-75 and HWFET test modes used by the EPA and in Korea, respectively,

are applied as driving schedules and the units of road load coefficient—f 0, f 1, and f 2—are N, N/km,
and N/km2, respectively, the energy loss due to road load during the FTP-75 and HWFET modes can
be calculated as follows. Here, speeds less than 10 mph are regarded as zero (0) as well.

Energy loss in the FTP-75 test mode (EFTP´75q:

EFTP´75 pkJq “
ż 2477

0

´

f0 ` f1vF ` f2v2
F

¯

ˆ vFdt “
ż 2477

0

´

f0vF ` f1v2
F ` f2v3

F

¯

dt

“ f0 ˆ

ż 2477

0
vFdt` f1 ˆ

ż 2477

0
v2

Fdt` f2 ˆ

ż 2477

0
v3

Fdt

“ A f 0,F ˆ f0 ` B f 1,F ˆ f1 ` C f 2,F ˆ f2

“ 17.4ˆ f0 ` 944.5ˆ f1 ` 58910.7ˆ f2

(4)

Energy loss in the HWFET test mode (EHWFET):

EHWFET pkJq “
ż 765

0

´

f0 ` f1vH ` f2v2
H

¯

ˆ vHdt “
ż 765

0

´

f0vH ` f1v2
H ` f2v3

H

¯

dt

“ f0 ˆ

ż 765

0
vHdt` f1 ˆ

ż 765

0
v2

Hdt` f2 ˆ

ż 765

0
v3

Hdt

“ A f 0,H ˆ f0 ` B f 1,H ˆ f1 ` C f 2,H ˆ f2

“ 16.5ˆ f0 ` 1338.1ˆ f1 ` 110677.6ˆ f2

(5)

Table 3 shows the constants of the road load coefficients derived considering the FTP-75 and
HWFET test modes. We compared the energy losses calculated using the first determination criteria
given in Table 2 with those calculated using the constants of the road load coefficients given in Table 3.
The energy losses were almost identical, with differences of 0.1% in the FTP-75 mode and 0.0% in
HWFET mode (Table 4). For this comparison, the road load coefficients given in Table 2 were used as
the load resistance values.

Table 3. Constant of road load coefficients.

Test Mode Af0 (km) Bf1 (km2/h) Cf2 (km3/h2)

FTP-75 17.4 944.5 58,910.7
HWFET 16.5 1338.1 110,677.6

Table 4. Energy loss comparison for the derived constant.

Energy Loss 1st Criterion of Table 2 Derived Constant Criterion

Target Confirmed Target Confirmed

EFTP-75 (kJ) 4505.7 5175.6 4510.8 (0.1%) 5182.2 (0.1%)
EHWFET (kJ) 6251.1 6911.6 6252.6 (0.0%) 6913.6 (0.0%)
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3. Test Equipment, Method, and Analysis Procedures

3.1. Test Equipment

A compact sedan with a 2.4 L gasoline engine and a six-speed automatic transmission was used.
The test vehicle conditions and test conditions, including the vehicle's run-in, tire wear, and weight,
were based on “regulation for test procedures for energy efficiency, greenhouse gas emissions and
fuel economy for motor vehicles” [31]. Coastdown testing was conducted under similar outdoor air
conditions, with the vehicle's tire tread being not lower than 50% of its original state and the reference
weight being the equivalent test weight (ETW) after 6500 km of run-in. Table 5 shows the specifications
of the vehicle and its engine used by two test bodies for this study.

Table 5. Specifications of the test engine and vehicle. CW: curb weight; and ETW: equivalent test weight.

Type Items Specifications

Vehicle

Weight (CW/ETW) 1575/1701 kg
Gearbox Six-speed auto

Model year 2015
Length and height (mm) 4920/1470

Tire specification 225/55R17

Engine
Cylinder number/Displacement 4/2359 cc

Rated power/Engine speed 190 ps/6000 rpm
Fuel Gasoline

For the calculation of road load in accordance with the J2263 test standard, the distance, time,
vehicle speed, direction, and speed of wind, and air temperature and pressure must be measured.
For the calculation of distance, a noncontact speedometer that emits a digital pulse signal at regular
intervals was used. For the calculation of time, a precision clock within the data acquisition device
(with a resolution of 0.025 µs) was used. The vehicle speed was calculated from the distance traveled
and time elapsed. For the measurement of the direction and speed of wind, an AQ 05305 model
(R. M. Young Co., Traverse, MI, USA), a propeller-type wind monitor, was used to capture signals in
an analogous manner. Air temperature and pressure were measured using a K-type thermocouple and
a barometric pressure sensor incorporating piezoelectric elements. Figure 2 shows the measurement
instruments for coastdown testing as configured.
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3.2. Test Method

