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Abstract: The movement and transport of people and goods is spatial by its very nature. Thus,
geospatial fundamentals of transport systems need to be adequately considered in transport models.
Until recently, this was not always the case. Instead, transport research and geography evolved widely
independently in domain silos. However, driven by recent conceptual, methodological and technical
developments, the need for an integrated approach is obvious. This paper attempts to outline the
potential of Geographical Information Systems (GIS) for transport modeling. We identify three fields
of transport modeling where the spatial perspective can significantly contribute to a more efficient
modeling process and more reliable model results, namely, geospatial data, disaggregated transport
models and the role of geo-visualization. For these three fields, available findings from various
domains are compiled, before open aspects are formulated as research directions, with exemplary
research questions. The overall aim of this paper is to strengthen the spatial perspective in transport
modeling and to call for a further integration of GIS in the domain of transport modeling.
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1. Introduction

Transport is a function of moving objects (e.g., people or goods) in the two dimensions of physical
time and space. Although the spatial nature of mobility is obvious, it is often neglected in transport
modeling. Since the early years of Geographical Information Systems (GIS), the geospatial community
has a strong affiliation to mobility and transport research. Hägerstrand’s concept of space-time paths [1],
for example, provides the conceptual foundation of the activity-based modeling paradigm, which is
currently the preferred modeling approach in many models [2]. The computational and analytical
application of Hägerstrand’s space-time paths within a GIS [3] can be regarded as a cornerstone in
the domain of Transport Geography and GIS for Transport (GIS-T), respectively. The contribution of
GIS to transport research subsequently grew during the 1990s, as conceptual papers by Waters [4],
Miller [5], Thill [6] and Goodchild [7] at the turn to the 21st century clearly indicate. At the same
time, geography and GIS remained a niche topic within traditional transport modeling. In the first
editions of the standard textbook by Ortúzar and Willumsen [8], to name just one prominent example,
GIS is covered only marginally. Spatial characteristics and relations are highly abstracted in standard
transport modeling frameworks, while GIS was primarily used as tool for data preparation and, to a
lesser degree, for visualization [9].
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Since the beginning of the 21st century, things have changed fundamentally. At least three major
innovation paths can be identified. First, ICT (Information and Communication Technologies) has
not only changed the way people and goods are moved, but also what we know about this mobility.
Within a couple of years the situation has flipped from data scarcity to a deluge of sensors and data
streams [10]; second, policy is forced to move from the paradigm of an expanding infrastructure to
smarter traffic management. Thus, it is necessary to actively manage traffic demand and supply and to
activate unused potentials, such as public transit, active mobility, sharing schemes or smart logistics.
The required Intelligent Transportation Systems (ITS) rely on accurate data and well-performing
communication, management and analysis components, each with a distinct spatial notion [11,12];
third, within the transport modeling community, a paradigmatic shift from aggregated models, with
the Four-Step Model (FSM) as the most prominent example (see McNally [13] for an overview), to
activity-based and micro-scale models, can be observed. Associated with this shift, the relevance of the
geographical space has become widely acknowledged [2,14].

With regard to the growing integration of geospatial functionalities and transport modeling, this
paper focuses on three key aspects which the authors regard as relevant to both: the GIS and transport
research community, namely, data for transport models, disaggregated models, and the role of (geo-)
visualization. Each of these topics is dealt with from an explicit spatial perspective.

The paper is structured as follows: after a brief, general overview of the current contribution of
GIS to transport modeling, the three aspects mentioned above are treated in detail. For each topic, the
status-quo is described from a spatial perspective. Subsequently, issues as yet unresolved are raised
and compiled into key research directions. A concluding section wraps up the major findings.

2. GIS and Transport Modeling: A Brief Overview

GIS and transport research have always been interrelated. Thus, it is hard to ultimately decide
whether transport modeling is an application domain of GIS or spatial capabilities are incorporated in
transport models. Examples exist in both domains and current transport modeling software products
increasingly provide integrated GIS capabilities.

GIS are capable environments for the capturing, management, analysis and visualization of spatial
data. They allow for an integration of various data sources into a scalable, dynamic and adaptable
geospatial framework (see Figure 1). Through models, simulations and analyses, each with an explicit
consideration of the spatial nature of transport, new information can be generated. Besides, GIS also
facilitates information visualization which serves as a communication platform with feedback loops to
the data integration and the settings of models, simulations and analyses.
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information integration technology” [6] (p. 4).

2.1. Spatial Characteristics and Relationships

In a standard aggregated transport model, GI systems have been primarily employed for data
processing, the delineation of traffic analysis zones (TAZ) and the visualization of model results. TAZ
form the spatial reference for demand-based transport models, where the numbers of trips from, to
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and through these zones are estimated. For these estimations, various socio-demographic, economical
and structural data are related to each other in a regression analysis and fed to the model, which
then calculates travel demands based on trip production and trip attraction for each TAZ. Spatial
dependencies, as well as variations within and spatial relationships between TAZ, are widely ignored
at this stage. In the next step of the FSM, the generated trips are distributed over the whole study
area. This is usually done in origin-destination (OD) matrices, which exhibit only very abstract spatial
information. Using physical models (such as gravity models), the generated trips are distributed
according to the OD matrix [8]. The shortcomings of simplistic approaches in demand modeling
have been discussed extensively, both conceptually [15] and methodologically [16]. From a geospatial
perspective, at least three implications, which we discuss in the following paragraphs, are relevant for
any, but especially for aggregated, demand models: scaling and zoning, spatial dependencies, and
spatial heterogeneity (see Figure 2).
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Figure 2. MAUP (Modifiable Areal Unit Problem), spatial dependency and spatial heterogeneity as
relevant spatial implications in transport modeling.

