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Abstract: The Internet of Things (IoT) is an extension of the Internet in which large numbers of
“things”, including sensors, actuators and processors, in addition to human users, are networked and
able to provide high resolution data on their environment and exercise a degree of control over it. It
is still at an early stage of development, and many problems/research challenges must be solved
before it is widely adopted. Many of these are technical, including interoperability and scalability,
as billions of heterogeneous devices will be connected, but deciding on how to invest in the IoT is a
challenge for business, and there are also major social, legal and ethical challenges, including security
and privacy of data collection, which must be resolved. As the future IoT will be a multi-national,
multi-industry, multi-technology infrastructure, the paper reviews the global standardization efforts
that are underway to facilitate its worldwide creation and adoption. The main purpose of the paper
is to give a broad survey, based on published literature, of the methods of Operations Research
(OR), both the mathematical tools and techniques of “hard” OR, and the various approaches of
Systems Thinking, including “soft” OR, which may assist in dealing with these problems. A subset
of these is described in greater depth to better convey what might be involved in applying OR and
Systems Thinking to the IoT. It is suggested that OR has a role to play in balancing the technical and
non-technical research challenges which confront the IoT.

Keywords: Internet of Things; Operations Research; hard OR; soft OR; Data Analytics; Soft Systems
Methodology; Systems Thinking; General Systems Theory; Complexity Theory

1. Introduction

The field of Operations Research (OR) is an applied discipline which aims to help solve real
world problems. It includes many mathematical tools and techniques, plus the sub-discipline of
Systems Thinking, which itself has many varieties, both quantitative and qualitative. Both forms of
OR can support the design, management and use of the Internet of Things (IoT) which, as discussed
in the next section, is a type of new technology which promises to change the world. Conversely,
the “big data” obtained from the IoT can support some of the quantitative tools and techniques of
OR, e.g., the OR sub-discipline of Data Analytics [1]. OR and the IoT have many application areas,
to which they may both be applied jointly or separately, e.g., the “smart city”, where the OR techniques
of routing, scheduling, discrete-event simulation, etc., may enable more efficient traffic management,
energy usage, etc. Many OR techniques require much real-world data, and so OR techniques combined
with “big data” from the IoT can be a powerful combination. The “things” making up the IoT include
processors which can carry out some of the computational tools and techniques of OR, so this part of
OR can be considered part of the IoT.

Hundreds of papers have been written on the IoT, mostly dealing with the supporting technologies
and technical research challenges, but increasingly also dealing with the IoT business ecosystem,

Systems 2017, 5, 24; doi:10.3390/systems5010024 www.mdpi.com/journal/systems

http://www.mdpi.com/journal/systems
http://www.mdpi.com
http://www.mdpi.com/journal/systems


Systems 2017, 5, 24 2 of 32

and the social, legal and ethical problems that will arise with its adoption. Few single papers discuss
both the technical and non-technical research challenges of the IoT on an equal footing. We believe
that the holistic view provided by OR and Systems Thinking presented here [2] is going to be needed
to solve the many problems which must be overcome for the IoT to realize its full potential. Studying
the IoT as a whole requires knowledge from many technical disciplines, including distributed systems,
mobile computing, human-computer interaction, cloud computing, artificial intelligence and data
semantics, as well as many non-technical disciplines, and the many business, domestic and personal
fields to which the IoT is or will be applied. Thus writing about the IoT from a holistic perspective
requires a breadth of knowledge and experience rarely found in one individual and is best done by a
multidisciplinary team. The authors of this paper have long experience in some branches of OR and
Systems Thinking and some fields of Information and Communications Technology (ICT), but are
naturally not experts in all the fields which it covers.

The aim of this paper is to identify the main research challenges for the future IoT to which
OR, including Systems Thinking, may make a significant contribution. The research approach we
take is, in part, a survey of existing papers which apply particular OR tools, techniques and systems
methodologies to the IoT. Some IoT research challenges may not have been tackled by OR as yet, or we
may not have found any accounts thereof, and in such cases the authors use their knowledge of OR,
systems methodologies and the IoT to outline how we think these approaches could support the IoT.
The paper does not present any detailed “solutions” to the problems/research challenges we discuss,
but does try to give some idea of what might be involved in applying OR and systems methodologies
to them.

The remainder of this paper is organized as follows. Section 2 reviews the IoT, both present
and future, including research challenges to its development and adoption, and the worldwide
standardization efforts now underway to facilitate the interoperability of the many networks and
systems making up the IoT. Section 3 gives an overview of the contribution that both the mathematical
tools and techniques of OR and Systems Thinking can make to the development of the IoT, and how
the sensor-derived data and data processing of the IoT can support the computational techniques of
OR. Section 4 gives a more detailed overview of how OR and Systems Thinking can be applied to
some of the major research challenges of the future IoT. Finally, Section 5 presents our conclusions.

2. The Internet of Things

2.1. General Concept of the IoT

The IoT is regarded as the next phase in the evolution of the internet. It will enable commonplace
devices to be connected to the internet to achieve many disparate goals. With potentially billions of
devices to be connected, it is clear that standardization will be required in order to avoid chaos.
One estimate is that only 0.6% of objects that could be part of the IoT are currently connected.
By 2020, there could be up to 50 billion devices connected to the internet, far greater than the number
of human users as shown in Figure 1 below. The growth in the IoT follows an exponential curve while
the growth in the number of human users follows a logarithmic curve.

Electronics miniaturization, cost of electronic components, and the trend towards wireless
communications are the three main drivers for IoT. These features are enabling physical objects
to contain tiny embedded sensors and actuators that can connect to the internet. The core components
of the IoT will be sensors and actuators, embedded processing, and connectivity and the cloud. Smart
objects such as modern phones use sensors and actuators to interact with the real world. Embedded
processing gives smart objects intelligence while connectivity and the cloud provide the means to
communicate and store data. The IoT will ultimately evolve into a network of people, processes, data,
and physical objects that intercommunicate using wireless protocols.
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Figure 1. Internet of Things growth (data from http://www.internetlivestats.com/internet-users/
and IoT stats: statista.com). The red bars show the number of human internet users for the period
1995–2020; the blue bars show the number of devices connected to the internet, while the trend lines
show a logarithmic growth for human users and exponential growth for number of devices connected.

2.2. Research Challenges for the Future IoT

There are many research challenges associated with the IoT. We know some of them now, others
will emerge in the future. These cover the whole field, including the technical challenges of designing,
managing and using a multi-national, multi-industry, multi-technology infrastructure, the business
challenges of developing IoT business models, and the organizational, political and social challenges
of a new technology which promises to change the way we live and work in major ways.

Before we consider the role OR might play in supporting the IoT, the major research challenges
must be identified. Many recent surveys of the IoT include a section on research challenges, and
we have attempted to consolidate their results for our purposes. This was a difficult task due to
differences in terminology by different authors, the fact that the different research challenges cannot
be completely separated from each other, and the fact that they can be described at different levels of
detail. For example, a very high level research challenge might be “IoT design”, but this includes a
number of lower level research challenges such as “architecture”, “interoperability” and “scalability”.
Each of these lower level research challenges may include other still lower level research challenges,
e.g., IEEE’s Standard for an Architectural Framework for the IoT includes the research challenges
of protection, security, privacy and safety [3]. Some authors consider IoT Standardization to be a
research challenge in its own right, however we consider this to be a high level research challenge
which encompasses many lower level research challenges and so do not list it separately. We discuss
standardization in Section 2.3 below.

The main survey papers on which we have drawn for our list of technical research challenges
are the following: Borgia [4], Jain [5], Stankovic [6], Mattern [7], Elkhodr [8], Gubbi [9], Chen [10],
Muralidharan [11] and Al-Fuqaha [12]. Our consolidated list is shown in Table 1.

http://www.internetlivestats.com/internet-users/
statista.com
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Table 1. The main IoT technical research challenges linked to the main papers mentioning them, marked as x.