In this study, identical conditions were applied with respect to factors that can be controlled by
humans, including run-in distance, tire conditions, test weight, tire pressure, warm-up conditions,
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range of speed, “split” runs, number of tests for each direction, and rotational inertia weight, among
those that may influence the road load correlation between two different test bodies. For related factors,
such as ambient temperature, the most similar conditions were applied during the test. However,
the two test bodies applied different methods to correct the direction and speed of wind against the
vehicle blockage effect and different methods of measuring air temperature and pressure.

For a comparison of the road load correlations between the two test bodies, the test site, test driver
and test device were switched after their respective tests before another round of testing to collect
and save data from each round. Upon completion of all tests, their data were analyzed using a data
analyzer to calculate the road load applied to the vehicle during each test.

Owing to the unavailability of a sufficiently long test road for both test bodies, coastdown testing
was conducted such that the test road was divided into high-speed and low-speed sections.

During the road load correlation test, the test driver, test device, and test site, which are bound to
be different when verification is made independently by a third party, were identified as major factors.
The levels of such factors were set at 2 for the test. Table 6 shows the factors and their levels. All three
factors consist of discrete variables, and the response factor (Y) represents energy (E) calculated for the
road load values derived sequentially from the series of coastdown tests considering the fuel economy
test mode. Fr represents the road load force from the coastdown test, and Vt and T represent the target
speed for the fuel economy test and time, respectively.

Table 6. Design variables.

Variables Index Level 1 Level 2

Test site X1 A B
Test driver X2 A B
Test device X3 A B

Energy loss Y (E = Fr ˆ Vt ˆ T)

3.3. Procedures for Test Result Analysis

To identify a significant factor (s) among those considered for this study, we determined the
orthogonal array (L8) based on a DOE full factorial design using Minitab version 16 (Minitab,
State College, PA, USA). Coastdown testing was conducted according to the order and the J2263
test standard to derive test road values and calculate energy considering the fuel economy test mode.
Table 7 shows the orthogonal array used for the test.

Table 7. Orthogonal array L8 (23) based on design of experiment (DOE) full factorial design.

Run Order X1 X2 X3 YFTP-75 (E) YHWFET (E)

1 1 1 1 EF1 EH1
2 2 1 1 EF2 EH2
3 1 2 1 EF3 EH3
4 2 2 1 EF4 EH4
5 1 1 2 EF5 EH5
6 2 1 2 EF6 EH6
7 1 2 2 EF7 EH7
8 2 2 2 EF8 EH8

We performed analysis of variance (ANOVA) on the calculated energy to determine which factors
have a significant impact on the test for final road load correlation. If identifying significant factors
using ANOVA were impossible, we performed pooling in which interaction factors of higher degrees
with many noise factors are transferred to the error term to scale down the model and, ultimately,
estimate the effect of each factor independently [36]. Figure 3 shows the design scenario to determine
which factors have a significant impact on the road load correlation among those identified in this study.
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Figure 3. Design procedure of significant factor distinction. ANOVA: analysis of variance.

4. Results and Discussion

4.1. Road Load Coefficients and Energy Losses

In this study, using the results from the orthogonal array (L8) order based on DOE full factorial
design, the J2263 test standard and Equation (1), we calculated road load coefficients f 0, f 1, and f 2 and
drew a road load graph for a speed range of 15–115 km/h, as shown in Figure 4.
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Figure 4. Road load graph from 15 km/h to 115 km/h.

In addition, the first of the five determination criteria given in Table 2 was used to calculate
the energy loss considering the FTP-75 and HWFET modes for each run order. The results from the
calculation are given in Table 8.

Table 8. Results of the road load correlation test program, corresponding to data as represented in
Figure 4. Diff.: difference.