In the case of the FSM, traffic analysis zones play a central role: once delineated, they cannot
be altered unless the model parametrization starts from scratch. Associated with the delineation of
the zones, is the Modifiable Areal Unit Problem (MAUP). In short, the MAUP describes the effect of
scale (spatial aggregation level) and spatial zoning on model or analysis results [17]. The MAUP has
been widely acknowledged, for example, in regional statistics [18] or public health [19], both domains
that use more or less arbitrarily defined spatial reference units, such as administrative boundaries.
Miller [5] and Viegas et al. [20] extensively discussed the implications of MAUP for transport modeling
and describe the potential contributions of GIS in dealing with it. If raw data are available, GIS can be
used to assess the effect of scaling and zoning and to delineate optimized TAZ. Scaling and zoning
effects, in a wider sense, are not only relevant in demand-based models, but in virtually all kinds of
transport models. Wallentin and Loidl [21], for example, demonstrated the effect of different spatial
delineations of the study area on the outcome of an agent-based bicycle traffic simulation for Salzburg.

Usually, TAZ or other spatial entities are characterized independently from each other, based on
various input variables. In doing so, the spatial association or dependency (see Páez and Scott [22]
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for an overview) between these entities is largely ignored. In contrast to most statistical routines,
which require independent samples, geospatial analyses account for the function of similarity and
spatial proximity, commonly referred to as the “First Law of Geography” [23]. With regard to transport
modeling, it can be assumed, for example, that the similarity of mobility behaviors depends on the
spatial proximity of the respective agents and their origins and destinations [24]. On the other hand,
spatial clustering of origins and destinations affects travel demand. Bolduc et al. [25] were probably
one of the first authors who pointed to the effect of spatial autocorrelation on OD flow matrices.
Geospatial analysis methods help to determine the degree of spatial dependency [26] and to account
for it properly in consecutive modeling and analysis steps.

The concept of spatial heterogeneity is tightly related to spatial dependency. While it can be
assumed that many spatial processes are linearly related on a macroscale, this does not necessarily hold
true on a microscale level. Here the influence of location, or the function of proximity, can vary over
space (non-stationary). Disregarding the effect of spatial heterogeneity might lead to biased model
parametrization or misleading interpretation of analysis results [22]. In order to deal with spatial
heterogeneity, several techniques have been developed and implemented in GIS applications, such as
the Geographically Weighted Regression Analysis (GWR) by Brunsdon et al. [27], that can be used for
determining and weighting parameters of transport models.

2.2. Examples for Geospatial Transport Modeling Approaches

Miller and Shaw [12] made a compelling case for geospatial analyses as integrated elements of
transport models in order to enhance the possibilities of applications and the quality of predictions.
The effect of incorporating spatial statistics and analysis into a traditional demand model was, among
others, impressively demonstrated by Lopes et al. [28], although the final application is restricted to a
mono-modal, static traffic model. To our knowledge, there are currently only a very few examples
where multi-modal transport models with a high degree of spatial and temporal flexibility have been
set up. Chen et al. [29] proposed an object-oriented concept for a GIS-T data model that allows for
changing attributes of transport objects. Although a certain degree of dynamics can be represented in
this frame work, real-time input data were not implemented. Greulich et al. [30] suggested a flexible
framework for an agent-based model (ABM), where agents can reschedule their trip when unexpected
events occur. Besides computational limitations of the ABM, the availability of suitable data has been a
bottleneck; both factors might lose their relevance in the near future. The difficulty of incorporating
(real-time) data from various sources was demonstrated by Nantes et al. [31]. They integrated data
from loop detectors and data with a detailed temporal and spatial resolution from GPS and Bluetooth
sensors into a real-time traffic prediction model for a very small section of an urban road network.

Irrespective of the modeling paradigm, multi- and inter-modality remains a severe challenge in
current transport models. Whereas vehicular traffic can be represented in demand models, bicycle
and pedestrian traffic is hardly adequately captured. Thus, Dobler and Lämmel [32] developed a
model framework that facilitates a combination of macro-scaled demand models with micro-scaled,
force-based and agent-based models, where the latter is meant to represent active modes of transport.
With such an approach, the geospatial bias in demand models for multiple modes can be, at least to a
certain degree, overcome. Without geospatial scalability, the MAUP becomes evident for multi-modal
demand models: TAZ, which might be appropriate for motorized traffic (with a bigger range) is
hardly able to adequately capture the typical range of bicycle or pedestrian traffic at the same time.
This is a major conceptual reason why many demand models simplify the mode choice and consider
only one transport mode [13] or restrict themselves to very similar variations of one transport mode
(e.g., different modes of public transit [33]). The difficulties of highly aggregated transport models to
efficiently represent multi-modality are at least partly due to the abstract representation (e.g., connected
centroids of TAZ in an OD matrix) or neglect of space. In contrast, the linear road or infrastructure space
is represented as a georeferenced graph within a GIS [34]. This representation in a one-dimensional
node-edge data model, together with associated attributes, allows for real-flow models of various
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modes, which can be run independently and subsequently projected onto the common spatial reference.
Moreover a geospatial, graph-based data model allows for scalability, multiple levels of abstraction
and model granularity, as well as for a combination of static and dynamic system elements [29], which
are all necessary components of “intelligent”, multi- and inter-modal transport models.

In the last two decades, there was a shift from aggregated, regional-scale transport models to
simulations on the disaggregated or individual level. This has been made possible by a tremendous
increase of computational power and a significant improvement of data availability. Tightly connected
to this conceptual change and the advancements in the ICT sector—which facilitated the data
deluge—the role of GIS has become more important. Disaggregated models require much more
geospatial intelligence than aggregated transport models [12]. Thus, the understanding of transport
systems—including infrastructure, vehicles and people—as complex systems in space and time and
mobility behavior on an individual basis, can be significantly enhanced by GIS [2].

