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Abstract: More attention needs to be paid to efficiency in the use of forested land. This article is
devoted to the study of forested land use efficiency (FLUE) and its spatiotemporal differences in
China during the period from 1999 to 2010. The global generalized directional distance function
(GGDDF) and global Malmquist–Luenberger (GML) index models are used to measure and analyze
forested land use efficiency. The empirical results showed that forested land use efficiency continued
to increase during the study period. The FLUE of Shanghai was always highest, whereas Tibet,
Inner Mongolia, and Qinghai suffered the most inefficiency in forested land use. There were obvious
spatial differences in forested land use efficiency among the 31 provinces. Urbanization, economic
development context, and population density were the main factors influencing spatial differences in
forested land use efficiency. The growth in the non-radial Malmquist forested land performance index
(NMPFI) in the east was driven mainly by technological change, whereas the growth in the central
region was mostly derived from progress in efficiency change. For the western region, the change in
the productivity of forested land was the result of the interactive effect between technological change
and effect change, and only in the western region did an absolute β-convergence exist.

Keywords: forested land use efficiency; global generalized directional distance function (GGDDF);
global Malmquist–Luenberger (GML index); China

1. Introduction

As one of the dominant land resources in China, forested land covers approximately 305.90 million
hectares, accounting for 31.75% of the land area in China according to the Seventh National Forest
Resource Inventory [1]. In addition to economic output, forested land delivers a diversity of ecological
services ranging from climate regulation, soil erosion control, and biodiversity maintenance to water
quality amelioration and recreational opportunity supply [2,3] that are related to the ecological security
of the state. In the early 1980s, the opening of commercial timber markets brought an increased
annual rate of commercial harvesting; this growth rate was often greater than the speed of natural
forest regrowth by the mid-1980s [4]. In recent decades, urbanization—the most powerful driver
of world development—has aggravated the forestland conversion and increased the demand for
forestry [2,5], which is attributed to forest fragmentation and loss. A series of floods occurred in
the 1990s, which spurred the implementation of the Natural Forest Protection Program (NEPP, in 1998)
and the Sloping Land Conversion Program (SLCP, in 1999) to protect natural forests and the fragile
ecological zone [4]. Even so, forest fragmentation and loss due to historical reasons are still the current
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context for forested land [6]. However, forest fragmentation and loss not only destroy ecological
functions but also threaten forestry development. On the one hand, forest loss directly reduces the
quantity and quality of forest resources and forestry products, whereas on the other hand, forest
landscape pattern changes (e.g., fragmentation, isolation) increase the difficulty and cost of forestry
management; that is to say, these changes will influence forested land use efficiency. Simply, forested
land use efficiency can be defined as follows: under the premise of rational use of forested land
resources, the quantity and quality of forested outputs can be maximized. Hence, it is necessary to
understand the current situation and impact mechanism of forested land use efficiency in China.

2. Literature Review

Forestry efficiency research has been conducted by a large number of scholars. LeBel and Stuart [7]
used the data envelopment analysis (DEA) model to measure and analyze the input–output efficiency
of 23 woodcutters from 1988 to 1994, marking the earliest research in forestry efficiency. Differing
from the research objective of LeBel and Stuart, Viitala and Hänninen [8] used the same model to
analyze the efficiencies of 19 public forestry organizations in Finland and concluded that the efficiency
of the 19 public forestry organizations showed obvious discrepancies and that investment could
save at least 20% through more efficient management. Since then, due to the popularity of the DEA
model, many studies of forestry efficiency have been conducted. For example, Lee [9] measured the
relative efficiency of global forest and paper companies, and Salehirad and Sowlati [10] analyzed the
efficiency of the wood industry in Canada. In China, research in forestry efficiency started relatively
late. In the beginning, most researchers used qualitative research methods to express their points of
view. Recently, with the development of computer technology, many scholars have used empirical
analysis methods to study the input–output efficiency of forestry. For instance, Lai and Zhang [11]
used the DEA model to measure, sort, and discuss the input–output efficiency of forestry for 21 cities in
Guangdong, China. They used the super-efficiency DEA model to evaluate multiple decision-making
units at the same time [12]. Shi and Zhang [13] used the DEA model to analyze collective forestland
management efficiency from the perspective of farmers, which is different than the management
efficiency of state-owned forestland. Li et al. [14] and Tian and Xu [15] used the same model to analyze
the forestry efficiency of China; the former measured efficiency in the year 2006, whereas the latter
measured efficiency for the period from 1993 to 2010 and analyzed the changing trends.