Run Order X1 X2 X3
Road Load Coefficients FTP-75 Test Cycle HWFET Test Cycle

f 0 (N) f 1 (N/(km/h)) f 2 (N/(km/h)2) EFTP-75 (kJ) Diff. (%) EHWFET (kJ) Diff. (%)

1 1 1 1 143.46 0.59776 0.029871 4814.4 ´1.6 6471.1 ´1.9
2 2 1 1 147.24 0.57583 0.031512 4956.0 1.3 6685.7 1.4
3 1 2 1 143.46 0.57022 0.030294 4813.2 ´1.6 6481.0 ´1.7
4 2 2 1 146.57 0.70302 0.029957 4972.9 1.6 6672.8 1.2
5 1 1 2 135.01 0.91471 0.028321 4875.8 ´0.4 6584.4 ´0.2
6 2 1 2 137.35 0.90098 0.029123 4950.7 1.2 6693.4 1.5
7 1 2 2 139.13 0.58720 0.030972 4794.2 ´2.0 6507.6 ´1.3
8 2 2 2 158.54 0.25051 0.033570 4966.2 1.5 6664.6 1.1
Average (1–8) 143.84 0.63753 0.030453 4892.9 - 6595.1 -
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4.2. Road Load Correlation Analysis

4.2.1. Correlation Analysis Considering the Fuel Economy Mode (FTP-75 and HWFET)

Figure 5 shows the energy loss due to the road load for each run order in the FTP-75 mode.
Run orders 1, 3, 5, and 7 represent energy loss due to the road load measured at test site A, with the
average energy loss being 4824.4 kJ. Run orders 2, 4, 6, and 8 represent energy loss due to the road
load measured at test site B, with the average energy loss being 4961.5 kJ. Test site A shows an average
energy loss that is 2.8% lower than that recorded at test site B. The deviation between the highest and
lowest losses for all run orders is 3.6% (run order 4 versus run order 7). The average energy loss for run
orders 1–8 is 4892.9 kJ, with the maximum deviation being 2.0% at run order 7, which shows optimal
case in terms of minimum energy loss (4794.2 kJ) among all run orders. Run order 1 represents the
road load measured by test body A, whereas run order 8 represents the road load measured by test
body B. The energy difference between the two is 3.2%. If we assume that the road load from run order
1 has been specified by the manufacturer, whereas the road load from run order 8 is from third-party
verification, they can be used for confirmatory testing to verify road load specifications provided by
the manufacturer afterward.
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ANOVA was conducted to determine the statistical significance based on energy loss due to the
road load in the FTP-75 mode for each run order. Judgment of significance for the key factors was
made using the F-test and p-value at a confidence level of 95%. If the p-value for a key factor is less than
0.05, then the factor is statistically significant. Initially, the main effect factors, the two-way interaction
term and the three-way interaction term, were both included in the model to perform ANOVA, but the
F- and p-values could not be calculated because the number of terms in the model was the same as the
number of degrees of freedom. This suggests that identification of significant factors using ANOVA is
impossible. The asterisks in Table 9 indicate this impossibility.

Table 9. ANOVA result including two-way and three-way interactions. DF: degree of freedom; SS:
sum of squares; MS: mean square; F: F-ratio; p: p-value.

Source DF SS MS F p

X1 1 37,565.4 37,565.4 * *
X2 1 317.5 317.5 * *
X3 1 115.5 115.5 * *
X1 ˆ X2 1 1658.9 1658.9 * *
X1 ˆ X3 1 369.9 369.9 * *
X2 ˆ X3 1 836.4 836.4 * *
X1 ˆ X2 ˆ X3 1 780.1 780.1 * *

To address this problem, we scaled down the model by performing pooling in which the three-way
interaction term was transferred to the error term with priority and then performed ANOVA again.
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Table 10 shows the results from the analysis. The results are not statistically significant because all
three factors have p-values greater than 0.05. This suggests that none of them have an impact on the
road load correlation.

Table 10. ANOVA results including only two-way interactions.

Source DF SS MS F p

X1 1 37,565.4 37,565.4 48.15 0.091
X2 1 317.5 317.5 0.41 0.638
X3 1 115.5 115.5 0.15 0.766

X1 ˆ X2 1 1658.9 1658.9 2.13 0.383
X1 ˆ X3 1 369.9 369.9 0.47 0.616
X2 ˆ X3 1 836.4 836.4 1.07 0.489

However, given the critical value of the t-statistic marked with a red line in Figure 6 showing
a Pareto chart, 12.71, it cannot be concluded that statistical judgment has been made at a confidence
level of 95%. This means that one cannot conclude that a factor is not necessarily significant just
because its p-value is greater than 0.05.
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Figure 6. Pareto chart with main factors and two-way interactions.