3. Geospatial Data for Transport Models

Although geospatial data are ultimately important for any transport model, they are rarely
addressed in the transport modeling literature explicitly. In most publications and textbooks, data are
regarded as given, ignoring the huge effect of data quality, scale, timeliness, or aggregation level on
the validity of models and robustness of results. McNally and Rindt [16] stated that, “In the field of
transport research, nothing is more valuable yet simultaneously more limiting to validation of theory
and models than data” (p. 63). Considering this issue, the current status will be critically reflected
before research directions concerning the geospatial data for transport models are formulated.

3.1. Current Status

Transport models crucially depend on adequate input data. Thus, the type of data defines the
suitability for different models and purposes. Additionally, the heterogeneity of data formats is a
barrier for the integration of different data sources. To prepare the ground for the subsequent research
directions, four major types of data and their respective implication for transport models are briefly
described in the following paragraphs. Subsequently, we discuss the relevant data formats and current
attempts for standardization. Finally, issues concerning geospatial data models and data quality are
brought up.

3.1.1. (Geospatial) Data Types

Up to now most transport models rely exclusively on static data. These are datasets that are
generated at a certain point in time for a specific purpose. Examples are road network graphs, travel
diaries, census, or land use data, etc. The amount of available, static data varies depending on the
analysis area. Open (Government) Data and crowd-sourced spatial data, with OpenStreetMap as the
most prominent example, facilitate many transport-related geospatial analyses. In the United States,
socio-demographic data are largely available, whereas the situation is less liberal in most parts of
Europe. The same holds true for timetables of public transit, but with a greater variation of availability
between cities and regions. Mainly for privacy reasons, address-specific data are treated restrictively
almost everywhere. Thus, statistical data on the individual or household level are related to blocks,
census districts, or regular grids as the spatial reference unit. In the European Union, the publication of
authoritative transport data currently gains momentum due to the INSPIRE (Infrastructure for Spatial
Information in the European Community) and PSI (Public Sector Information) directives, which push
authorities to publish their data in a freely accessible manner [35]. The latter aspect is expected to
result in a more positive ratio between data availability and accessibility.

Although dynamic, mobility-related data are generated in a yet unknown volume, they are
generally less accessible than static data. This can be explained by at least two factors. First, most
sensor data are generated in closed, often proprietary systems. Outside the operation environment
they are hardly ever accessible, except for specific research purposes (see Liu et al. [36], Castro et al. [37]
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or Calabrese et al. [38] as examples). Second, privacy concerns and regulations impede the publication
of personal sensor data independently from their existence and availability. The situation is different
for geo-coded, social media data, which potentially serve as proxy for collective mobility and can
often be accessed via Application Programming Interfaces (APIs). Independently of the data source,
dynamic data can be divided into two categories: mobile sensors, where the movement in space and
time is sensed, and fixed sensors, which constantly measure a certain phenomenon.

Smart city developments with an abundance of inter-connected sensors provide enormous
amounts of data, often referred to as “big data” [39]. Many data sets in this context are highly
relevant for transport research, as they sense the flows of people and goods in space via operating
systems [40], mobile phone network [41], Bluetooth [42], or social media [43]. These data sets are
conceptually different from sampled data, which have usually been used in transport models so far.
Instead of representative samples from which the population and its characteristics are estimated, big
data potentially allows for considering the full (sensed) population. Since sampled data, such as travel
diaries, have drawbacks (including small sample size, limitations in temporal and spatial scale, or
a low update frequency, to name a few), data from pervasive systems are regarded as a promising
alternative [38,44].However, besides technical challenges in modeling and linking data from these
sources [45], conceptual and ethical questions still remain unanswered [46].

In contrast to collected static and dynamic data, derived data are not necessarily directly captured,
but estimated based on samples and/or timelines. Simulated, interpolated and extrapolated data
usually exhibit a large degree of variability, depending on data processing algorithms. Thus, it is of
crucial importance for the interpretation of model results to know their processing history (applied
algorithms) in case these data are used as input variables. In transport models, derived data are, for
example, used to predict future OD flow matrices or for population parameters based on samples [8].

3.1.2. Transport Data Formats and Standards

The variety of data types is directly reflected by the abundance of data formats for
transport-related data. Although several industry and de jure standards exist, a significant amount
of data is still captured and managed in closed formats. Thus, these standards are obstructive
for interoperability and harmonization, two key aspects for transport models and Intelligent
Transport Systems (ITS). For infrastructure-related, spatial data (e.g., a digital road network graph),
national standards, at the least, exist in many countries. Beyond that, international directives for
metadata standards ensure a certain degree of interoperability for these data. Besides these efforts
for the standardization of authoritative data, open, crowd-sourced data are increasingly relevant.
OpenStreetMap has established itself as an integration platform for all kinds of static data and is
already successfully employed in transport models [47]. Based on its popular routing portal, Google
has pushed a standard for static and real-time public transit (PT) information. Although more and
more PT operators provide their data following the General Transport Feed Specification (GTFS) [48],
the availability and quality still leaves room for improvement [49]. In contrast to standardization
efforts in the PT sector, or for infrastructure data, especially dynamic data are hardly ever standardized.
Thus, they suffer from a significant lack of interoperability. Floating Car Data (FCD), for example, are
still sensed within closed systems. Floating car fleets are established for research purposes [50–52],
but mainly for proprietary services of private data and navigation providers (TomTom (Amsterdam,
Netherlands), INRIX (Kirkland, WA, USA) and others).

3.1.3. Data Models, Scale and Resolution

Due to the conceptual shift from aggregated trip-based to disaggregated activity- and agent-based
transport models, the complexity of data which needs to be stored and managed for transport models
has significantly increased. Thus, GIS-T data models are required to adapt to the complexity of spatially,
temporarily and attributively interrelated and dynamic data. Shaw and Wang [53] proposed a relational
database with stringent normalization routines in order to prevent redundancies. In contrast to the
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relational database, Chen et al. [29] preferred an object-oriented data model, where topological and
semantic relations allow for a combination of static and dynamic objects. Independently from the
fundamental conceptual design, spatial data models for GIS-T applications in transport models need
to be adapted accordingly to the respective requirements. For dynamic, predictive transport models,
a static data representation in a GIS is not sufficient. Instead, a performant GIS must be built upon
data models that support dynamic data from various sources in order to serve as an integrated
environment [12].