Although studies in the area of forestry efficiency are plentiful, there is little research that considers
an input factor as a research object to analyze its efficiency. Measuring the efficiency of a certain input
factor can help us further deepen our understanding of comprehensive utilization efficiency. Research
into forested land use efficiency seems more meaningful than research on capital use efficiency and
labor use efficiency in forestry. In 1993, the International Geosphere-Biosphere Programme (IGBP) and
the International Human Dimensions Programme on Global Environmental Change (IHDP) developed
a scientific research plan for Land Use/Land Cover Changes (LUCC) and established this plan as
the core content of global change research [16–18]. On this basis, the Global Land Project (GLP) was
started in 2005, with the measurement, simulation, and understanding of land use and change from
the perspective of the human social–ecological coupling system as its core objectives [19,20]. What is
more, the challenges of forested land use in China need to be visualized and attempts should be made
to solve them. Hence, the study of forested land use efficiency has special significance to regions and
even to the whole world, which not only helps to determine the status quo of the input and output of
forested land, but also provides a basis for decisions regarding more effective use of forested land.

By examining the literature, we concluded that the reasons few people study the utilization
efficiency of forested land are twofold: (1) forested land use efficiency has not attracted much attention
and (2) the commonly used method in the study of forestry efficiency is the DEA model or the
super-efficiency DEA model. This type of model cannot provide an effective way to measure the
utilization efficiency of a certain input factor; it measures only comprehensive utilization efficiency.
However, it is still necessary to introduce the DEA model, as it is the basis for follow-up efficiency
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models. The data envelopment analysis (DEA) model is an effective evaluation method for the same
type of unit because it uses the observed values of multiple inputs and multiple outputs. A meaningful
conclusion of the DEA model is that there will always be a certain gap between actual resource
allocation and optimal resource allocation, and this gap can be called the slack variable, expressed as
an input excess or output shortage of the observation [21]. One problem of the traditional DEA model is
that the slack variables are not considered in the objective function, which can lead to inaccurate results
in efficiency evaluations [22]. Tone [23] has proposed a non-radial and nonparametric slacks-based
measure (SBM) model to solve this defect. The SBM model can comprehensively consider inputs and
outputs for each decision-making unit, and slack variables can be placed directly into the objective
function. The SBM model has been widely adopted. For example, Yang et al. [24], Pan and Ying [25],
Yang et al. [26], and Xie and Wang [21] introduced the SBM-undesirable model to analyze and evaluate
highway transportation efficiency, agricultural eco-efficiency, urban land use efficiency, and urban
industrial land use efficiency, respectively. Recently, the efficiency measurement model has evolved into
a sequential generalized directional distance function (SGDDF) for the purpose of analyzing dynamic
changes in the performance of different resources [27]. The global generalized directional distance
function (GGDDF) model—an improvement to the SGDDF model—performs efficiency evaluation
under the global benchmark technology. Xie et al. [28] used the model to analyze the dynamic changes
of industrial land green use efficiency in China. In addition, the Malmquist–Luenberger (ML) index
is used to measure total factor productivity (TFP) for some resources or industries pertaining to the
dynamic analysis [22,29–31]. Wang et al. [32] have extended the model with the global ML (GML)
index, which analyzes the productivity of China from the point of view of energy, the environment,
and economics.

This paper aims to apply GGDDF and GML models to analyze the dynamic changes in forested
land use efficiency (FLUE) in China. The total factor index can be referred to as the non-radial
Malmquist forested land performance index (NMFLPI). We then explore the main contributors to
the growth in the NMFLPI by decomposing the FLUE into two indices, i.e., efficiency change (EC)
and technological change (TC). Lastly, the factors influencing spatiotemporal differences in forested
land use efficiency and convergence patterns among regions are explored to further deepen our
understanding of forested land use efficiency in China.

Therefore, this paper makes two main contributions to the relevant studies. First, we computed
the FLUE for each province in China under a global environmental technology framework and
analyzed their spatiotemporal differences. Then, we determined the main factors that influence the
spatiotemporal differences in forested land use efficiency. Second, we computed the NMFLPI to
measure the dynamic changes in the FLUE and determine which NMFLPI decomposition index, i.e.,
EC or TC, is the main contributor to the growth of the NMFLPI.

