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Abstract- The purpose of real-life problems is often to be able to find less expensive 

and more effective ways of production without compromising product quality because 

companies must provide competitive advantage to maintain existence. In order to 

improve quality, design of experiment techniques is employed. RSM is a widely used 

technique thanks to its minimum number of experiment requirement. Hence it is used 

especially with continuous solution spaces and high-cost experimentations. Moreover, 

in most cases there is more than one response that firms must optimize simultaneously. 

For instance companies want to reduce the costs while improving product quality. 

Decision making is more difficult when conflicting objectives exist. For this reason 

multi response optimization is an important field to study. In this study, optimization of 

a manufacturing problem with two responses was carried out by the application of 

response surface methodology (RSM) and desirability function.  
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1. INTRODUCTION 

Customers tend to purchase quality products, timely and appropriate prices. In 

the face of the world's growing needs, firms must provide competitive advantages to 

maintain existence. Therefore, the purpose of real-life problems is often to be able to 

find less expensive and more effective ways of production without compromising on 

product quality. Companies and experts always try to achieve this goal by using 

statistical and mathematical optimization techniques. Optimization occurs in three 

different ways. Due to the nature of real life problems Nominal-the-best (N-type) is the 

most commonly used approach. The goal in N-type optimization is to achieve a certain 

target value within a predetermined specification for quality characteristic. Other types 

of optimizations are Smaller-the-better (S-type) and Larger-the-better (L-type). The 

aims of L-type and S-type approaches are to determine the optimal parameter levels to 

reach the greatest or smallest value of quality characteristics respectively. 

In practice, the values of the parameters may be continuous as well as discrete. 

While the objectives and process parameters are permanent, the solution space often 
does not have a linear structure, so the first order models are not enough to identify the 
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objective function curvatures and to create solutions. Thus second order models are 

needed. 

Second-order models have the ability to show, how to behave the quality 

characteristics of interest on a surface and are capable of determining the best parameter 

levels. When continuous process variables exist, RSM is an effective method to use 

with second order models based on statistical and mathematical techniques. Because of 

this property RSM is widely used in real life problems. Response surface methods have 

been used in applications such as product quality optimization [1; 3; 7; 8; 12], quality 

control [19], process optimization [16; 17; 18], ergonomic designs [9], structural 

reliability [10], and multidisciplinary design optimization problems [4; 11; 13]. 

2. RESPONSE SURFACE METHODOLOGY (RSM) 

Response surface methodology (RSM) is a collection of mathematical and 

statistical techniques that are useful for modeling and analysis in applications where a 

response of interest is influenced by several variables and the objective is to optimize 

this response [6]. 

RSM also has important applications in the design, development, and 

formulation of new products, as well as in improvement of existing product designs. 

RSM, first developed by Box and Wilson in 1951 has been successfully utilized in 

many industries for the design and improvement of systems where efficient design 

characteristics are sought [14]. Central Composite Design is the most widely used 

design technique in second order response surface models, thanks to provide scanning 

experimental region by a minimum number of experiments and rotatibility feature. In 

general, Response surface method consists of three phases [15]; 

Phase 1. Development of an experimental framework 

Phase 2. Create response functions – predict the parameters of the functions 

Phase 3. Optimization 

 

In the first phase, feature of the objective function to be used is determined and 

the appropriate experimental design is prepared which provides the ability to retain 
information necessary for the optimization of the problem and modeling of the objective 

function. In the second phase, response function which best expresses the data obtained 

from applied design is generated and the objective function coefficients are predicted. In 

the last phase, optimum parameter levels determined to obtain the optimal value of the 

objective function are created in the light of the experiment results.  

3. DESIRABILITY FUNCTION 

Problems in multi response form have more than one response to a given 

situation. There are various techniques to optimize multi response problems. One of the 

most used methods to solve multi response surface problems is the desirability function. 

Because, optimization of all responses simultaneously is possible by combining them 

into a single objective function, which basically represents the relationship of all 

responses that are to be optimized [5].  
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A desirability function, D(Y), is typically a (weighted) geometric mean of n 

individual desirability functions, di(yi) , one for each element,  yi  of  Y . Each di(yi) 

value is converted from associated response yi  and scaled to be between 0 and 1. With a 

value of zero indicating unacceptable quality and 1 point out that the quality of 

associated response is optimal. A general form of mathematical relationship of 

responses with desirability function is as follows; 

max𝐷(𝑌) = (𝑑1 𝑦1 
𝑘1 × 𝑑2 𝑦2 

𝑘2 × …  × 𝑑𝑛(𝑦𝑛)𝑘𝑛 )
1

 𝑘𝑖𝑖  

yi  denote the determined value of response i, di(yi) is the converted desirability 

value of i’th response and ki represent the relative importance of response i compared to 

others. If all responses have the same importance, then D(Y) become a geometric mean 

of all n transformed responses without weights. Overall desirability value can only be 

close to 1 if all of the responses are close to their optimal values, because D(Y) is a 

geometric mean of the di(yi)′s. Likewise, D(Y) will be small if any of the di(yi)′s are 

sufficiently close to zero. In consequence, to optimize responses simultaneously, one 

seeks to find values of x to maximize D(Y) [2]. 