Geospatial data are always captured at a specific scale. As a consequence, the data cannot be
adequately used in models and analysis routines on a finer scale. Similarly, the level of aggregation
defines the resolution of any operation based on these data. The impact of scale and level of aggregation
is often ignored in transport models. Associated with the spatial scale and the level of aggregation, are
the MAUP, discussed in the previous section, and the ecological fallacy [54], each with direct, negative
effects on the outcome of any model. Besides a common lack of awareness for spatial data issues,
data availability problems and the cost of data capturing are reasons for the utilization of unsuitable
data. In order to support experts who integrate several, heterogeneous datasets, information tools for
the data quality and fitness of use have been developed [55], but, to our knowledge, they have not
been specified for transport models in particular. Besides the heterogeneity of data itself, transport
modeling furthermore needs to master the semantic variability in a multi-disciplinary environment.
As the spatial and attributive heterogeneity of data is a major bottleneck in transport modeling,
Liang et al. [56] suggested the development of ontologies for a cross-domain employment of datasets.

Since data errors directly affect any GIS-T application [6], research on the interdependency of data
characteristics and transport models is required from several perspectives. At the core of the questions
raised in the following section, is the challenge to find or sense the optimal data for a given model
context at reasonable costs.

3.2. Research Directions

As outlined in the previous section, there is comparably little, explicit research done on geospatial
data for transport models and the questions raised here might not cover the entire range of necessary
research. However, the following research directions are regarded as relevant for the GIS-T as well as
for the transport modeling community.

3.2.1. Data Availability, Accessibility and Privacy Concerns

For a long time, data availability was the bottleneck in any transport-related research and
application, especially in Europe. This has been constantly changing over the last years. Driven
by legislative initiatives and new web-based distribution channels, an increasing number of data sets,
which are relevant for transport modeling (road network, address, or traffic state data, etc.), have
become accessible, although national and regional differences still exist.

Further research has to be conducted on how additional data, which are of great importance for
transport modeling, can be made accessible while addressing privacy concerns. This holds especially
true for socio-demographic, statistical data and movement data. In both cases, the data do exist for
operation and administrative purposes, but are withheld due to privacy concerns. There are strong
arguments for keeping strict data policy laws, as long as no political and technical guidelines and
regulations exist for the utilization of such data. Rossi et al. [57] demonstrated how sensitive GPS
trajectories are in terms of privacy, while de Montjoye et al. [58] proved that even coarsened movement
data provide information about individuals. Oksanen et al. [59], therefore, proposed a method to
preserve privacy in mobility hotspot maps.

While legal regulations for privacy, property rights and related issues exist for authoritative data
and mobility data, which are generated for operational purposes (e.g., mobile phone network), the
situation is less clear and subject to debates (data ownership, definition of public versus private sphere,
etc.) in the Web 2.0 context [60,61]. Nevertheless, the potential of Web 2.0 data for mobility research is
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huge. Krumm et al. [62], for example, developed analysis routines to reconstruct and predict mobility
from Twitter data. It is thus necessary, not only in the context of transport modeling, to define legal,
but also ethical, rules for the utilization of Web 2.0 data, especially since the consciousness for privacy
implications is very weak among users [63].

3.2.2. Data Quality, Fitness of Use, Metadata and Standardization

Currently, too little attention is paid to the quality and fitness of use of data in transport models.
The impact on the model output is huge, but hardly ever discussed explicitly. Hence, we argue for the
development of quality assessment tools for transport data and a specification for the transport model
domain of the approach proposed by Devillers et al. [55]. The urgent need for an explicit consideration
of data quality stems from the increasing availability of crowd-sourced data and the heterogeneity of
data sources in general.

Many data sets which are employed in transport models lack a sound description. Consequently,
it often happens that data from different points of time with a different resolution and acquisition scale
are combined without any further processing steps. Research should thus be conducted on how to
consider metadata (data describing data) in transport models. This is especially relevant for derived
data, where the processing history is crucial for the interpretation of the data.

Tightly related to the issue of metadata are standardized data formats and interfaces. As
noted above, standards for several data types do exist (such as the GTFS for public transit data),
but many data are still sensed and managed in closed, proprietary environments. The question
of data accessibility depends, thus, not only on privacy issues (see previous section), but also on
interoperability. Consequently, the development and application of standards should be put on the
agenda of researchers and practitioners.

3.2.3. Data Models for Dynamic Environments

Most GIS-T applications and transport models rely on either relational or object-oriented databases.
Both approaches are suitable for a range of applications, especially as long as static data are employed.
The requirements for data models are different in a dynamic environment. The current research
challenge is to design data models that are flexible and able to handle huge data amounts from various
sources, with different formats and resolutions, while ensuring high performance in analysis and
visualization tasks [12]. Another, though not new, issue is the adequate consideration of time in
geospatial databases.

3.2.4. Data Characteristics and Spatial Pitfalls

The impact of data on model validity and reliability as well as on the possible representations is
obvious. Still, spatial data are frequently used in non-spatial models, without considering the spatial
characteristics of the input data. The effect of subsequent spatial biases needs to be investigated and
assessed systematically. Research is also necessary with regard to the scale and aggregation level
(resolution) of the data and the model, respectively.