The remainder of this paper is organized as follows: Section 3 introduces the methods and data;
Section 4 shows the results of the empirical analysis, and Section 5 concludes the paper and presents
the discussion.

3. Methods and Data

3.1. Non-Radial Directional Distance Function (NDDF)

We assume that there are N provinces in our study and that each city has M inputs (x) to produce
J desirable outputs (y) and K undesirable outputs (b), with the matrices of inputs, desirable outputs,
and undesirable outputs in city n as follows [22,33–35]:

X “ rx11, ¨ ¨ ¨ , xMns P RMˆn,

Y “ ry11, ¨ ¨ ¨ , yMns P RJˆn,

B “ rb11, ¨ ¨ ¨ , bMns P RKˆn



Sustainability 2016, 8, 772 4 of 17

where X > 0, Y > 0 and B > 0. The production possibility set T(x) can be expressed as follows:

T pxq “ tpx, y, bq| x can produce py, bq , x ě Xλ, y ď Yλ, b “ Bλ, λ ě 0u (1)

where the production possibility set T(x) is assumed to satisfy the production function theory [23],
and a benchmark for global technology can be expressed as the accumulation of each period: that
is, TG “ T1 Y T2 Y ¨ ¨ ¨ Y TN . In addition, the traditional radial DDF approach always assumes that
the linear programming solution allows both inputs and outputs to expand or contract, proportional
to the original inputs and outputs, which is almost impossible in real production. To overcome this
shortcoming, a non-radial DDF approach was developed and has become widely used in studies of
resource efficiency evaluation. Moreover, wT “ px, y, bqT in Equation (3) is the standard weight matrix
of inputs and outputs, and g “

`

´gx, gy ´ gb
˘

are the direction vectors. Φ “ px, y, bq represents the
adjustment ratios of all the inputs and outputs that are nonnegative numbers. The parameter diag is
the diagonal matrix. Thus, the adjustment ratios of all the inputs and outputs can be different, which
is more likely to reflect the actual production reality. Equation (4) represents the efficiency evaluation
model under the contemporaneous benchmark technology set, and Equation (5) is under the global
benchmark technology set.

Ñ

D px, y, b; gq “ sup tϕ : ppx, y, bq ` gˆ ϕq P Tu (2)

Ñ

D px, y, b; gq “ sup
!

wT ϕ : ppx, y, bq ` gˆ diag pϕqq P T
)

(3)

Ñ

D “ max
`

α1 ` ¨ ¨ ¨ ` αi ` β1 ` ¨ ¨ ¨ ` β j ` γ1 ` ¨ ¨ ¨ ` γk
˘
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1` β jgj
˘

YJ0

N
ř

n“1
λnbkn “ p1´ γkgkq BK0

(4)

and λ ě 0, αm ě 0, β j ě 0, γk ě 0, m “ 1, 2, ¨ ¨ ¨ , M; j “ 1, 2, ¨ ¨ ¨ , J; k “ 1, 2, ¨ ¨ ¨ , K, where the
superscripts m, j, and k, respectively, represent the mth input, the jth desirable output, and the kth
undesirable output of the province under evaluation. The parameters αi,, γk, and β j are the adjustment
ratios of the inputs, desirable outputs, and undesirable outputs, respectively, and λ is a nonnegative
vector. The superscripts t and n refer to the year t in the study period and the number of provinces in
the sample. The province is located on the frontier of production if αi,, γk, and β j have zero values.
In addition, we can use the global generalized directional distance function (GGDDF) model to perform
the study under the global benchmark technology set, which is expressed in Equation (5), and the
solutions of different years can be compared with each other.