Papers Mentioning Borgia 2014 Jain 2014 Stankovic 2014 Mattern 2010 Elkhodr 2013 Gubbi 2013 Chen 2014 Muralidharan 2016 Al-Fuqaha 2015

Design

Architecture x x x x x x
Interoper-ability x x x x x x

Scalability x x x x
Mobility x x x

Security/Privacy x x x x x x x x x

Scientific/Engineering

Energy
Efficiency/Power x x x x x

Reliability/Robustness x x x x

Management/Operations

Software
Development x x

Availability x
Data Management/
Information Fusion x x x x x x

Cloud Computing x x
Performance x x x
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We have divided these research challenges into the categories of Design, Scientific/Engineering
and Management/Operations, although this is somewhat artificial, as several research challenges
belong to more than one category. For example, Reliability/Robustness is a challenge at both the design
and operational stages, as is Security/Privacy. For detailed discussion of these technical research
challenges, the reader is referred to the original references. Some challenges are only mentioned by
a few references, e.g., Availability by Al-Fuqaha et al. [12] and Cloud Computing by Gubbi et al. [9]
and Jain [5]. This is perhaps understandable as there are so many technologies which contribute to the
IoT that developing expertise in all of them is a considerable challenge. We note that a recent special
issue of the journal Computer Communications [13] is entirely devoted to IoT research challenges, albeit
predominantly technical. The research challenges listed in Table 1 apply to all or most IoT application
areas, however their relative importance may vary between particular areas. There are also special
research challenges that apply in particular application areas, such as defence and public safety [14].

The business challenges confronting the IoT are covered by the following main references:
Chen et al. [10], Dijkman et al. [15] Kim and Kim [16], Lee and Lee [17], Mazhelis et al. [18] and
Westerlund et al. [19]. We discuss some of them in connection with the OR techniques of Decision
Analysis (Section 3.1.2) and Game Theory (Section 4.3), and with the Multimethodology approach of
Systems Thinking (Section 4.9).

Some of the technical and business challenges of the IoT may be solved with the help of the
mathematical tools and techniques of OR. This paper is only concerned with the contributions the
discipline of OR can make, not the many other disciplines which can contribute. However we consider
OR to include Systems Thinking, which sees the IoT as a complex, self-organizing system, with a large
number of components, an environment, and emergent properties. A bibliometric study of the articles
published on IoT from 2000 to 2015 [20] concluded that much more research was needed that shifts the
focus from purely technological to the socio-organizational implications of IoT adoption. Some work
along these lines has been done in recent years in the UK [21–26] as well as several reports on many
aspects of the IoT by the European Research Cluster on the Internet of Things [27]. The key social,
legal and ethical issues facing the IoT, as discussed by the Oxford Internet Institute [26] are:

• Privacy and data protection;
• Global misinformation systems;
• Big data problems;
• Public attitudes, opinions and behavior;
• Tightly coupled systems;
• Quality of service issues;
• New forms of risk; and
• Linking the IoT to work on responsible innovation

In Section 3 we present a table cross-referencing the technical and business research challenges
for the IoT, and the applicable mathematical tools and techniques of OR (optimization, simulation,
etc.), and another table for all the main research challenges for the IoT, including some social and
policy challenges, and the varieties of Systems Thinking (General Systems Theory, SD, SSM) which
have been or could be used to help improve (not “solve”) them. Some Systems Thinking approaches,
e.g., self-organizing systems theory, can contribute to both the technical challenges and the social and
policy challenges. In this paper, we take a holistic view which sees the technical, social and policy
challenges of the IoT as being intertwined.

2.3. Development of Standards for the Future IoT

By standards we mean guidelines for “how to do” the activities which must be done at all levels
in designing, managing and using the IoT, not just highly technical standards, e.g., the Constrained
Restful Environments (CoRE) standard for integrating constrained devices with the Internet. Standards
are needed for application requirements, communication protocols, identification of objects, security,
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applications, data, information processing, and the service platforms [10]. Indeed IoT itself does not
yet have a standard definition [11]!

Major international standards development organizations (SDOs) including IETF, ISO, IEEE, IEC,
and ITU are examining what needs to be standardized for the IoT to succeed. These efforts are focussed
on the technical level, addressing data link protocols (such as Radio-Frequency IDentification (RFID),
Zigbee, Bluetooth, Near Field Communication (NFC), network/transport protocols (Internet Protocol
version 6 (IPv6), IPv6 over Low power Personal Area Networks (6LoWPAN) and Routing Protocol
for Low-Power and Lossy Networks (RPL)) and session protocols (such as Message Queue Telemetry
Transport (MQTT), Constrained Application Protocol (CoAP), Extensible Messaging and Presence
Protocol (XMPP), and HyperText Transfer Protocol (HTTP). The efforts of these major organizations
are discussed below.

The Internet Engineering Task Force (IETF) has been specifying and documenting IoT standards
for over a decade [28,29]. This organization has developed protocols and open standards for connecting
wireless sensor networks (WSN) to the internet. These standards include:

• IPv6 over Low Power Wireless Personal Area Networks which defines IPv6 adaption layer and
header compression suitable for constrained radio links;

• Routing over Low Power and Lossy Networks (ROLL), which focusses on routing protocols for
constrained-node networks; and

• Constrained Restful Environments which aims to extend Web architecture to most constrained
networks and embedded devices.

More recently, IETF has been working in the area of IoT security. A key project is the Datagram
Transport Layer Security (DTLS) that is the most suitable way to achieve channel security.

ISO (the International Organization for Standardization) collaborates with its partners in
international standardization, the IEC (International Electrotechnical Commission) and the ITU
(International Telecommunication Union). These three organizations, all based in Geneva, Switzerland
have formed the World Standards Cooperation to better coordinate their activities, as well as the
implementation of International Standards.

ISO/IEC created a Special Working Group (SWG) IDO/IEC JTC 1/SWG 5 within its Joint Technical
Committee 1 in the information technology domain in 2013 [30]. IEEE and ITU also contributed to this
SWG. This SWG released a preliminary report in 2014 [31] that considered a common understanding
of IoT, market requirements, standardization gaps, and reference architectures. ISO also produced this
definition of IoT:

“An infrastructure of interconnected objects, people, systems and information resources together
with intelligent services to allow them to process information of the physical and the virtual world
and react.”

A catalogue of more than 400 existing standards that relate to IoT was examined and mapped
to the relevant IoT technology such as common interfaces and protocols, power requirements, and
security constraints. The SWG has been disbanded and was replaced by an official ISO working group
in 2014: WG10: Internet of Things. There are nearly 500 working documents on the ISO WG10 site that
address aspects of IoT including reference architectures, interoperability, security, definition and syntax.
A draft standard IoT Reference Architecture (ISO/IEC N13119) has been developed [32]. The reference
architecture describes characteristics of IoT systems, defines IoT domains, describes a reference model
for IoT systems and the interoperability of IoT entities. This working group has now been converted to
an official subcommittee of JTC1—SC41 [33]. SC41 has 3 working groups—Sensor Networks, Internet
of Things, and Wearable Technologies.

IEEE formed an IoT Technical Community that runs conferences and also publishes the IEEE
Internet of Things journal [34]. The IEEE IoT group is also engaging its stakeholders in standardization
efforts, such as IEEE P2413 a draft standard for an architectural framework for the IoT [3]. P2413
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describes IoT domains, and identifies commonalities between different domains. It also provides a
model for data abstraction and quality.

ITU initially established an IoT Global Standards Initiative [35] that aimed to promote a unified
approach to development of technical standards for IoT. This initiative ended its activities in 2015
and ITU has now established a new Study Group on IoT and its applications including smart cities
and communities.

The Simulation Interoperability Standards Organization (SISO) is also looking at opportunities
for IoT standardization from a modelling and simulation (M&S) perspective [36]. Many of the goals of
the M&S community are similar to the goals of IoT: timely environmental data (for live simulations),
representation of systems, and representation of human behavior. The IoT can provide these inputs
to the virtual world through sensors embedded in the real world that provide live environmental
feeds, and human biometric and behavior data. This would enhance representation of live entities in
Live Virtual Constructive simulations. We note that SISO researchers have applied a process model
(IEEE Std 1730) developed for distributed simulations to a simulation of IoT cyber security that can
include real devices [37].

Various other organizations and industry consortia are working on aspects of IoT standardization
under a range of projects and alliances. The main consortia include the AllSeen Alliance (includes
CISCO and Microsoft), the Industrial Internet Consortium (includes Intel, Dell, and Samsung),
Open Interconnect Consortium (includes IBM, Intel), and Thread (includes ARM and Samsung) [38].
These consortia are not mutually exclusive with some companies in several consortia. OneM2M
is another initiative that is developing specifications for machine to machine services for IoT.
This initiative also comprises the major SDOs IETF, IEEE, ISO/IEC, OGC, and ITU.