Routines for determining spatial and spatio-temporal characteristics of data, such as
autocorrelation, are well established for static data [26,64,65]. Thus, it is possible to assess and account
for the spatial influence on models accordingly. Similar measures for highly dynamic, spatio-temporal
data are less common. Further research is required on how spatial dependencies in dynamic data sets
can be assessed and the model routines accordingly adapted. Similarly, spatially enhanced transport
models must account for the aggregation and scale level of dynamic data. Flexible aggregation and
disaggregation routines have to be developed for dynamic data sets in order to feed and calibrate
transport models adequately.
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3.2.5. Cost of Data Acquisition and Impact on Model Results

With the current deluge of data on the one hand, and the increasing performance of disaggregated
transport models on the other hand, uncountable variations of model parametrization and analysis
became available. Nonetheless, it is not yet clear to which degree the validity and reliability of the
model results have increased due to these new opportunities. Thus, we propose to investigate the
relation between the amount of input data, as well as the effort (or cost) of data acquisition and the
quality of the model results. Results will inform further research and of course budget allocation for
transport modeling.

4. GIS and Disaggregated Transport Models

The spatial distance between everyday activities—such as working, shopping and recreation—has
considerably increased over the last decades, with direct effects on individual daily travel routines.
Modern urban utopias, with strictly separated functional zones (see for instance Anthony [66] for
a reflection on Le Corbusier’s urban utopias), have been built upon this necessity and ability to
travel. These utopias are illustrative examples of the fundamental understanding of travelling in
disaggregated transport models, where mobility results from participation in activities that are spatially
separated. Hence a prime function of transport is to connect activities at different locations. Whereas
aggregated transport models, such as the FSM, focus on the number of trips between traffic analysis
zones, disaggregated transport models represent single trips according to individual activity chains
and travel preferences. The flows that emerge from disaggregated models, thus, are a synopsis of the
structure of geographic space and individual travel behavior. The trend towards disaggregated models
is mainly driven by the urge to adequately address heterogeneous and complex mobility patterns.

The following section provides an overview of the main approaches to disaggregated transport
modeling, followed by research directions related to spatial aspects.

4.1. Current Status

Transport models represent the spatial dimension at various levels of disaggregation. At the one
end, there are trip-based models, such as the FSM, that operate at a long-term and highly aggregated
level [8]. For parameterization of trip-based models, widely available census data can be used and
the models are reasonably efficient in terms of computing power. Therefore, they have long been a
pragmatic approach to support infrastructure planning [67]. Typical application examples are the
design of higher order street networks or public transport facilities. The level of spatial aggregation
into travel analysis zones is high, and has proven sufficient for this purpose [68].

At the other end of the level of disaggregation, are individual based approaches, such as
activity-based models, microsimulations and agent-based models. Activity-based models aim for a
more adequate representation of human social behavior [2,14,67]. This approach simulates individual
sequences of behavior (also called “daily patterns”), assuming that households or other social structures
strongly influence travel behavior [68]. Daily activity patterns organize single trips into more complex
tours. Conceptually, activity-based models can still be based on aggregated spatial units. However,
recent models tend to use micro-zones that represent greater spatial detail, such as census blocks or
even individual parcels [69]. Behavioral realism in activity-based models is often associated with the
spatially disaggregated approach of microsimulation.

Microsimulation refers to the simulation of individuals sampled from aggregate attribute
distributions and, thus, are in the spirit of traditional statistical models [70]. As single persons
are represented explicitly in a microsimulation model, their individual choices and activities can be
tracked and combined logically over the course of a simulation. Therefore, microsimulation allows
for the development of more sophisticated traffic models based on probabilistic choices. Probabilistic
sampling introduces some degree of randomness, so that microsimulation models are stochastic in
contrast to deterministic trip-based models.
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Agent-based models, finally, are rooted in complexity theory. Agents are “intelligent” individuals
that are aware of their local context. Unlike individuals in microsimulation that act in accordance to
an aggregate probability distribution, agents in ABMs act according to rules in response to their local
environment, to their neighboring agents and potentially also to their past experiences. The added
value of the spatial dimension as an integrating framework can, thus, fully unfold in ABMs. Exemplary
applications include the effect of road pricing schemes on congestion patterns [71], optimization of
traffic signals timing [72], vehicular communication [73], context-aware route choices [74,75], or the
mechanism underlying the safety in numbers phenomenon [76]. On the downside of agent-based
approaches is the high computational cost [77–79], so that the extent of modelled areas, typically, was
limited to street crossings, individual city districts or abstract road networks. Only recently, ABMs have
become capable of representing larger areas such as entire commuting regions around cities [21,80].

In practice, differences between the three approaches to disaggregate transport modelling
are blurred; ABM and microsimulation are sometimes used synonymously and many models are
combinations thereof. Generally, the application of disaggregated transport models is still limited
by data availability and accessibility, as well as processing power. However, the frontier is currently
being pushed forward at a high pace. A plethora of frameworks to support disaggregated modelling
for traffic planning and management purposes in large real-world networks have been developed,
with foci mainly on demand generation or flow analysis. Examples of such modelling frameworks
include TAPAS [81], MATSIM [82], SUMO [73], ALBATROSS [83], TRANSIMS [84], VISSIM [85],
TransCAD [86] and SACSIM [87]. Further, multi-purpose agent-based simulation tools with more
flexible functionalities, such as NetLogo [88] or Repast [89], have been used in transport research to
explore emergent traffic phenomena, mainly on a conceptual level [76,90,91].

From a geographic perspective, the shift towards disaggregated models in general and ABMs
in particular, reflects a trend in transport geography that started from static maps, developed further
to dynamic routing and navigation, to finally incorporate the behavior of discrete entities [7]. Spatial
microsimulation has become a mainstream approach for incorporating the geographic dimension
into dynamic transport models. However, if the specific purpose of a model was to represent spatial
heterogeneity and to explore its effect on emergent traffic phenomena, microsimulation would need to
define aggregate probabilities for each specific spatial arrangement on the local scale. In such cases it
is more efficient to use context-specific rules of ABMs [92,93]. Even if the properties of all agents were
the same, explicit representation of spatial heterogeneity would result in the emergence of distinct
traffic patterns.