Ñ

D “ max
`
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(5)

and λt ě 0, αm ě 0, β j ě 0, γk ě 0, m “ 1, 2, ¨ ¨ ¨ , M; j “ 1, 2, ¨ ¨ ¨ , J; k “ 1, 2, ¨ ¨ ¨ , K, where the
meanings of the superscripts are the same as in Equation (4).
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In this paper, we assume that the inputs are forested land, labor, and fixed asset investments in
forested land. In forestry, there is no undesirable output, so the output is forestry GDP, which is a
desirable output. According to previous studies [22,33,34], we set the weight vectors of inputs and
output as (1/6, 1/6, 1/6, 1/2), and the direction vector as (1, 1). Thus, forested land use efficiency
(FLUE) can be expressed as follows:

FLUE “
p1´ αlandq
´

1` βgdp

¯ (6)

where αland and βgdp are the adjustment ratios of the corresponding indicators. The FLUE is obviously
between 0 and 1, where forested land is efficiently used when FLUE is equal to 1 and is inefficiently
used when FLUE is less than 1.

3.2. Global Malmquist Index for Measuring Forested Land Productivity Growth

The traditional Malmquist–Luenberger (ML) index faces potential limitations of linear
programming that cannot provide effective solutions when dealing with extreme data, and it does not
have cyclicity or transitivity [22]. In response, Oh [35] combined the concept of productivity and the
directional distance function, constructing a global Malmquist–Luenberger (GML) index to replace the
traditional ML index. Here, we adopted this approach to measuring the dynamic changes of FLUE by
using the GML index, which can be called the non-radial Malmquist forested land performance index
(NMFLPI), as follows:

NMFPI “
´

LDt,t`1, LBt,t`1, Kt,t`1, GDPt,t`1
¯

“
FLUE

`

LDt`1, LBt`1, Kt`1, GDPt`1˘

FLUE pLDt, LBt, Kt, GDPtq
(7)

where the FLUEG `

.t
˘

is given by solving the model in Equation (6), and if the NMFLPI index is greater
than, equal to, or less than 1, these situations represent the FLUE of the province under estimation
enjoying positive progress, not changing, or suffering a deterioration, respectively, during the time t
and t + 1. The NMFLPI index can be decomposed as follows:

NMFPI “
`

LDt,t`1, LBt,t`1, Kt,t`1, GDPt,t`1˘ “
FLUEGp.t`1q

FLUEGp.tq “
FLUEGp.t`1q{CRS

FLUEGp.tq{CRS

“

FLUEGp.t`1q{CRS

FLUEDp.t`1q{CRS

FLUEGp.tq{CRS

FLUEDp.tq{CRS

ˆ
FLUEDp.t`1q{CRS

FLUEDp.tq{CRS “ TCt,t`1 ˆ ECt,t`1
(8)

where CRS implies constant returns to scale and variable returns to scale. It is CRS when the constraint
of

ř N
i“1λt “ 1 is imposed in Equations (7) and (8). The superscripts G and D relate to the solutions

under the global benchmark technology set TG and the contemporaneous benchmark technology set
TD, respectively. Additionally, technological change (TC) refers to the shift of the production frontier,
and a value of TC greater than, equal to, or less than 1 indicates that production technology is enjoying
progress, is not changing, or is suffering deterioration, respectively. The efficiency change (EC), which
occurs on the same production frontier, has values greater than, equal to, or less than 1, indicating that
the technical efficiency has gained, has not changed, or has been lost, respectively.

3.3. Data

We constructed an indicator system for the evaluation of FLUE, as has been performed in many
previous studies [29,33,34], using the following input and output indicators. (1) Input indicators:
The factors include mainly land, capital, and labor in accordance with production function theory,
and they refer to the area of forested land and annual fixed asset investments in forestry and forestry
workers, respectively; (2) Output: The forestry GDP was selected as the output in the process of forestry
production according previous literature [29,33,34]. The forestry GDP and fixed asset investments in
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forestry have, respectively, conversed by the GDP minus index and price index of fixed assets, taking
the year of 1999 as the base. The above data come from the China Statistical Yearbook and the China
Forestry Statistical Yearbook from 2000 to 2011 [36].