Systems Engineering will also be critical for the IoT to succeed [39,40]. Systems Engineering
Standards such as ISO/IEC 15288, Software Engineering Standards including ISO/IEC 12207 and
ISO/IEC 29110 for very small software development organizations [41] and Project Management
Standards (e.g., ISO 21500) have been developed by SDOs in recent years. However, as will be
discussed in Section 4.4, the IoT can be viewed as a Complex Adaptive System, and traditional Systems
Engineering standards may break down for such systems [42]. Table 2 contains the profiles of five key
traditional Systems Engineering standards.

Table 2. Profiles of the five Systems Engineering Standards (adapted from [43]). Note INCOSE—International
Council on Systems Engineering; SEBoK—Systems Engineering Body of Knowledge; SEMP—Systems
Engineering Management Processes.

ANSI/EIA-632 IEEE-1220 ISO/IEC-15288 INCOSE
HANDBOOK SEBoK

Content 13 processes 34
requirements 8 processes 25 processes 25 processes 26 processes

Focus of systems
life cycle

Conception and
development all systems all systems all systems all systems

Pages 110 70 70 400 850
Level of details 2/5 2/5 2/5 4/5 5/5

Context of
applications

Program and
project environment

Program and
project

environment

Enterprise
environment

Enterprise
environment

External
environment

Publication Year 1998 2005 2008 2010 2013
Reversion
frequency 2/5 2/5 5/5 3/5 1/5

No. SEMPS 3 1 12 12 12
SEMP’s

proportion 3/13 1/14 12/25 12/25 12/26
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3. How can OR Support the Future IoT?

3.1. The Mathematical Tools and Techniques of OR Which May Support the IoT

Below we give a brief synopsis of the main OR tools and techniques which may support the
IoT, and our reasons for thinking so. These are drawn from OR textbooks, such as Daellenbach and
Flood [44] and the many journal articles and conference papers we have reviewed for this survey.

3.1.1. Data Analytics/Databases

Data Analytics is the science of studying data to draw conclusions. With billions or even trillions
of devices connected to the IoT, there will be vast amounts of data including identification, positional,
environmental, historical, and descriptive data [45]. This IoT data will create data management
and analysis issues. According to Ma et al. [46], IoT data will have characteristics of heterogeneity,
inaccuracy, massive real time, and implicit semantics leading to significant data management issues.

Cooper and James [45] and Ma et al. [46] addressed challenges for database management
in IoT that will bring vast amounts of data. Data is categorized into RFID, address/identifiers,
description, positional and environmental, sensor, historical, physics and command. eXtensible
Markup Language (XML) offers a means of representing unstructured data; while Structured Query
Language (SQL) is unlikely to be useful since IoT data will not be uniform and structured. Service
Oriented Architecture may be used to support interoperability among IoT systems. Data indexing,
archival and protection must also be considered with respect to national data protection laws. Methods
for querying semi-structured data, data streaming, sampling continuous data and data mining will
need to be developed to manage the size of IoT databases.

3.1.2. Decision Analysis/Support Systems Including Analytic Hierarchy Process (AHP), Multi-Criteria
Decision Making (MCDM) and Data Envelopment Analysis (DEA)

Dijkman et al. [15] developed a business model framework for the IoT using a literature survey
and interviews. Their model has nine building blocks: customer streams, value proposition, channels,
customer relations, revenue streams, key resources, key activities, key partners and cost structure.
The model showed that the value proposition is the most important item while customer relationships
and key partnerships are also considered important. Data were sourced mainly from Netherlands and
US as the authors acknowledge.

Westerlund et al. [19] explored the challenges relating to the development IoT business models.
These include the diversity of the objects, the general immaturity of IoT and the unstructured nature
of the IoT ecosystems. They suggest a potential solution with a conceptual model that includes value
drivers, value nodes, value exchanges, and value extracts as pillars.

Kim and Kim [16] adapted an Analytic Hierarchy Process model to three IoT applications:
healthcare, logistics, and energy management using criteria of technology, market potential, and
regulatory environment. Survey data that were analyzed using the model showed that market
potential was the most important criterion in the first layer of the model and concluded that IoT
logistics is the most promising application from the perspective of ICT experts. Healthcare needs to
overcome user barriers and technical reliability to be accepted whereas energy management requires
government support (Korean Smart Grid initiative [11]).

Petkov et al. [47] combined multiple criteria decision making with a soft systems approach for
what they term ‘messy problems’, ill-structured situations with multiple independent problems.
This approach is applied to several test cases including a rural telecommunication system in
South Africa. This approach may also be applicable to complex ICT systems that will make up
the IoT.

Decision support has been widely used for IoT applications, generally for assessment of potential
IoT solutions. It is likely to continue to be an important tool as the range of IoT applications develops.
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3.1.3. Game Theory

Game theory is a method of understanding interactions among groups in conflict with each other.
Each side can choose between several actions with the outcome dependent on the actions taken by
all players.

Haghighi et al. [48] used a game theory approach to optimize task distribution and energy
consumption in IoT networks. An auction-based approach to determine prices was adopted to solve
conflicts among network peers.

Wang et al. [49] applied a game theory approach with a Pervasive Multipath Architecture
approach to investigate multi-tasking and data distribution in the IoT using the OPNET simulation tool.
The scenario studied featured multiple selfish overlays delivering traffic in a shared multipath network.
The optimal criterion used is to maximize each overlay’s utility function.

Game Theory has also been applied to develop business models [50] as discussed in Section 4.3.

3.1.4. Simulation

Discrete-event simulation simulates the operation of a system as a discrete sequence of events
with each event marking a change of state of the system. Between events, no change in the system
state is assumed. Discrete-event simulation can be applied to the study of issues in IoT networks.
Dyk et al. [51] applied discrete-event simulation to model a heterogeneous sensor network with
smart devices connected. The model can incorporate the effects of phenomena such as weather and
crisis situations on the network state. This could be readily extended to examining similar effects for
heterogenous IoT networks.

There are many simulation models available for networks that can be applied to IoT. Musznicki
and Zwierzykowski [52] identified 36 such systems for WSNs ranging from low level emulators to
simulators for topology and environment (see Section 4.1). Atarraya, for example, is a discrete-event
simulation that simulates topologies for networks enabling testing of algorithms and protocols [53].
An earlier survey of WSN simulation tools was done by Korkalainen et al. in 2009 [54].

Discrete-event simulation would appear to be an ideal approach to studying many of the design
and engineering challenges for IoT such as scalability and energy efficiency by constructing a synthetic
environment where new concepts can be safely tested. We discuss in more detail how simulation can
support the IoT research challenge of Scalability in Section 4.1.

3.1.5. Fuzzy Systems Theory/Artificial Neural Networks

Fuzzy systems use fuzzy logic where input variables can take on continuous values, in
contrast to digital systems that operate on discrete values. Ribiero et al. [55] developed a fuzzy
information algorithm using multi-criteria decision analysis and applied it to spacecraft landing safety.
This technique could also be applied to IoT research areas.

Artificial Neural Networks represent an approach to Artificial Intelligence that uses a network of
many interconnected units generally organized into layers. These units operate on inputs from units
in lower layers using an approach that mimics the human brain.

Fuzzy logic and artificial neural networks are important techniques in data fusion, in which the
data from many sensors is combined in various ways [56,57]. This is an important function in the IoT.

Chen et al. [58] developed an artificial neural network trust and reputation model and applied it
to predict vulnerability of the IoT against malicious attacks.

3.1.6. Routing/Scheduling

Routing describes techniques to select best paths for a set of processes. Scheduling is an OR
technique for allocating time to tasks for machines, jobs, and projects.

Both these techniques have application for the IoT. For example, routing could be applied
to network design while scheduling could be applied to traffic management within the IoT.
Dhumane et al. [59] conducted a survey of current routing protocol issues used for IoT and identified
challenges for research including context awareness, heterogeneity, node death, topology changes,
scalability, latency, incentive based routing, congestion control, data security, data redundancies, and
multipath routing. They emphasized the importance of routing processes for the IoT and demonstrated
the need to develop new routing protocols.
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3.1.7. Reliability Theory

Reliability theory can describe the probability of a system achieving its expected performance.
The reliability of a system is determined by considering the reliability function of each component.