Within a given spatial and temporal structure, transport systems emerge from human behavior
and their interactions [69]. While behavior can be encoded in activity-based microsimulation,
representation of interaction and adaptive behavior in response to interaction between agents is
specific to ABMs; it cannot be represented with probability-based microsimulation. An added value
of representing adaptive behavior is offered by the integration of game theory. Game theory, in
general, deals with models on how rational travelers react to the behavior of others, that is, either in a
cooperative or a selfish manner [94,95]. Applied to spatial transport models, game theory can lead
to the emergence of unexpected flow patterns. Examples include a number of paradoxes, in which
selfish behavior of individuals lead to unexpected latencies in the traffic network that counteract the
intention of certain infrastructure measures (e.g., [96]). However, Scholz [97] showed that simulation
models with adaptive, learning agents result in different spatio-temporal movement patterns than
strictly selfish agents.

A major challenge that disaggregated transport models face is losing generality for the sake of
realism and connected issues of model validation [98,99]. Liu et al. [100] pointed at a mismatch
in the granularity and abundance of simulation outcomes versus traffic count data, which has
usually been used for external validation. Therefore, they suggested using real-time and spatially
disaggregated mobile phone data for validation. A promising validation strategy for ABMs is
pattern-oriented modeling, which has been developed in the domain of ecology to evaluate structural
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model validity [101]. This approach defines a set of patterns for different attributes and at different
scale levels that a model needs to reproduce simultaneously to prove structural validity. Transferred to
mobility research pattern-oriented modelling, it could prove useful for the validation of agent-based
transport models [21]. However, Batty and Torrens [70] demonstrated that ABMs rely upon countless
assumptions and, thus, exhibit a vast number of degrees of freedom, which makes it conceptually
impossible to fully validate such models against data. To address related epistemological questions,
Millington et al. [102] argued for using additional approaches to model validation and communication
based on narratives.

4.2. Research Directions

The leading question that should guide research from a spatial perspective is what the
explicit representation of spatial heterogeneity in transport models has to offer for advancing our
understanding of transport systems and human mobility behavior. To fully exploit the geographical
dimension in transport models, further research should be directed towards the fields of emergence,
adaptation and validation.

4.2.1. Emergent Phenomena from Spatial Heterogeneity

The use of spatially disaggregated transport models builds on the assumption that explicit
consideration of disaggregated space critically affects outcomes on an aggregated level. Stanilov [103]
provided a general overview of the role of space in ABMs, related to four main aspects: issues of scale,
space as the interaction component, space as the attribute of agents and the environment, and the role
of space in communication and validation. Further research should be directed towards a systematic
analysis of these aspects in the field of spatial transport models, specifically with respect to potential
particularities due to the representation of network space.

4.2.2. Emergent Phenomena from Adaptive Behavior

Activity-based models have brought along a change of focus from land-use driven demand
models to models that are governed by human behavior. Agent-based approaches have further added
the capability of agents to interact, learn and adapt their behavior according to their prior experiences
and local contexts. However, until recently, respective ABMs have been largely restricted to abstract
spatial representations. This limitation was not least due to scarcity of adequate data, which allows for
a description of human behavior. Today, data on individual human mobility is increasingly accessible
through social networks and distributed real-time sensor networks. Additionally, mobility data from
social media networks are linked to several social dimensions that might serve as indicators for mobility
behavior (interests, socio-economic status, living conditions etc.). Further research should thus address
the integration of adaptive behavior, facilitated by these newly available data sources. Exploration of
theory-based concepts as, for example, game theory, should then be evaluated in real-world contexts,
which can be expected to yield further important insights into transport systems.

4.2.3. Limited by Complexity? New Views on Validation

In recent years, static and highly aggregated models have been complemented and are increasingly
superseded by disaggregated, agent-based models. The implication of this trend is not least the
embracement of the complexity and uncertainty that is inherent in these models. Further research
should address the implications of the conceptual restrictions that stem from this high level of
complexity. Possible research directions can borrow from novel approaches to ABM validation that
have been suggested in other domains, such as pattern-oriented modeling in ecology or the narrative
approach in the spatial system sciences.
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5. The Role of (Geo-) Visualization in Transport Modeling

For a long time, the role of geo-visualization in transport modeling was restricted to the
cartographic presentation of final results [9]. Driven by two complementing lines of development, this
has started to change in recent years. Firstly, through the advent of interactive (geo-) visualization
environments, the rise of Visual Analytics [104,105] and the availability of massive data sets,
geo-visualization has become increasingly popular beyond the core domains of geography and
cartography [106]. Secondly, the growing relevance of geo-visualization in transport modeling can
be attributed to the paradigm shift from highly aggregated to disaggregated modeling approaches,
which put a stronger focus on the heterogeneity and inter-dependences of mobility behavior and result
in detailed information on individual activity patterns. In this context geo-visualizations are more
than visual presentations of final model results, but powerful tools that “stimulate visual thinking
about geospatial patterns, relationships and trends” [107] (p. 391). Nevertheless, the potential of
(geo-) visualization in transport modeling has not yet been fully employed. Up to now, only a small
number of examples are available that make use of (geo-) visualization techniques in order to explore
input data and constituting model elements, to validate model results, or to communicate dynamic
content [11,108,109]. However, the implementation of available geo-visualization methods and
technologies in transport modeling and the development of domain-specific applications are regarded
as promising for the whole domain of GIS-T and transport research. Therefore, we collect (geo-)
visualization concepts for transport models and present case studies that employ different features
and visualization platforms. As with the preceding two sections, we wrap up with research directions.

5.1. Current Status

Although disaggregated transport models are data intensive and an abundance of sensors feed
these models with data, (geo-) visualization techniques are hardly ever employed as an interface to
this data deluge and the transport models built upon it. Thus, modelers are missing opportunities,
for instance, to visually screen and validate input data and subsequently explore model elements,
simulation states, or the evolution of final model results. Visualization concepts rooting in space–time
geography are available for transport data [110–114], but they are not directly integrated in transport
modeling workflows yet. On a more basic level, general design principles from cartography and
information visualization can be applied to transport data in order to make the data accessible. Before
we provide an overview of existing (geo-) visualization concepts and design principles for transport
data and models, we set the stage and briefly turn to the general framework for the visualization of
transport data and models.