4. Empirical Results

4.1. FLUE

In this section, we used Equation (5) to compute FLUEs for China and the 31 provinces during
the study period. Figure 1 shows the changing trend of FLUE for China from 1999 to 2010. During the
period from 1999 to 2008, FLUE in China experienced slow fluctuating growth. The lowest efficiency
appeared in 2000 with a value of 0.09, and the highest efficiency appeared in 2007 with a value of 0.19.
The average annual growth rate was 0.138. While the FLUE in China rose in a straight line during
the period after 2008, the highest FLUE appeared in 2010 with a value of 0.40. The annual growth
rate was 0.325 during the period from 2008 to 2010. The main reason for this changing trend in
FLUE may be that forestry in the state maintained economic growth mainly through increases in
fixed asset investment before 2008 [37], which is shown in Figure 2. However, in 2008, the Central
Committee of the Communist Party of China (CPC) and the State Council promulgated the “opinions
on comprehensively promoting the reform of collective forest right system” [38], which has allowed
the contractual management rights of collective forest land and forest ownership to actually reach the
farmers, established the independent position of peasant management, and achieved a great liberation
of the rural productive forces. This policy greatly improved farmers’ enthusiasm for afforestation,
forest protection, and silviculture. Obvious evidence can be found in Figure 2, which illustrates a case
in which forestry practitioners and the area of forested land have not changed very much, and the
investment of fixed assets in forested land has declined. Although the growth trend of FLUE in China
is obvious during the 1999–2010 period, the efficiency values were all less than 1; that is to say, forested
land use in China was lacking in efficiency during the time of the study.
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Figure 3 shows the FLUEs of the 31 provinces in representative years during the study period.
In 1999, the FLUE values for Shanghai and Tianjin reached 1, which indicates that their forested land
use was at the forefront of production technology. The remaining provinces were in an inefficient
state, especially Tibet, Inner Mongolia and Qinghai, which had FLUE values near zero. In 2003,
the overall efficiency in China improved slightly. Shanghai was still at the forefront of production
technology, whereas the FLUEs of Tibet, Inner Mongolia, and Qinghai remained in an inefficient state.
In 2007, the growth trend of FLUE in China continued, especially in Liaoning, Jilin, Heilongjiang,
Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong, Guangxi,
and Hainan. Shanghai still had the highest efficiency in forested land use, whereas the FLUEs of
Tibet, Inner Mongolia, and Qinghai were still in an inefficient state. In 2010, there were obvious
improvements in FLUE: the number of provinces with FLUE values equal to 1 increased to 6;
the remaining provinces continued to increase their values, with the exception of Tibet, Inner Mongolia,
and Qinghai. In summary, the FLUE of Shanghai was always highest, whereas Tibet, Inner Mongolia,
and Qinghai suffered the most inefficiency in forested land use with efficiency values near zero,
indicating that forested land use cannot produce enough economic output.
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Figure 3. The forested land use efficiency (FLUE) of 31 provinces in China from 1999 to 2010.
Abbreviation: Beijing (BJ), Tianjin (TJ), Hebei (HEB), Shanxi (SX), Inner Mongolia (INN), Liaoning
(LN), Jilin (JL), Heilongjiang (HLJ), Shanghai (SH), Jiangsu (JS), Zhejiang (ZJ), Anhui (AH), Fujian (FJ),
Jiangxi (JX), Shandong (SD), Henan (HN), Hubei (HUB), Hunan (HUN), Guangdong (GD), Guangxi
(GX), Hainan (HAN), Chongqing (CQ), Sichuan (SC), Guizhou (GZ), Yunnan (YN), Tibet (TIB), Shannxi
(SAX), Gansu (GS), Qinghai (QH), Ningxia (NX), Xinjiang (XJ).

To discover the spatiotemporal difference in the FLUEs of the 31 provinces, we used the Natural
Breaks tool in Arcgis10.2 software (ESRI, Redlands, CA, USA) to classify their FLUEs. The results are
shown in Figure 4.

The spatiotemporal pattern change of forested land use efficiency (FLUE) in China is displayed
in Figure 4. In 1999, there were two eastern coastal municipalities (Tianjin and Shanghai) with FLUE
values greater than 0.3, three eastern coastal provinces (Shandong, Zhejiang, and Jiangsu) with FLUE
value between 0.1 and 0.3 and the remaining provinces had FLUE values of less than 0.1. In 2003,
the spatiotemporal pattern changed slightly, the FLUEs of Shanghai and Jiangsu were the highest and
the number of provinces with FLUE values between 0.1 and 0.3 increased to 6. In 2007, the number
of provinces with FLUE value greater than 0.1 increased to 18, the provinces with FLUE values
greater than 0.3 were mainly distributed in southeastern coast China, the provinces with FLUE values
between 0.1 and 0.3 contained the 6 provinces of Mid-China, two northeastern provinces, a province
on the North China Plain, and a province in southwestern China. In 2010, the trend of growth in FLUE
continued to extend to the west, which is highlighted by the expanded number of provinces with FLUE
values greater than 0.3. On the whole, forested land use efficiency in China shows obvious regional
differences, presenting a declining trend from east to west with the exception of several provinces.
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4.2. Influential Factors in Regional FLUE Differences