While optimization occurs in three different ways, desirability functions can be 

determined for any three kinds of questions. Aksezer stated that, weighted linear 

transformations are flexible in determining the risk associated with deviations from 

desired response levels. Because of the responses that optimized in this problem are L-

type, a larger-the-better desirability function and transformation from Aksezer’s study 

are as follows [5]: 

If the response of interest is a kind of maximization problem, then the proposed 

individual larger-the-better desirability function is 

𝑑𝑖 𝑦𝑖 =  

0                        𝑦𝑖 < 𝐿𝑆𝐿

 
𝑦𝑖−𝐿𝑆𝐿

𝑈𝑆𝐿−𝐿𝑆𝐿
 
𝑠

    𝐿𝑆𝐿 ≤ 𝑦𝑖 ≤ 𝑈𝑆𝐿

1                       𝑦𝑖 > 𝑈𝑆𝐿

  

where LSL and USL are the lower and upper specification limits of the 

associated response yi . The weight exponent s specifies the form of the response within 

the range of interest. With this desirability function USL automatically becomes the 

desired maximum value. It is the practical upper bound which any value above this 

would not improve the response. 

(1) 

(2) 
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It can clearly be observed from the shape of individual desirability function for 

various settings of its corresponding parameters. For example; for user specified value 

s = 1 the desirability function increases linearly, for s < 1 the function is convex, and 

for s > 1  the function is concave. Note that weight s provide greater flexibility in 

assigning the individual desirability within the range of interest. While these weight 

coefficient denote the desired trend of the response within itself, importance coefficient 

of each response, ki ′s , associates the priority sequence of all responses so that a 

comparison between them is possible [5]. 

 

4. A CASE STUDY ON A MANUFACTURING FACTORY 

 

4.1. Development of Experimental Framework 
There are two responses in the problem. A central composite design application 

is carried out by taking three factors into account which affect responses. The design 

consists of a total of 20 experiments of which 6 center points, 8 factorial points, and 6 

axial points. Design matrix and experimental results are given in Table 1. Zeros indicate 

center points, -1 and 1 specify factorial points, -1,6818 and 1,6818 state axial points. 

Real values of the design factors are not given due to the principle of company 

information security. Therefore, the design matrix is expressed in encoded values.  
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Figure 1. Larger-The-Better Desirability Function 
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Table 1. Design matrix and values of quality characteristics 

Std  

Order 
A B C 

Response 1  

Run 1 

Response 1 

Run 2 

Response 2  

Run 1 

Response 2 

Run 2 

1 -1 -1 -1 205,577 206,251 109,611 111,017 

2 1 -1 -1 201,066 197,119 104,875 111,415 

3 -1 1 -1 210,313 208,396 118,438 118,150 

4 1 1 -1 200,728 203,660 120,211 117,166 

5 -1 -1 1 198,134 196,330 110,400 112,681 

6 1 -1 1 193,285 197,232 105,047 104,138 

7 -1 1 1 198,134 201,630 107,581 108,709 

8 1 1 1 199,938 202,419 109,385 113,332 

9 -1,6818 0 0 202,645 205,238 106,115 114,460 

10 1,6818 0 0 201,517 201,179 112,317 114,911 

11 0 -1,6818 0 199,036 202,870 106,453 108,709 

12 0 1,6818 0 203,321 203,209 115,588 110,626 

13 0 0 -1,6818 201,292 201,630 112,543 115,926 

14 0 0 1,6818 197,457 195,621 98,334 102,324 

15 0 0 0 188,925 191,668 105,036 106,341 

16 0 0 0 189,653 190,074 108,483 104,049 

17 0 0 0 193,172 186,068 105,777 109,273 

18 0 0 0 187,647 189,730 107,130 105,438 

19 0 0 0 190,127 186,444 106,994 103,995 

20 0 0 0 188,436 189,789 104,536 106,115 

 

  4.2. Create Response Functions – Predict the parameters of the functions 

Using the response data in Table 1, prediction functions for each response were 

generated via Design-Expert (www.statease.com). Table 2 and Table 3 show ANOVA 

analyses for both responses. Since the model p values are less than 0.05, both models 

suggested are significant according to a 95% confidence interval. Equation (3) and 

equation (4) are the quadratic surface functions for the Response 1 and Response 2, 

respectively.  