Yong-Fei et al. [60] used reliability theory to evaluate the reliability of the IoT. Five reliability
functions were included for perception layer, Internet, mobile network, satellite communications,
and application layer. A value of 0.87 was determined for the overall IoT reliability based on their
assumptions. However, this must be considered as an estimate only since the IoT is still rapidly
developing and the authors may not have considered all factors.

Reliability Theory can further be applied to other IoT requirements such as Quality of Service
and even data management. How reliable is the data acquired by the IoT? Ma et al. [46] note that the
reliability of data from IoT sensors will depend on factors such as data loss, noise, invalid data, and
data redundancy where several sensors have measured the same object. A reliability model for IoT
data could be constructed from consideration of all these factors.

We discuss in more detail how Reliability Theory can support the IoT research challenge of
Robustness in Section 4.2.

3.1.8. Queuing Theory

Queuing theory is the mathematical study of queues. It is used in OR for developing more efficient
queuing systems such as customer service in a bank. Queuing Theory is an ideal tool for studying
behavior of computer networks where the messages (packets) are the customers and the service is the
assignment of the messages to communication links [61]. Queuing Theory can help determine network
response and throughput by making assumptions about message distribution and node response.

Mahamure et al. [62] applied queuing theory to a hypothetical IoT email system that uses the IMAP
protocol (Inter Mail Access Protocol). They propose to use email for human users to communicate with
IoT devices such as found in the future home (appliances, security devices etc.) using SMS messages.

3.1.9. Graph Theory

Graph theory uses geometric structures (graphs) to model relations between objects. It was
invented in the 1700s to solve the Konigsberg Bridge Problem by the famous Swiss mathematician
Leonard Euler [63].

Yao et al. [64] applied graph theory to assist in defining and understanding the IoT. Graph theory
is used to show that the IoT is the union of three networks: a topological network, a data-functional
network and a domi-functional network. It has also been applied to computer network security [65],
mobile phone networks, ad-hoc networks, sensor networks and fault tolerance computing [66],
all relevant to the IoT.

3.1.10. Other OR Techniques

Other OR techniques that can be applied include evolutionary algorithms such as genetic
algorithms (GA). These are a class of search heuristics modelled on nature that were developed
in 1975 by Holland [67]. Esmaeili and Jamali applied GA to optimize energy consumption, a key issue
for IoT networks [68]. These authors developed and tested several new algorithms to optimize energy
consumption in WSNs.

Singh et al. [69] surveyed optimization techniques for RFID used in the IoT, finding that
approaches including Ant Colony Optimization, Differential Evolution, Particle Swarm Optimization,
GA Optimization, and Artificial Bees Colony Optimization have been proposed. Comparison of these
approaches showed that no single method was ideal; each had its strengths and limitations.

Fortino et al. [70] applied an agent-based paradigm to simulate agent-oriented IoT systems in
various scenarios assuming that the IoT is mostly composed of smart objects (as well as RFIDs).
They found this to be an effective approach to study IoT features such as traffic load and protocol
reliability. Houston et al. [71] recently applied this technique to study return on investment for IoT.
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3.1.11. Summary

Table 3 contains a non-exhaustive list of mathematical OR techniques that have been applied to
understand and develop the IoT.

Table 3. Mathematical OR techniques applied to IoT.

Method Application

Game Theory Multi-tasking, data distribution
Math programming—Linear, nonlinear, integer,

dynamic Network design

Simulation Environmental effects on IoT
Neural Nets Security; sensor data analysis

Stochastic (Markov) Processes Reliability/robustness
Graph Theory Network flow; Routing

Queueing Theory Network response;
Critical Path Method Network

Decision Analysis—Multi criteria, analytic hierarchy Assessing business models for IoT
Genetic algorithms Energy consumption

Optimization approaches RFID

Agent-based modelling Traffic load; protocol selection;
smart object interaction

Table 4 lists the main IoT Technical and Business research challenges together with OR tools
that can be applied. As in Section 2.2, the Technical research challenges are divided into three areas:
Design, Scientific/Engineering and Operations/Management. Many OR approaches are being applied
to understand and develop the IoT, although these efforts are still in their early stages.

Table 4. IoT Technical and Business Research Challenges and OR Tools/Techniques applicable.

IoT Challenge OR Tools/Techniques Applicable Examples; Notes

Design

Architecture Data analytics, optimization, game theory Wang et al. [49] use GT
to study architectures

Interoperability (Addressing/
Naming Objects)

Scalability Simulation Musznicki and Zwierzykowski [52]

Mobility Simulation

Security/Privacy Data analytics; fuzzy systems; graph theory Chen et al. [58]; Yao et al. [64];
Shirinivas et al. [66]

Scientific/Engineering

Energy Efficiency/Power Simulation; Game theory; decision analysis Haghighi et al. [48]—GT;
Kim et al. [16]—decision analysis

Reliability/Robustness Reliability theory Yong-fei et al. [60]—RT

Management/Operations

Software Development Expect simulation to help? Musznicki et al. [52]

Availability Reliability theory; simulation should apply

Data Management/Information Fusion Game theory; data analytics Cooper and James [45] Petkov et al. [47]

Cloud Computing Decision analysis; data analytics Cooper and James [45] Petkov et al. [47]

Performance (Quality of Service)
Optimisation; reliability theory;

queuing theory; math programming;
stochastic processes

Business

Business Models Decision analysis; Game theory;
Agent-based modelling; Data analytics

Dijkman et al. [15]; Westurland et al. [19];
Houston et al. [71]

Use cases (e.g., Korea/China);
killer apps (e.g., medical) Decision analysis; MCDM Kim et al. [16]; healthcare, energy
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3.2. Application of General Systems Thinking to the IoT

In this paper we follow the classification of Systems Thinking approaches used by the
comprehensive review of Mingers and White [2]. An alternative classification of Systems Thinking
approaches, and the types of problem situation for which they are considered most appropriate, are
given by Jackson and Keys [72]. Table 5 depicts the Systems Thinking approaches we consider,
cross-referenced to the main IoT research challenges to which we think they could contribute.
We do not claim that these are the only IoT research challenges that may be addressed by these
Systems Thinking approaches, but they certainly include the most important. All these research
challenges may be supported by more than one Systems Thinking approach, and this is why we
show the CST/Multimethodology approach as being applicable to all. In Section 4 we discuss in
detail how we see some of the research challenges being addressed by one of the applicable Systems
Thinking approaches.

Table 5. Cross referencing the main IoT multi-disciplinary Research Challenges to which the various
Systems Thinking Approaches may make an important contribution, marked as x.

Systems Thinking
Approach →

GST/
Complexity

Theory

Self-Organizing
Systems
Theory

Cybernetics/
System

Dynamics

Soft
Systems

CST/
Multimethodology

Network Design x x x x
Complex Adaptive System x x x x

Self Organizing System x x x x
Intelligence & Context

Awareness x x x x x

Software Development x x x
Network

Management/Operations x x x x

Technology Transfer x x x
Politics/Cross Border Data Flows x x

Work Restructuring x x
Industry Investment in IoT x x x

Ethical & Legal
Framework of IoT x x

Security & Privacy x x

3.2.1. General Systems Theory (GST)/Complexity Theory

General Systems Theory (GST) was founded by Ludwig von Bertalanffy, an organismic
biologist, in the mid-1920s with the intention of identifying and describing systems concepts which
could be applied across a range of disciplines, initially to the physical, biological and human
sciences and later to the social sciences [73]. These concepts include parts/wholes/sub-systems,
system/boundary/environment, structure/process and emergent properties [2]. Complexity Theory
is a branch of GST applicable to Complex Adaptive Systems (CAS), which is a type of system that
exhibits unpredictable behavior arising from non-linear spatio-temporal interaction among a large
number of components and sub-systems [74]. It was developed in the 1970s in a range of disciplines
including biology, chemistry, mathematics and economics. In the 1990s it was extended in the US by
Holland [75], Bar-Yam [76], and others and is seen as an approach which may assist in tackling the
seemingly intractable problems of the modern world including overpopulation and the depletion of
the earth’s resources, business globalization, the emergence of terrorism, and the extremely complex
problem of global warming. In this paper we take a holistic view of the IoT as a CAS, which is why it
needs to be tackled by multiple methods drawn from the mathematical techniques of OR and several
Systems Thinking approaches, and many other disciplines including law, economics and sociology.
We discuss in more detail how GST and Complexity Theory can be applied to the IoT in Section 4.4.