It is easy to associate regional socioeconomic differentiation and regional climate differences with
the obvious regional differences of FLUE. Hence, we selected potential explanatory variables based
on a literature review of each category (demography, economy, societies and arctic climate) [39–41].
Three variables were selected to indicate demography: total population, population density, and
nonagricultural population proportion. Gross domestic product, total forestry output, the proportion
of secondary industry, the proportion of tertiary industry, and tourism revenue in forestry were selected
for economy. Four variables were selected to indicate social activities: foreign investment in forestry,
road mileage, railway mileage, and number of employees in forestry [41]. Two variables were selected
to indicate arctic climate. A correlation analysis and principal component analysis were also applied
to select the most important indicator. The final set included nine indicators: population density
(PD), proportion of nonagricultural population (PNAP), gross domestic product per capita (PGDP),
total forestry output (TFO), investment in fixed assets (IFA), road mileage (RM), land urbanization rate
(LUR), annual rainfall (AR), and annual average temperature (AAT). Moreover, the Moran’s I index [42]
was calculated to examine the autocorrelation of the variables. The results showed that the global
Moran’s I values were not statistically significant, indicating that no spatial autocorrelation exists.
There will be a very natural difference among different cross-sectional data and different individual
values, so we built a fixed effects regression model based on panel data. The model is as follows:

ln yit “ αit ` β1ln IFAit ` β2ln TFOit ` β3PGDPit ` β4ln PDit ` β5 ARit ` β6 AATIT
` β7RMit ` β8PNAP` β9LURit ` µit

(9)

where i and t (t = 1999, . . . , 2010) represent province i and year t, respectively. The term αit is a constant,
and µit is the random error term. The term yit is the FLUE value for province i. The regression result is
shown in Table 1.
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Table 1. Result of regression. *** p < 0.001, ** p < 0.05, * p < 0.01.

Coefficient p Value

Ln IFA ´0.0419841 0.399
Ln TFO 0.0338353 0.477
PGDP 0.0021411 0.092 *
Ln PD 0.3525266 0.041 **

AR 0.368872 0.141
AAT 0.0235676 0.251
RM ´0.61059 0.426

PNAP 0.024445 0.014 **
LUR 0.0303061 0.000 ***

adjusted R-squared = 0.6768

The adjusted R-squared is 0.6768, which indicates that the results explain the model reasonably
well. From the results of the p value, we know that the coefficients of the land urbanization rate (LUR)
and the proportion of nonagricultural population (PNAP) are statistically significant. The positive
coefficients imply that the land urbanization rate and proportion of nonagricultural population had
a significant positive impact on FLUE in China. The land urbanization rate and the proportion of
nonagricultural population measure urbanization from two different perspectives; the common results
of the improvement of the two indicators are increasing demand in all types of products, and forestry
products are no exception. Population density (PD) was also an important factor influencing forested
land use efficiency; similar to LUR and PNAP, population density had an impact on the demand
for forestry products. The coefficient of gross domestic product per capita (PGDP) is statistically
significant at the 10% level, the positive coefficient indicates that economic development will promote
the efficiency. We did not find specific evidence that climate factors have a significant impact on the
spatial differentiation of forested land use efficiency in China from the results of this regression.

4.3. NMPFI and Its Decompositions

We know that there was an obvious spatial differentiation of forested land use efficiency in China.
According to geographical closeness and forestry development, we divided the 31 provinces across
China into three regions: eastern (E), central (C) and western (W). The eastern region includes three
municipalities (Beijing, Tianjing, and Shanghai) and eight coastal provinces (Hebei, Liaoning, Jiangsu,
Zhejiang, Fujian, Shandong, Guangdong, and Hainan). This region enjoys advanced production
technology and well-developed transportation. The central region consists of eight inland provinces
(Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, and Hunan); this region is famous for its high
resource consumption. The western region consists of one municipality (Chongqing) and eleven inland
provinces and autonomous regions (Inner Mongolia, Xinjiang, Gansu, Qinghai, Shaanxi, Ningxia,
Sichuan, Yunnan, Guizhou, Guangxi, and Tibet). This region has poor economic development.