Likewise, we again performed pooling on two-way or higher interaction terms to scale down the
model to include only main effects before performing ANOVA to arrive at the results given in Table 11.
The results in Table 11 show that only the test site among the three main effect factors has a p-value
less than 0.05. This suggests that the test site is the only factor that has a significant influence over road
load correlation.

Table 11. ANOVA results with only main factors in the FTP-75 mode.

Source DF SS MS F p

X1 1 37,565.4 37,565.4 41.22 0.003
X2 1 317.5 317.5 0.35 0.587
X3 1 115.5 115.5 0.13 0.740

In general, if the critical value of the t-statistic is between 2 and 3 and a factor’s t value is greater
than the t-critical value, the factor is deemed to be significant. Among the standardized effects in
the Pareto chart in Figure 7, the standardized effect of the test site is 6.420, which is greater than the
t-critical value 2.776 marked with a red line. This confirms that the test site is the only significant factor.
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The first and second rounds of scaling-down of the model could be performed because the DOE
full factorial design features orthogonality, which makes it possible to estimate the effect of each factor
independently regardless of two-way and three-way interaction terms. This study has confirmed that
regarding the city mode (FTP-75), only the test site is significant among the three factors considered for
determination of road load correlation between test bodies. In addition, energy loss due to road load
under each set of test conditions during the FTP-75 test mode can be estimated using the regression
model below:

Energy loss during a run´ in the FTP´ 75 test mode “ 4892.93 ` 68.5250ˆ 1´ 6.30ˆ 2 ` 3.80ˆ 3

where significance level α = 0.05, R-Sq = 91.25%.
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Figure 7. Pareto chart with only main factors.

To confirm the validation of the result from the earlier analysis, the normal distribution,
consistency of variance, and randomness of time must be ascertained. To this end, a normal probability
plot, residuals versus fits, and residuals versus orders were reviewed in that order and produced
affirmative results. In particular, the p-value during the analysis of the normal probability plot was
0.792, which means that the normal distribution requirement is met.

Figure 8 shows the main effect plot in FTP-75 mode for the three key factors considered in this
study. This indicates that the slope of the test site is much greater than those of the test driver and test
devices with respect to the road load correlation test. This is consistent with the earlier result from
ANOVA that the test site is the only factor that has a significant influence over road load correlation.
In addition, a comparison of energy losses in FTP-75 mode from the two test bodies reveals that the
test site of test body A shows a lower road load value than that of test body B.
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Figure 8. Main effects plot for the FTP-75 test cycle.

ANOVA performed using energy loss during a run in the HWFET test mode reveals that the test
site is a key factor that has a significant impact, as it is with the FTP-75 mode. Table 12 shows the
ANOVA results.
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Table 12. ANOVA results with only main factors in HWFET mode.

Source DF SS MS F p

X1 1 56,515 56,515 50.39 0.002
X2 1 1474 1474 1.31 0.315
X3 1 2429 2429 2.17 0.215

4.2.2. Analysis of Road Load Correlation at Low, Medium, and High Speed Points

Figure 9 shows a comparison for the relative sizes of road load horsepower of each run order
compared with the average road load horsepower of run orders 1–8 at three speed points—20, 65, and
110 km/h, which represent the low-, medium-, and high-speed sections of coastdown, respectively, as
defined in J2263. In the same way, Figure 9 also includes a comparison of the relative scale of energy
losses due to road load in the FTP-75 and HWFET modes. The ranges of the relative sizes of road
load horsepower at the low-, medium- and high-speed points for run orders 1–8 are 96.7%–104.9%,
98.2%–101.6%, and 98%–101.7%, respectively, whereas the ranges of relative scale of energy loss in
FTP-75 mode and HWFET mode are 98.0%–101.6% and 98.1%–101.5%, respectively.
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Figure 10 shows the difference between the maximum and minimum relative scales of road load
for each of the run orders given in Figure 9 in the order of low speed, medium speed, high speed,
FTP-75 mode and HWFET mode. The levels of difference are approximately 8.2%, 3.4%, 3.7%, 3.6%,
and 3.4% from front to rear and, except for the section representing low speed, all sections show almost
the same difference between the maximum and minimum relative scales of road load. This result
suggests that the low-speed section produces a larger road load deviation than the medium speed, high
speed, FTP-75 mode, and HWFET mode. This indicates that a small amount of road load horsepower
in the low-speed section is more sensitive to the impact of a test deviation than larger horsepower in
the high-speed section.