5.1.1. General Framework for the Visualization of Transport Data and Models

Applying (geo-) visualization concepts to transport data and models requires consideration of
a wide range of different aspects, which, in turn influence the choice of appropriate designs and
visualization environments. On the most basic level, this means that it is necessary to decide on what
should be visualized, for whom, and for which purpose. Extending these fundamental questions
defines the general framework for the visualization of transport data. Figure 3 summarizes the
dimensions that need to be considered in our context and which are, of course, highly interdependent.

The type of data at hand is of primary interest, as it affects all successive decisions. In the transport
modeling domain, the following data types are relevant: point data (e.g., activity locations, public
transport stops), line features (e.g., trajectories, aggregated traffic flows), polygon data (e.g., population
density in census districts, traffic analysis zones), matrix-based data (e.g., OD matrices, timetables)
and descriptive data (e.g., socio-economic data, cultural preferences, mobility habits).

Whereas various types of visualizations have been widely employed to communicate results
of transport models [9], the use of visualizations as an interface for the modeling process is not
yet established in the transport modeling domain. Here, recent paradigmatic developments in the
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geography and cartography domain towards Geovisual Analytics [115–118] provide new conceptual
as well as methodological frameworks and tools for visualizations supporting the modeling process in
transport research. Thus, a new target audience of visualizations, namely, the model developer and
domain experts that interact with the model, can be identified and needs to be considered accordingly.
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Tightly related to the audience that is to be addressed, the purpose of the visualization directly
affects the design of the visualization environment. For the process of transport modeling, we
regard data exploration, model building (data integration), calibration (interaction and manipulation),
validation, and the communication of processes and results as relevant purposes. There are only a
few examples in literature where visualization techniques are employed to interact with the data and
the model, respectively: Andrienko and Andrienko [104] established a Visual Analytics platform for
pattern detection in massive trajectory data. Picozzi et al. [119] presented a visual interface for the
exploration of a real-world transport system. Cyganski et al. [109] used mapping techniques in a
transport modeling environment for the sake of validation and communication. The latter example is
one of the few where geo-visualization and transport modeling are fused in an integrated environment.

The desired level of detail is closely related to the type of information that is to be visualized
(purpose) and is limited by the characteristics of the available data. Applicable aggregation approaches
include spatial, temporal and thematic aggregations. Potential levels of detail range, for example, from
individual GPS tracks or precisely positioned, individual agents to aggregated flows between TAZs. In
cases where primarily dynamics over time are visually conveyed, the spatial reference can be partly or
entirely omitted.

Visualizations in a digital environment allow for a wide range of interactive features. Here,
the benefit of geo-visualization as an integrated part of the modeling process can be fully exploited.
Frihida et al. [108], for instance, presented an object-oriented GIS prototype to extract and dynamically
visualize individual space–time paths from tabular activity chains. Chen et al. [120] pushed this concept
further and provided a GIS-based, interactive exploration environment for activity diaries. Again,
examples for visual interaction with transport data from the GIS and Visual Analytics communities are
numerous, but they are rarely transferred and integrated into transport modeling environments.
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The output medium decides on the options for a (geo-) visual representation of data and model
processes. Digital and interactive media are most relevant when visual interfaces are employed in
transport modeling.

5.1.2. Geo-Visualization Concepts for Transport Data and Models

Since transport data and models are characteristically dynamic, visualization concepts have
to acknowledge the temporal dimension adequately. In geo-visualization, dynamic phenomena are
commonly represented either by map symbols (arrows, labels), small multiples, or animations [121,122].
These concepts are complemented by interactive elements and by extending the planar representation
with an additional dimension, resulting in 2.5D (extrusion of 2D representation) or 3D visualizations.
Table 1 provides an overview of visualization concepts for transport data, demonstrated with selected
use cases. For a more extensive overview, we refer to Chen et al. [123].

As demonstrated in several studies cited in Table 1, interactive environments facilitate the
exploration of spatio-temporal transport data on various levels of aggregation and through different
visualization types (spatial and non-spatial). Geo-visualization concepts on a high level of
generalization are necessary to provide an overview of the whole study area and the entire time
period. Prominent examples of the visualization of overall activity in an area include heatmaps and
space–time density and flow maps. The latter, together with vector fields, enables analysts to visualize
directionality and flow volumes simultaneously. On an intermediate level of detail, geo-visualization
concepts are used to focus on a certain area, time interval, or topic. Relations between selected origins
and destinations, mobility patterns of a given day, or trip characteristics of a certain mode of transport
can be visualized with greater detail compared to an overall perspective. Geo-visualization concepts for
the most detailed level become increasingly important in the context of disaggregated transport models
and microsimulations (see e.g., Guo et al. [124]). Building upon concepts from time geography [1],
the role of geographical information systems in the visualization of highly detailed data is widely
anticipated in literature [2].

Table 1. Visualization concepts for selected use cases.

Use Case 2D Visualization 3D Visualization Animated Literature
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5.1.3. Efficient Geo-Visualization Features

The range of geo-visual tools and functionality is large and well established in the domains
of information visualization, cartography and GIScience [106]. For the visualization of transport
data and models, the following features can be regarded as essential: overview, drill down, filter
and query, avoidance of occlusion (e.g., through clustering), comparison, animation and print or
report functionalities.