According to Equations (7) and (8), we computed the NMPFI and its decompositions of forested
land productivity. Figure 5 shows the trends of the NMPFI and its decompositions in China during the
study period. We find that the NMPFIs in China were always above 1, indicating that the productivity
of forested land in China was always increasing. There were three peak values, corresponding to the
period from 2001 to 2002, the period from 2005 to 2006, and the period from 2009 to 2010, and a valley
value corresponding to the period from 2007 to 2008. The NMPFI grew rapidly after the year 2008,
which was consistent with the time of introduction the policy of “opinions on comprehensively
promoting the reform of collective forest right system” [38]. During the period of 1999–2007, the trend
for EC was relatively stable, and the values were always above 1, indicating that the efficiency change
was progressing. During the 2007–2008 period, the EC was less than 1, indicating that the efficiency
change suffered deterioration. After 2008, the EC rocketed, and the value of EC reached 1.60 during the
period from 2009 to 2010. The trend for TC was always above 1, indicating that technological change
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was progressing during the study period. We find that the change in forested land productivity in the
whole country was the interactive effect of these two decompositions.
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From Figure 6, we know that the trend in the NMPFI in the eastern region was similar to the trend
in China, except for the period from 1999 to 2000. During the 1999–2000 period, the NMPFI of the
eastern region was less than 1, indicating that its forested land productivity had suffered deterioration.
Combining the results of Figures 7 and 8 indicates that the changes in the productivity of the forested
land in the eastern region derived mostly from the progress of technology change. The NMPFIs in
the central region were always above 1. During the period from 2008 to 2009, the NMPFI reached 2.6,
and the progress of forested land productivity in the central region derived mostly from the progress of
the efficiency change shown in Figures 7 and 8, which was different from the eastern region. The trend
of the NMPFI in the western region shows larger fluctuations. Its valley value appeared in the period
from 2004 to 2005, and the NMPFI was less than 1, indicating that the forested land productivity
suffered deterioration. The peak value appeared in the 2005–2006 period. Combining the results of
Figures 6 and 7 indicates that the change in the productivity of the forested land in the western region
was the interactive effect of these two decompositions.

4.4. Convergences

From the previous analysis, we know that there were large differences in the evolving trends
among the three regions. Will the difference between the regions be reduced over time? Do the
regions show the same convergence pattern? The concept of convergence originates from neoclassical
economics, which applies this tool to analyze differences in per capita income among regions [43]. Here,
we used the method to analyze the disparity of the NMPFIs among the three regions. The convergence
usually contains σ-convergence and β-convergence, and β-convergence also includes two types of
convergence called absolute convergence and conditional convergence. The σ-convergence exists
if there is a clear decline in the standard deviation over time, which indicates that the NMPFI gap
among regions has gradually been narrowing. Absolute β-convergence exists if the coefficient of
β is significantly negative, which implies that the efficiencies for all provinces in a certain region
converge to the same steady state. In addition, conditional β-convergence exists if the coefficient of β
is significantly negative, which implies that the efficiencies of provinces in different regions converge
to their own steady state [44]. Their formulas are as follows:

σ-convergence:

σt “

g

f

f
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ÿ
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absolute β-convergence:
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conditional β-convergence:

1
T

ln
ˆ

Yi,t`1

Yi,t

˙

“ α1 ` β1lnYi,t `

J
ÿ

j“1

γjx
j
i,t ` εi,t (12)

where α0 and α1 are constants and i = 1, . . . , n represents the provinces. Y represents the NMPFI, and
xj

i,t is the jth influencing factors of the ith province in period t. T is the study period, and εi,t is the
stochastic error.

4.4.1. σ-Convergence

The result of σ-convergence is shown in Figure 9. We find that σ-convergence did not exist in the
three regions because the NMPFI gaps in all the regions have fluctuated continuously in the figure,
indicating that the gaps did not narrow in the study period. The standard deviation of the NMPFI in
the western region ranked first with 0.70, and the central region ranked last with 0.55. These results
indicate that the NMPFI gap among provinces in the western region was greater than the gap in
other regions.
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4.4.2. Absolute β-Convergence

According to Equation (11), we obtained the result of absolute β-convergence as shown in Table 2.
The β-convergence model fits well in the western region, where its coefficient β is significantly negative,
indicating that absolute β-convergence existed in the western region: the NMPFI values of all the
provinces in the western region converged to the same steady state. The coefficient β of the eastern
region is also significantly negative, but the adjusted R-squared is not high, therefore, the model cannot
fit well. Because the coefficient β of the central region is not statistically significant and the adjusted
R-squared is very low, absolute β-convergence did not exist in the region; that is to say, the NMPFI of
all of the provinces in the central region did not converge to the same steady state.