Systems 2017, 5, 24 13 of 32

3.2.2. Self-Organizing Systems Theory

The term Self-Organizing Systems refers to a class of systems that are able to change their
internal structure and their function in response to external circumstances [77]. The concept was
introduced by Ashby in 1947 [78] and the theory started with the study of living systems, but now has
applications in fields including organization theory, business strategy, information systems, law and
sociology. Note that self-producing or autopoietic systems are non-teleological self-organizing systems,
i.e., they do not have a specific purpose except their own existence [79]. Note also that many
self-organizing systems are CAS. The networks and systems making up the IoT will be subject to
disasters, outages and other adversarial conditions, and so will need to be self-organizing. We discuss
in more detail how Self-Organizing Systems Theory can be applied to the IoT in Section 4.5.

3.2.3. Cybernetics/Systems Dynamics

The field of cybernetics was founded by Norbert Wiener in the 1940s with the aim of establishing
basic principles of automatic control or response mechanisms used by living systems and autonomous
operations of complex electromechanical systems [80]. Stafford Beer’s Viable Systems Model (VSM)
incorporates the principles of cybernetics into an abstract model of any viable or autonomous
system [81]. Today the theory has a broad range of application areas including biomedical systems,
man-machine systems and large scale socio-economic systems [2]. In this paper we only consider
cybernetics as it is embodied into the technique of System Dynamics (SD), which models system
behavior in the form of differential equations that relate the time trajectory of system variables, called
stocks or levels, and rates-of-flow. We discuss the application of SD to the IoT research challenge of
Software Development in Section 4.7.

3.2.4. Soft Systems

Soft Systems methods are a family of approaches for dealing with complex problem situations,
which are characterized by multiple actors, multiple perspectives, incommensurable and/or conflicting
interests, prominent intangibles and key uncertainties [2]. They include hypergame analysis,
Soft Systems Methodology (SSM), interactive planning, social systems design, cognitive mapping,
and strategic assumption surfacing and testing. In this paper we only consider SSM as one of the
authors (RBW) has used it extensively in researching some very complex socio-technical systems [82,83].
We discuss the application of SSM to the IoT research challenges of Intelligence and Context Awareness
in Section 4.6, and that of IoT Technology Transfer in Section 4.8.

3.2.5. CST/Multimethodology

All Systems Thinking approaches aim to view the IoT in a holistic (non-reductionist) way,
i.e., not view the IoT components and research challenges in isolation from each other and accept that
the IoT will have emergent properties. But it is generally recognized that the different Systems
Thinking approaches have different strengths and weaknesses. The approaches can be “hard”,
which include the mathematical tools and techniques of OR, “soft”, such as SSM, or other
Systems Thinking approaches like SD, which have both “hard” and “soft” aspects and so cannot
really be classified as exclusively one or the other. Critical Systems Thinking (CST) and the
Multimethodology approach take a “contingency approach”, and adapt the approach taken to the
particular problem/research challenge. CST is sometimes regarded as the third stage in the evolution
of the history of OR from “hard” to “soft” to “critical”, and focusses more on the methodology of OR
practice than its tools and techniques. These approaches [84–86] basically say that different aspects
of a problem situation, or different stages in an OR intervention, need to be tackled by different
OR techniques or systems approaches. The research challenge of investing in the IoT has been
addressed by several approaches, some “hard” and some “soft” and we discuss the application of the
Multimethodology approach to this problem in Section 4.9.
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4. Detailed Discussion of some IoT Research Challenges Which OR and Systems Thinking May
Help Address

4.1. IoT Scalability Studied Using Simulation

The first key challenge according to Stankovic [6] is scalability. The IoT will have billions or even
trillions of devices connected and these must be managed, maintained, operated and supported using
appropriate addressing conventions, protocols, and power. Existing approaches to these challenges
may well be inadequate and fail to scale for the anticipated huge number and range of IoT objects.

A simple visualization can show how IoT networks can rapidly become extremely complex.
Figure 2 shows three IoT networks composed of equal numbers of sensors and actuators where all
nodes are connected to each other. The number of connections grows rapidly from only 6 for a 4-node
network, 120 for a 16-node network to 2016 for a 64-node network, since the number of connections
for such an N-node network is trivially N × (N − 1)/2.
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Figure 2. Scaling in IoT networks with: (a) 4 nodes; (b) 16 nodes; and (c) 64 nodes (red circles
represents sensors; black circles actuators) (These images were created using the D3 javascript library
(https://d3js.org/). One of the authors (PJR) is experimenting with the use of D3 for simulation of
the IoT).

To assess scalability, discrete-event Simulation can be applied. As shown, IoT networks
can become so complex that traditional analytic methods will not be tractable. Discrete-event
simulation enables a hypothetical system to be studied under a wide variety of conditions and
provide averaged results from running the same scenario over many replications. Dyk et al. [51] and
D’Angelo et al. [87,88] have developed simulation systems for the IoT. D’Angelo’s model, for example,
addresses scalability using a multi-level simulation approach where both coarse and fine grained
models are combined.

Musznicki and Zwierzykowski [52] identified 36 such systems in 2012 for WSNs and classified
them into eight types: (a) emulators; (b) topology simulators; (c) environment and wireless simulators;
(d) network and application level simulators; (e) cross level simulators, then a series of simulators
based on specific software; (f) NS-32 based simulators; (g) OMNeT++ simulators; and (h) Ptolemy II
based simulators. Many of these could be applied to address IoT issues such as scalability including
type (b) topology simulators such as Atarraya [53] that enables comparison of performance and
efficiency of different network topologies, type (c) environment and wireless simulators such as the
Wireless Sensor Network Localization Simulator that can determine the location of sensor nodes in
different sized networks and type (d) network simulators such as Sensor Security Simulator that can
evaluate security in large sensor networks and SIDnet-SWANS that can model network behavior at
different levels of granularity.

Discrete-event simulation is readily applicable to studying problems such as traffic flow through
an IoT network of nodes. Events would include transmission of packets from one node (perhaps
triggered by a sensor) and their reception and processing at other nodes. With many expected wireless
nodes, issues such as propagation modelling may also be required [89]. Packet arrival and transmission
times would be determined by sampling from appropriate probability distributions. Simulation of the
system would show how it performs as a function of number of nodes.

https://d3js.org/
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4.2. IoT Robustness Studied Using Reliability Theory

Related to scalability are robustness and reliability. The IoT will be composed of billions of
electronic devices, many of which may be impossible to reconfigure or replace in contrast to one’s
desktop computer or tablet that requires regular software updates and possibly hardware upgrades
for more memory, CPU power, or disk space. As stated by Metcalfe’s Law, the more interconnections
between independent components or subsystems within a system, the greater the complexity and
higher the probability of system failures [39]. The ability of the IoT to operate reliably long term
despite hardware and software failures is critical to gain user acceptance and trust. According to
Kempf et al. [90], bit errors can lead to unmanageable problems in large networks that will characterize
the IoT.

OR techniques such as reliability theory can readily be applied to predict IoT robustness and
reliability. Yong-Fei and Li-Qin [60] developed an approach using reliability theory for the three IoT
subsystems of perception layer, network layer and application layer. Their model assumes that the
transmission networks are independent and that the perception and application layers are dependent
so that total reliability RT is given by:

RT = R1 × R5 × (1 − ∏ 4
k=2(1 − Rk)), (1)

where R1 and R5 are the reliabilities of the perception and application layers, and R2, R3, R4 are the
reliabilities of the internet, mobile network, and satellite communication network. This model could
be expanded and updated to include other IoT characteristics and features of newer IoT devices as
they come into operation, leading to additional terms in the reliability equation.