Thus, third-party verification of the road load specifications provided by the manufacturer by
comparing energy differences based on the criteria for determining road load tolerance considering
the fuel economy test mode will require thorough consideration before deciding to use comparisons at
a specific speed point and making decisions on the range of tolerance.

Table 13 shows the ANOVA results as set out in Section 3.3 to identify key factors that affect the
road load correlation among test bodies by using road load horsepower calculated for the three speed
points of 20 km/h, 65 km/h, and 110 km/h representative of the low-, medium-, and high-speed
sections, respectively.
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Table 13. ANOVA result with only main factors at three speed points.

Speed Source DF SS MS F p

20 km/h
X1 1 0.0025597 0.0025597 7.31 0.054
X2 1 0.0003445 0.0003445 0.98 0.377
X3 1 0.0001593 0.0001593 0.45 0.537

65 km/h
X1 1 0.0442234 0.0442234 28.09 0.006
X2 1 0.0021320 0.0021320 1.35 0.309
X3 1 0.0007296 0.0007296 0.46 0.533

110 km/h
X1 1 0.409151 0.409151 47.31 0.002
X2 1 0.000005 0.000005 0.00 0.982
X3 1 0.031050 0.031050 3.59 0.131

5. Conclusions

For the speed representing the medium-speed section and the speed representing the high-speed
section, the test site was found to be the only significant factor, as in the results derived from the
FTP-75 and HWFET modes, and for the speed representing the low-speed section, no key factor was
found to have a significant difference at the 95% confidence interval. This can be attributed to the fact
that road load horsepower has a relatively large deviation in the low-speed section.

In this study, we calculated road load by identifying the test site, test driver and test devices
as key factors, which can be changed depending on who performs the road load correlation test,
and performing coastdown testing according to the order of orthogonal array based on DOE full
factorial design. For the statistical analysis of the results, we reviewed the criteria for determining the
energy-based road load correlation and analyzed key factors that may affect the road load correlation
among different test bodies to conclude the following:

(1) Review of five criteria for the determination of road load correlation reveals that energy deviation
occurred at a minimum of 10.8% to a maximum of 14.9% and that energy loss depends on which
criteria are applied.

(2) A comparison of the energy loss calculated considering the fuel economy mode and that calculated
by using constants derived from road load coefficients reveals that the losses are almost the same,
with the difference being 0.1% in the FTP-75 mode and 0.0% in the HWFET mode.

(3) The constants derived from the road load coefficients f 0 (N), f 1 (N/km), and f 2 (N/km2) are
17.4 km, 944.5 km2/h, and 58,910.7 km3/h2 in FTP-75 mode and 16.5 km, 1338.1 km2/h, and
110,677.6 km3/h2 in HWFET mode, respectively.

(4) Statistical analysis using energy losses calculated considering the fuel economy test modes reveals
that the test site is the only key factor that has an impact on the road load correlation for the
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tested vehicle in this study, and energy losses analysis for each run order in the FTP-75 mode
reveals that road condition of test site A is better than that of test site B.

(5) In the distribution of relative sizes of road load horsepower, the difference between the maximum
and minimum was approximately 8.2% at 20 km/h, which is indicative of the low-speed section
and is relatively large compared with its counterparts in the medium- and high-speed sections
that range from 3.3% to 3.7%.

(6) ANOVA was conducted to identify key factors that affect the road load correlation among test
bodies by using the road load horsepower calculated for the three speed points of 20 km/h,
65 km/h, and 110 km/h representing the low-, medium-, and high-speed sections, respectively,
reveals that the test site is the only significant key factor at the speeds representing medium- and
high-speed sections, whereas no key factor having any significant difference could be found for
the speed representing the low-speed section at a 95% confidence interval for the tested vehicle
in this study.

(7) Procedures were developed for analyzing key factors that have an impact on the road load
correlation by means of testing the road load correlation among test bodies, and the method of
using constants derived from road load coefficients considering the fuel economy test mode was
devised for use by a third party during the verification of road load specifications provided by
the manufacturer.
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