Table 2. ANOVA Results for Response 1 

 

Source 
Sum of 

Squares 
df Mean Square F Value 

p-value 

Prob > F 
Statement 

Model 1520,0993 7 217,1570 53,5151 < 0.0001 significant 

  A 52,9826 1 52,9826 13,0568 0.0010  

  B 52,8689 1 52,8689 13,0288 0.0010  

  C 143,3053 1 143,3053 35,3155 < 0.0001  

  AB 2,1477 1 2,1477 0,5086 0.4812 

   AC 44,2558 1 44,2558 10,4809 0.0029 

   BC 1,0282 1 1,0282 0,2435 0.6253 

   A
2
 600,3382 1 600,3382 147,9445 < 0.0001  

  B
2
 551,5400 1 551,5400 135,9189 < 0.0001  

  C
2
 309,1852 1 309,1852 76,1941 < 0.0001  

Residual 129,8516 32 4,0579    

Lack of Fit 39,9243 7 5,7035 1,5856 0.1858 not significant 

Pure Error 89,9272 25 3,5971    

Cor Total 1649,9508 39     
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Table 3. ANOVA Results for Response 2 

Source 
Sum of 

Squares 
df Mean Square F Value 

p-value 

Prob > F 
Statement 

Model 745,0482 9 82,7831 12,0770 < 0.0001 significant 

  A 0,0011 1 0,0011 0,0002 0.9901  

  B 142,4436 1 142,4436 20,7807 < 0.0001  

  C 273,1928 1 273,1928 39,8554 < 0.0001  

  AB 40,4814 1 40,4814 5,9057 0.0213 

   AC 0,9604 1 0,9604 0,1401 0.7108 

   BC 57,4034 1 57,4034 8,3744 0.0070 

   A
2
 158,2770 1 158,2770 23,0906 < 0.0001  

  B
2
 90,8405 1 90,8405 13,2525 0.0010  

  C
2
 13,8276 1 13,8276 2,0173 0.1658  

Residual 205,6381 30 6,8546 

  

 

Lack of Fit 70,0010 5 14,0002 2,5805 0.0515 not significant 

Pure Error 135,6371 25 5,4255 

  

 

Cor Total 950,6863 39 

   

 

𝑓1 𝑥 = 9582,91581 − 24,08191 ∗ 𝐴 − 2,32636 ∗ 𝐵 –  1,19363 ∗ 𝐶 + 0,0014546 ∗ 𝐴𝐶 +

0,017069 ∗ 𝐴2 + 0,0015275 ∗ 𝐵2 + 0,000643318 ∗ 𝐶2 

𝑓2 𝑥 = 5497,98285 − 13,2668 ∗ 𝐴 − 2,07842 ∗ 𝐵 –  0,33764 ∗ 𝐶 + 0,00181776 ∗ 𝐴𝐵 −

0,000496055 ∗ 𝐵𝐶 + 0,00850717 ∗ 𝐴2 + 0,000595901 ∗ 𝐵2 

  4.3. Optimization 

Firstly responses are optimized individually. Maximum value for Response 1 

is calculated 237,117. In this case, factors A and C stay at their minimum level, while 

factor B sets at maximum level. Maximization for Response 2 has resulted in 

136,909. In this instance, factors A and B set at their maximum level and C 

minimum level (Figure 2). Maximum value of overall desirability function for this 

two responses obtained was 0,87. As a result of interviews with company officials, it 

is understood that simultaneous optimization results provide the requirements. 

Therefore, the best parameter levels are determined for the process parameters as 

coded values. In this case factors A and C set at their minimum level (-1,6818) while 

factor B stays maximum level (1,6818) whereas Response 1 and Response 2 get the 

values of 237 and 127 respectively. 

(3) 

(4) 
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Figure 2. 3D Response Surface Plot for Desirability Function,  

Actual factor “C” at “-1.6818” level 

5. CONCLUSIONS 

 

The application of response surface methodology (RSM) for modeling and 

optimizing a manufacturing process was discussed. Central composite rotatable design 

was used to design an experimental plan for modeling the effects of three factors on two 

responses. A total of 40 experiments including center points were conducted. Results 

that obtained via designed experiments have entered software package design expert. 

Response functions were generated and coefficients were predicted by using 

experimental data. Finally the responses were optimized simultaneously thanks to 

desirability function. An overall desirability function value of 0,87 obtained. 

Optimization results were evaluated with company officials. Thanks to this project, 

company found a way to improve the quality of related products without incurring extra 

cost. The results show that RSM can be successfully applied to model and optimize real 

life problems. As future research, we suggest to apply RSM for modeling and 

optimization of other products of company simultaneously to improve overall product 

quality. 
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