Reliability theory could also be applied to other features of the IoT such as the reliability of the
data collected [90]. Bonomi et al. [91] discussed the application of so-called Fog Computing to the
IoT while Madsen et al. [92] estimated the reliability of this approach by combining the reliability
requirements of the grid and cloud with those of the sensors and actuators in the IoT and demonstrate
that a reliable system can be achieved.

The reliability of the IoT software itself may be another significant issue since software reliability
can be considered as a special case of reliability theory. Hardware reliability is determined by
component or material failure that prevents a system performing its intended function. Software
reliability in the IoT is more difficult to assess since software may produce unanticipated results
for many reasons such as unusual data coming from another device that was not considered in the
design phase. Obsolescence of embedded software in IoT systems that cannot be readily maintained
(for example, IoT sensors in a nuclear reactor exposed to radiation) may also affect reliability.

4.3. IoT Business Investment Studied Using Game Theory

Establishing business models for the IoT is a key challenge that can be addressed by OR. Decision
Analysis has already been applied to this area. However other techniques such as Game Theory (GT)
and Discrete-event Simulation may also be applied.

GT has been used to explore technical issues such as multipath selection [49] and data
distribution [48] in IoT networks. It could also be used to determine payoffs from different application
areas of the IoT. GT has long been applied for business [50] to determine optimal strategies. Major US
corporations such as Coca Cola and Pepsi have applied GT to assess business tactics.

Niyato et al. applied GT to study price competition of IoT sensing services noting that traditional
system optimization may be unsuitable for IoT due to its complex, heterogeneous nature with multiple
entities and incentive mechanisms [93]. Considering the spectrum of potential IoT applications and
markets ranging from personal (wearable devices), home (automation, security), transport (driverless
cars), enterprise (e.g., smart cities, healthcare) (see [94]), GT could be applied to assess market strategies
for developing and timing the release of new IoT products. Home automation systems, for example,
may not all be provided by the same supplier but will need to be interdependent and interoperable.
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Companies providing competing or complementary systems could use GT to determine appropriate
strategies to maximize their market penetration and profits.

Which games types might be most appropriate to assist with making IoT business strategies?
Of the 13 game descriptors defined in Wikipedia (Game Theory: https://en.wikipedia.org/wiki/
Game_theory), the likely types to study business investment are: (1) cooperative/non-cooperative;
(2) symmetric/asymmetric; (3) zero sum/non-zero-sum; (4) simultaneous/sequential; (5) perfect/imperfect
information (note that games can have a combination of these characteristics). Consider a situation
where three companies provide home automation systems. While each company can supply the
full range of equipment and services, Company A specializes in internal devices (such as smart
refrigerators and lighting systems), Company B specializes in external devices (watering systems,
weather monitors), while Company C specializes in security systems (cameras, monitors, alarms) as
shown in Table 6.

Table 6. Three IoT companies and competing business strategies.

Company Specialty Potential Investment Area

Company A Internal systems External systems
Company B External systems Internal systems
Company C Security systems All non security systems

Strategies for each company to obtain a profitable share of the marketplace could be determined
using the cooperative gaming approach while the decision to invest in their non-specialist areas could
also be assessed using other gaming approaches such as constant sum games. In the latter case,
this leads to 23 = 8 possible outcomes since each company has 2 strategies: to decide whether to
diversify or not. A 3-dimensional payoff matrix is required to describe this case [95].

4.4. Complex Adaptive Systems Theory and the IoT

A Complex Adaptive System (CAS) is a “complex macroscopic collection” of relatively “similar
and partially connected micro-structures” formed in order to adapt to the changing environment
and increase its survivability as a macro-structure” (wiki and [96,97]). CAS theory was pioneered by
John Holland, a computer scientist and founder of the Genetic Algorithm technique, to describe
systems with many components that interact and can adapt [75]. The natural world has many CAS
systems such as large molecules, human brains, and human societies and economies.

Although early work [98] suggested that the Internet did not exhibit emergent behavior since
the packet routing follows an engineering design, it is now generally regarded as a CAS since it is a
complex open network that uses adaptive behavior [99]. The IoT is an evolution of the Internet that
will dominate the human component by 2020 and thus is also a CAS. CAS theory has also been applied
to defense issues where it has been noted that defense systems are now too complex for any human
to comprehend [100]. Since a defense force can be shown to exhibit CAS properties, CAS theory can
help understand emergent behaviors in adaptive defense systems by analogy with naturally occurring
CAS such as living organisms. A NetLogo (https://ccl.northwestern.edu/netlogo/) agent-based
CAS model was developed to understand various terrorist scenarios and showed counter-intuitive
outcomes [101].

Yan and Ji-hong [102] applied CAS to analyze WSNs. They showed that a WSN has all the
characteristics of a CAS such as complexity, emergence and self-organization. Haghnevis and
Askin [103] developed a framework for Engineered CAS. They suggest that this could be applied
to predict properties of complex engineered systems such as WSNs, and by extension the IoT.
Batool et al. [104] discussed the development of a NetLogo agent-based model for CAS. This looks to
be a promising approach for modelling the IoT as a CAS using agents.

How can CAS assist in exploring IoT issues and solving challenges? CAS should be able to
contribute towards the set of Design Challenges in Table 5. For example, they could provide a better

https://en.wikipedia.org/wiki/Game_theory
https://en.wikipedia.org/wiki/Game_theory
https://ccl.northwestern.edu/netlogo/
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understanding of emergent IoT behaviors as IoT networks expand in numbers and types of things
added (scalability) and have already been applied to networking issues, at least for WSNs. Further,
Hernandez-Bravo and Cattero [105] investigated a hierarchical approach to model complexity in IoT
and Smart Cities; however this approach had limitations and the authors suggested an alternative
approach using semi-lattice structures and reasoning tools.

4.5. Self-Organizing Systems and the IoT

Self-organizing systems are systems that evolve into ordered systems from interactions among
components of an initially disordered system. Self-organization concepts date from the 1940s
and 1950s when neural networks were first proposed [97]. Scale-free computer networks can be
self-organizing. CAS include self-organization as one of their characteristics. Wikipedia is an
example of a self-organizing system; there is no central editor and numerous, mainly anonymous
contributors [106]. It is continually created and updated with its reference articles tending to become
more comprehensive and reliable due to editing. Blogs can also be considered as self-organizing
systems [106].

Wenyang and Xue [107] showed how self-organization is needed to organize smart appliances in
an IoT application such as a smart home to enhance usability and thus gain consumer support. Object
recognition, IoT sensing devices and network integration are all required for such self-organization.
Yamamoto et al. [108] described a self-organized system for online shopping. The online system self
organizes, adapting to users’ needs by monitoring IoT data to analyze user behavior and modify the
price and presentation of products and services.

IoT networks will need to be self-organizing [109] so that they can continue to operate as designed.
IoT devices must monitor their environment so that when a failure occurs, they can connect to
neighboring devices and cooperate, establish communication paths and then recover from local faults
to restore normal operations. Challenges include cross layer design for self-organization, heterogeneity
in computation and communications of IoT networks, multi-channel radio communications, load
balancing, and delay tolerant networking.

4.6. Intelligence and Context Awareness in the IoT

Context-aware computer systems have been an important research challenge for at least
20 years [110], and will become more so for the IoT, which will not only provide information to
users but include intelligent processors which will take actions such as monitoring our personal health
and fitness and controlling traffic in our cities, which will affect personal, business and community
life in major ways. Context-aware computer services are defined as software applications that can
operate in a dynamic environment and have the capability to run anytime, anywhere and on any
device with minimal user attention. Context is defined as “any information relevant to the interaction
of the user with the service, where both the user and the application’s environment are of particular
interest” [111]. Context awareness is a complex process due to the diversity of sources from which
context information is obtained. In conventional services input comes mainly as input from the user
and this manually supplied information drives the service execution. Context-aware services, on the
other hand, rely on information that arises from a variety of sources, such as sensors, repositories
and users. When multiple users are involved, who may have different requirements, problems of
conflict may arise [112,113]. Context aware service creation is described in the technical literature
as being by means of two complementary approaches, one based on providing a general purpose
context infrastructure and the other, termed context modelling, that uses a context model tailored to
the services provided [111].