Table 2. Absolute β-convergence results for the NMPFI. ** p < 0.05, * p < 0.01.

Eastern Region Central Region Western Region

constant
0.046 * 0.043 * 0.039 *
(2.862) (2.492) (3.434)

lnYi,0
´0.078 * ´0.096 ´0.113 **
(´2.72) (´0.679) (´4.869)

Adjusted R-squared 0.451 0.071 0.703
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4.4.3. Conditional β-Convergence

According to Equation (12), we obtained the result of conditional β-convergence, shown in Table 3.
We find that the values of coefficient β in the three regions are all significantly negative, whereas the
adjusted R-squared values are not high; thus so that they cannot explain the actual situation well.

Table 3. Conditional β-convergence results for the NMPFI. *** p < 0.001, * p < 0.01.

Eastern Region Central Region Western Region

constant
0.016 * 0.021 *** 0.017 *
(3.791) (4.610) (2.391)

lnYi,0
´0.109 *** ´0.108 *** ´0.091 ***
(´12.603) (´10.060) (´10.870)

Adjusted R-squared 0.595 0.564 0.500

5. Discussion and Conclusions

5.1. Conclusions

This paper used the GGDDF model to measure the forested land use efficiency in China and 31
provinces during the period from 1999 to 2010. In this country, forested land use efficiency continued
to increase during the study period. The FLUE of Shanghai was always highest, whereas Tibet,
Inner Mongolia, and Qinghai suffered the most inefficiency in forested land use. From the spatial
perspective, a declining trend was observed from east to west, with the exception of several provinces.
There were obvious spatial differences in forested land use efficiency among the 31 provinces.
According to the fixed effects regression model based on panel data—which considers population
density (PD), proportion of non-agricultural population (PNAP), gross domestic product per capita
(PGDP), total forestry output (TFO), investment in fixed assets (IFA), road mileage (RM), land
urbanization rate (LUR), annual rainfall (AR), and annual average temperature (AAT) as independent
variables—urbanization, the economic development situation, and population density were the main
influencing factors in spatial differences in forested land use efficiency.

Because of the obvious spatial differences in the forested land use efficiency among the provinces,
we divided them into three regions (eastern region, central region, and western region). Then, by using
the GML model, we analyzed forested land performance and its decompositions for China and the
three regions. For the eastern region, the NMPFIs were always above 1 after 2000, indicating that the
productivity of forested land was always increasing, and the change in the productivity of forested
land in the eastern region derived mostly from the progress of technological change. For the central
region, the NMPFIs were always above 1, and the progress in forested land productivity derived
mostly from the progress of efficiency change. For the western region, the trend in the NMPFI had
larger fluctuations, and the change in the productivity of forested land in the western region was the
interactive effect of these two decompositions. Finally, the results of convergence tell us that only in
the western region did an absolute β-convergence exist; that is to say, the NMPFI of all the provinces
in the western region converged to the same steady state.

5.2. Discussion

In this study, we attempted to calculate the efficiency of a specific input (forested land) and to
explore the mechanisms that influence spatiotemporal changes to this input. However, there are still
some limitations. First, we adopted only an 11-year sample period because of the unavailability of
data. We will try to obtain more data to extend the study period to produce more convincing and
meaningful results. Second, some factors that play important roles in determining the forested land
use efficiency were not considered in this paper for the same reason. Third, economic externalities
are not considered in the econometric model, although forested land not only provides economic
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outputs but also ecosystem services. However, economic efficiency was the main research object in this
paper; therefore, we ignored the ecological efficiency. Last, although this paper attempted to explore
forested land use efficiency and its spatiotemporal patterns, uncertainty may still exist; thus, methods
for verifying our evaluation will be considered in future work. We will make improvements to these
limitations in future studies.
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