To provide users with the necessary spatial, temporal and thematic context information, overview
features should provide a generalized, global view of the data. Depending on the map purpose
and the addressed user group, base maps and overlays help frame the data and put them into a
spatial and thematic context. To control the level of detail that is displayed, drill down, filter and
query features allow the user to advance from a generalized overview to more detailed views [123].
Besides a reduction of complexity through filtering, intelligent clustering algorithms [128] and dynamic
insets [138] are being developed to avoid visual occlusion and overload. In order to facilitate a better
understanding of changes, for example, through variable model parameters or between time intervals,
it is essential to provide suitable comparison tools. Similarly, animation features, which are typically
implemented in GIS software (e.g., QGIS Time Manager [139]), facilitate the exploration of change over
time. Primarily for the purpose of communicating and sharing results, geo-visualization frameworks
should provide access to print, report and export features. Standardized exchange formats, such as
SVG for vector graphics, and interfaces, are preferable in this context.

While all these features are already implemented in independent, specific software packages,
a direct integration into transport modeling environments is still lacking in most cases. Thus, it is
cumbersome to dynamically interact with transport data and models through a visual interface during
the entire modeling process. Disaggregated transport models are usually built upon large data sets,
which can hardly ever be completely overseen in advance, and ABMs exhibit a large degree of freedom
anyway. Here, concepts from Geovisual Analytics with deductive elements, a high number of iterations
and immediate visual response would help to explore the data, test hypothesis and gain spontaneous
insights (see Keim et al. [117] on the Visual Analytics process).

5.2. Research Direction

The body of literature on geo-visualization is huge and constantly growing. Thus, it can be stated
that concepts, methodologies and tools are available and established. However, we see, so far, unused
potentials for geo-visualization in the transport modeling domain. As we have argued, Geovisual
Analytics [115] promote visualizations, not only as presentation or communication media, but also
as a dynamic, interactive interface for data and models. While appealing visualizations, which are
intended to serve as eye-catchers, do have their place in transport modeling, the integration of tools to
visually extract patterns, dynamics and interdependencies for modeling processes is still in its infancy.
In this context, we see the following—yet not all-encompassing—research directions.

5.2.1. Development of Geo-Visualization Guidelines

Visualization and animation techniques have enabled users to develop a large variety of geo-visual
representations. Recent papers (e.g., [109,123,124,128]) address the problem of finding adequate types
of (geo-) visual representations that facilitate an intuitive interaction with extensive, complex data sets
and models. We expect that in the near future transport modeling, GIS and Geovisual Analytics will
be integrated much tighter than they are today. In light of this development, we call for research on
guidelines for the identification and implementation of adequate geo-visualization concepts and tools
into transport modeling environments, considering the dimensions summarized in Figure 3.
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5.2.2. Trade-off between Visual Accessibility and Level of Detail

With the increasing availability of highly detailed data, it is necessary to address the question of
an appropriate level of detail with greater vigor. The trade-off between visual accessibility and level of
detail needs to be investigated for different data sources and model scales. However, this question
is not only relevant from a geo-visualization perspective, but affects transport models as such. Thus,
further research needs to determine the benefit of highly detailed over aggregated data for the model
results and the corresponding geo-visual interface. In the latter context, research should be directed
towards intelligent aggregation and clustering algorithms with regard to computational power and
response time.

5.2.3. Communicating Model and Process Dynamics

As models and derived visualizations are often used for decision making, it is vital to correctly
communicate the uncertainties inherent in input data, the sensitivity of the model dynamics and
the variance of model results. Especially in scenario analysis—a major field of application for
transport modeling—analysts often have to deal with a variety of assumptions and predictions
whose implications and interdependencies are not obvious at first sight. Sources of uncertainty include,
for example, variance in population forecasts, sensitivity due to estimated parameter specifications, or
fairly unpredictable behavior adaption of road users over time. These influential factors often lead to a
range of prospective scenarios rather than a single definite forecast. Ultimately, this raises the research
question of how to handle the extent and impact of uncertainty at the different levels of transport
model visualizations. It particular, it is necessary to understand how planners and decision makers
can be enabled to come to informed decisions under these circumstances.

5.2.4. The Right Tool for the Job

Spatial data cannot only be dealt with in traditional GIS software. Standard transport modeling
software suites provide growing geospatial functionalities (e.g., network editing). Additionally,
programming and scripting languages increasingly allow for spatial analysis and geo-visualization
functionalities through spatial libraries. In this context, Java (Processing), Python, R, and Javascript
(D3) are to be named due to their popularity. While current GIS packages in combination with
spatial databases are well suited to deal with data complexity, they usually do not provide adequate
rendering performance to visually interact with big amounts of transport data efficiently. Hence, future
research and development is needed to combine geospatial functionalities with transport modeling,
while providing an efficient, interactive, visual interface for data exploration, manipulation, analysis
and visualization.

6. Conclusions

We have argued that the relevance of geospatial information for transport modeling is significant,
but not yet adequately considered in most cases. In this context, we have pointed to three fundamental,
spatial issues that inevitably influence any transport model result, namely the MAUP, spatial
dependencies and spatial heterogeneity. As we have outlined, these characteristics can be adequately
captured and considered with GIS. Additionally, the role of geospatial information in transport
models will be necessarily further strengthened. This is mainly due to fundamental shifts in the
transport modeling domain: from data scarcity to a data deluge, from expanding infrastructure to
smart management, and from aggregated to disaggregated models.

Taking all these aspects together, we have presented a strong case for the integration of geospatial
information into transport models. We identified three fields in the context of transport modeling,
where we regard the spatial perspective as essential and see substantial research gaps: (1) the current
status of geospatial data usage for transport models; (2) the spatial implications of disaggregated
transport models; and (3) geo-visualization. The research directions, with exemplary research questions,
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which we have formulated for the respective fields, focus on spatially relevant aspects and contribute to
the research agenda for interdisciplinary future work at the intersection of GIS and transport modeling.
As it became obvious at several points, the spatial dimension is not isolated from the temporal and
human dimensions. Consequently, we call for additional studies that investigate the impact of temporal
and human dimensions on transport models, before a consolidated, holistic framework for transport
modeling can be developed.
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