Systems Thinking can contribute to this research challenge via Complex Adaptive Systems
Theory, which originated in the study of living organisms. Living organisms are aware of their
environment/context in different ways and degrees through information derived by their sensors
(sight, hearing, touch, smell, etc.) and conveyed to the brain, which processes this information to
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form some sort of model of the context in which they are embedded. In humans, a very sophisticated
model of their environment/context, conscious or unconscious, is constructed by poorly understood
cognitive processes.

The Soft Systems Thinking approach can also contribute to the research challenge of designing
context-aware information systems in the IoT. Most of the literature on context-aware systems is
technology focussed, and to deal with the full complexity of context modelling is beyond the scope of
this paper. However to clarify some of the issues of context modelling we present an SSM conceptual
model of a very simple context-aware application, a home security system. To introduce the idea,
Figure 3 is a type of abstract conceptual model [114], which is a set of very general activities which
could be tailored to any root definition. In a context-aware system, a service can be provided in
different ways, depending on the context. Context modelling defines the alternative ways, and the
criteria for selecting which one or more ways will be acted on. As in all correctly constructed SSM
conceptual models, activities are needed to monitor the doing and taking control action to try to
ensure the meeting of criteria of efficacy (is the system doing what it is supposed to?) and efficiency
(is it being done with a minimum use of resources?) [115].Systems 2017, 5, 24  19 of 33 
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In Figure 4 below we present an SSM conceptual model of one of the context aware services in a
“smart home” [113]. Our root definition of a simplified “Home Security Service System” is as follows:

“A system to provide home security by, when activated, collecting primary security sensor data
including entry and exit of people, movements in the property and CCTV images of areas of the
property, fusing sensor data, deciding if a security threat is likely, deciding appropriate responses to
take to security threats by means of a context model and generated secondary threat data, executing
chosen responses, and archiving of sensor and incident data”.

This conceptual model arguably contains the minimum necessary set of activities that are
required by the root definition. As discussed by Mingers [114], the root definition specifies “what”
is done, and the conceptual model depicts “how” it is done. You will note that various types of
information are input to this conceptual model (represented in Figure 4 by heavy arrows) and a
“context model” is also used by three of the activities. The input information may be used to determine
the context or be required for activities independently of the context. Our root definition does not
specify “how” the context model works, but it does specify that a context model will be used to decide
“how” the system will respond to security threats. In Figure 4 some options, not specified in the root
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definition, are annotated on some activities for understanding only. Also some mathematical logic
statements (IF . . . THEN . . . ELSE) are annotated on the context model to clarify how it might work
in this application, for understanding only. In the real world (as opposed to the conceptual world of
our model) a context model can be a very complex computer program, and can be classed as either
an Expert System (which often uses mathematical logic), an Operations Research Model (such as
a Multi-Criteria Decision Model or a Discrete-event Simulation Model) or something else. In our
illustrative conceptual model the context model is used for three activities:

• Fusion of sensor data;
• Deciding if a security threat is likely; and
• Deciding on appropriate responses to a threat
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Fusion of sensor data is, in general, a process that integrates multisource heterogeneous data
from multiple sensor measurements in order to improve processing efficiency and provide advanced
intelligence [116]. Deciding if a security threat is likely is a process that may use a variety of techniques,
usually based on probability theory. Deciding on appropriate responses to a threat is a process that
combines the context information deduced from secondary sensor data (in our simple example this
includes the security threat probability and location) together with other data needed for responses
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to a threat, usually stored on a repository. A comprehensive survey of context-aware computing for
the IoT is given by Perera et al. [117]. This covers many technical issues including the categories
of context information, primary and secondary context data and context reasoning decision models.
We note from the last of these topics that the simplest, most straightforward and most popular method
of context reasoning is in terms of rules (which have an IF . . . THEN . . . ELSE format), as depicted
in Figure 4. These technical details are beyond the scope of this paper; our SSM conceptual model is
intended to illustrate the feature of SSM of being able to make sense of complex problem situations.

In principle, the root definition could specify the specific nature of the context model,
i.e., which of an alternative set of context models is used, or give more detail on “how” any of
the activities in the conceptual model are carried out. Wang et al. [116] discuss two main types of data
fusion, one using mathematical or computational methods and the other using semantics derived from
representations of sensor data and sensor observations. Further, OR techniques such as Bayesian and
Dempster-Shafer inference, fuzzy logic and artificial neural networks may be used in the former type
of data fusion [56]. These were discussed in Section 3.1.5. However, SSM conceptual models are meant
to be compared with the real world, in order to help make sense of, and suggest improvements to,
real world complexity, and not necessarily to be an exact map of the real world. Mingers [114]
makes a useful distinction between “conceptual hows” and “actual hows”. Conceptual hows are not
meant to describe actual activities in the real-world, but possibilities that might exist, deriving from a
particular “what”.

Actual hows refer to that which occurs in the real world, which may be incredibly complex and
reflect many and varied whats. He also notes that introducing more conceptual hows to a conceptual
model could give rise to a “what/how hierarchy” of more and more detailed conceptual models.
Note that these are alternative ways of doing things, models at the same level of resolution, not an
expansion to a higher level of resolution, which is done via root definitions of the component activities
and their expansion into sets of necessary complementary activities.

The Soft Systems Thinking approach could potentially be used to identify the requirements of
context-aware systems, which are often viewed in a very simplistic technical sense in the computing
literature [118]. Two main conceptions of context (to be distinguished from the two technical
context-aware service creation approaches discussed above) can be distinguished, the representational
view and the interactional view. The former defines context as information that can be encoded and
represented much like other forms of information (as discussed above for a home security system).
Several types of context data model are based on this view [119], as is the context metamodel of
Imen et al. [120]. The interactional view of context defines context as an occasioned property
arising from the interaction of people, artefacts and groups. An action research study of designing
a context-aware application using the interactional view [118] supported the usefulness of this view,
while calling for more sophisticated theoretical frameworks that can capture the socio-technical
complexity of designing context-aware applications. A comparison of these two views and how
they incorporate context into system design is given by Ploesser [121]. An SSM-based approach to
information requirements analysis similar to the above is given by Stowell [122].

4.7. IoT Software Development—An Application of System Dynamics

System Dynamics (SD) is a methodology for studying complex dynamic system behavior from
a holistic perspective. It was developed by Jay Forrester of MIT to model industrial systems with
physical flows (personnel, money, material and machinery), their respective accumulations, and
information-based decision-making mechanisms that control the flows to achieve desired accumulation
levels [123,124]. Forrester’s approach was to model the relationships between the various systems
components, express these as differential or difference equations, and then run the model as a computer
simulation. Causal-loop diagrams are used to show the dynamic cause and effect relationships between
various system variables and the resulting feedback loops.

A feedback loop can generate one of two types of effects, a snowball effect where a change in
state generates action that causes a bigger change in the state (a reinforcing, R, loop), or a balancing
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effect where a change in state generates action to absorb the change (a balancing, B, loop), as shown in
Figure 5. The polarity of a link (±) indicates the direction of change that a change in the cause induces
in the effect. A pair of parallel lines on a link indicates a time delay between cause and effect.
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Dutta and Roy [123]).

Since its foundation, SD has been applied to a wide range of problems, including supply chain
management, project management, IT infrastructure and strategic planning. It has been used to model
Internet diffusion [125] and similar use can be expected for modelling industry investment in the IoT
(see Section 4.9). Figure 6 shows a causal loop diagram of Internet diffusion in India.
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As discussed in Section 2.2, the future IoT is envisaged as an ecosystem or system of systems,
and SD modelling could be carried out at different levels. The highest level might be the overall IoT
core infrastructure, similar to the above Internet diffusion model, below which might be individual
application areas such as energy, health care and the smart city. At a lower level, SD could
model IoT project management, including software development. Much work has already been
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done in SD modelling of the agile software development process [126,127] and software project
management [128,129]. Madachy et al. [130] used SD to assess a hybrid plan-driven and agile process,
based on a scalable spiral model, to cope with a rapidly changing software environment. In the
context of IoT software development, where many systems must interoperate, there is much interest
in the relative effectiveness of standards versus Open Source processes [39,131,132]. As discussed
in Section 2.3, ISO has developed standards for systems engineering (ISO/IEC 15288), software
engineering (ISO/IEC 12207) and project management (ISO 21500). Further lower level standards
govern the technical design of the IoT in a layered model, which may be broadly divided into technical,
syntactic, semantic and pragmatic categories [131]. New technical developments such as software
defined networking [133] can be expected as development of the IoT gathers momentum. There is
clearly scope for SD modelling of many aspects of IoT design, development and operations.

The other main role that SD modelling can play is to model the operational use of the IoT’s
“big data”, utilizing intelligent processors. This has been done in the application area of smart
transportation in an urban environment [134], which evaluated policies for:

• Real-time train and bus schedules

• Smart traffic signalling

• Smart parking

• Autonomous and cooperative vehicles

• “Uber” vehicle sharing

Another major area for SD modelling is IoT-enabled industrial logistics systems [135,136].
These applications extend Forrester’s early work on industrial dynamics to the present day
environment of RFID identification of raw materials, work-in-progress and finished products, and the
real-time tracking, via IoT sensors, of every stage of the logistics chain.

4.8. IoT Technology Transfer—An Application of SSM

Soft Systems Methodology (SSM) emerged in the 1970s as a response to the inability of traditional
OR to deal with complex, ill-structured problem situations in which objectives are not clear or not
agreed by all stakeholders. It is a form of action research that uses conceptual models of notional
systems (“human activity systems”) to learn about, and bring about improvements to, problem
situations of all kinds. Although it has been mainly used for management problems within human
organizations, it can be used for making sense of complex socio-technical systems such as the IoT.
Many books, journal articles and unpublished consultancy reports have been written on SSM. The
most up to date account is that of Checkland and Poulter [115]. SSM studies have been reported
at Australian Society for Operations Research (ASOR) conferences since 1985, the first being that of
Watson and Smith [82]. Its place in the Systems Thinking sub-discipline of OR is now well established.

Adoption, transfer and appropriate use of the IoT infrastructure, and the education of developers,
businesses and users is a major “soft” research challenge which needs to be addressed by SDOs.
It has been reported on in a European Commission report [137]. Some work on technology transfer
in Australia (in the context of remote sensing technology) using SSM has been done by Andrew
Finegan [138]. A root definition adapted (and made IoT specific) from his work is as follows:

“An industry driven system operating within SDOs with the objective of transferring IoT
technology by: knowing about IoT technology and operations, knowing the technical, business
and social barriers to acceptance, knowing about targeted industries, selecting IoT technology to
be transferred, selecting means of transferring IoT technology, applying those means to targeted
industries, stimulating the ongoing transfer, and monitoring the success of such transfers; in order
to benefit all involved parties, in an environment of standards, industrial competitiveness, and
national and international economic development.”

The CATWOE elements (Customers, Actors, Transformation, World view, Owners, Environment [115])
for this root definition are:
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C Industry that can benefit from IoT technology transfer

A SDO researchers who wish to promote IoT technology

T Untransferred IoT technology becomes transferred technology

W Transfer of IoT technology is desirable

O Industry (that has the power to accept or reject transferred IoT technology)

E International SDOs/Industrial Competitiveness/National and International Economies

An SSM conceptual model of this root definition of an “IoT Technology Transfer System” (Figure 7)
shows the minimum necessary set of activities to define what the system does at a particular resolution
level. The logical expansion of the root definition results in a conceptual model of three subsystems,
“knowledge”, “criteria” and “application”. The activity “monitor and control” remains at the first level
of resolution. Criteria for efficacy (is the transformation working?), efficiency (is the transformation
being achieved with a minimum use of resources?) and effectiveness (is the transformation achieving
the goals of the owner, in this case industry?) are needed for monitoring and controlling this human
activity system. This can be compared with perceptions of “what we are doing”, by interviewing
appropriate people, searching written material with the model in mind, or by some other means.Systems 2017, 5, 24  24 of 33 
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4.9. Industry Investment in IoT—An Application of the Multimethodology Approach

OR support for decisions on industry investment in IoT has been discussed in Section 4.3 in terms
of the OR mathematical technique of Game Theory. A case study of the problem of investing in the
IoT has also been reported using the OR techniques of agent-based modelling and Data Analytics [71].
Several Systems Thinking approaches can also be applied to this problem situation/research challenge.
Thus it is an IoT problem/research challenge which might be best addressed by the Multimethodology
approach. In fact, all the IoT research challenges listed in Table 5 need to be tackled by more than
one systems approach, i.e., using the Multimethodology approach. In this paper, we only discuss one
systems approach for each research challenge to explain that particular approach, but a full systems
study would probably use the Multimethodology approach.

Some of the advantages and challenges of using the Multimethodology approach are listed in
Gil-Garcia and Pardo [139]. Their study of e-government highlighted the need for better research
methods for studying complex socio-technical systems, and the IoT must be one of the most complex
systems of this type. Research into the Multimethodology approach has been scarce [140] and the
OR/Systems Thinking community must address the need for better education and research in this
approach in the future.

The IoT has been described as a System of Systems (SoS) or ecosystem [141], which may be
defined as:

“A composition of systems in which its constituent systems are individually discovered, selected,
and composed possibly at run-time to build a more complex system. The constituent systems are
managed (at least in part) for their own purposes rather than the purposes of the whole and maintain
a continuing operational existence independent of the collaborative system. The resulting composed
system (the SoS) is more complex and offers more functionality and performance than simply the
sum of its constituent systems.”

Business investment in the IoT is going to be much more complex than investments in the products
and services of an individual firm, and even more complex than currently existing investments
in e-commerce over the Internet. New business models for the IoT which view it as a “business
ecosystem” will need to be developed. This is “a complex adaptive system (whose) population develops
through co-evolution with the greater environment, self-organization and emergence (i.e., the ability and process
to create new order), and adaptation to the environment” (Peltoniemi [142] quoted in Westerlund et al. [19]).
This is shown in Figure 8 below.
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Fleisch [143] provides a useful explanation of how the IoT can add business value to companies.
The IoT differs from other information systems in providing high resolution data in real time.
This reduces the cost of transferring data from the real world to the virtual world, e.g., RFID tags
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eliminate expensive manual stock taking and keying of data into PCs. Fleisch’s analysis identified
seven ways that the IoT adds business value, including proximity triggers, e.g., self checkout in
libraries, automatic sensor triggers, e.g., networked smoke detectors, and automatic product security,
e.g., anti-counterfeiting cryptography. It shows that the IoT represents a quantum leap forward from
the Internet and has the potential to become a tool that advances the entire discipline of how to manage
organizations and complex systems.

Another Systems Thinking approach, System Dynamics (SD), has also been applied to industry
investment in new technology, in particular the diffusion of the Internet in India and China [125].
In principle, industry investment in the IoT could be modeled in a similar way. As these authors
discuss, SD can represent quantifiable as well as “soft” variables, which is useful since the diffusion
context has both social and technical aspects. As discussed in Section 4.7, the basic premise in SD is
that system behavior results from interaction among its feedback loops. Various standard feedback
loops or archetypes have been identified, including “Fixes that Fail” and “Shifting the Burden” [144].
The dominant structure in Internet diffusion was found to be the Contagion Effect: innovators start the
adoption process and then, by a communication process—the contagion effect—spread the word to
the remaining population and the adoption process gradually gets taken over by imitators. Ultimately
there are no new customers left, and the adoption tapers off, resulting in market saturation. There are
also negative feedback effects on adoption, such as concerns about security issues, and the dynamics of
Internet, and IoT, diffusion depends on the balance between these opposing feedback loop structures.

5. Conclusions

This paper gives a brief overview of the Internet of Things (IoT), research challenges to its
design, use and widespread adoption, and the important contemporary worldwide efforts to develop
interoperability standards. The aim of the paper is to survey the application of Operations Research
(OR) methods, including the OR sub-discipline of Systems Thinking, to the IoT. The methods were
subdivided into “hard” OR tools and techniques, which mainly address the technical and business
challenges of the IoT, and Systems Thinking approaches, which can address both technical, business
and non-technical challenges, including social, legal and ethical challenges. The research for the paper
included review of a very large number of journal articles, conference papers and industry reports
on the IoT, the numbers of which are rapidly increasing as the IoT has become a popular area for
academic research and business investment. Most of this work is theoretical and few case studies have
been reported. Reports on the application of OR and Systems Thinking to the IoT have so far been
relatively scarce, although their numbers can be expected to increase in future years. Nevertheless,
we were surprised at the amount of work on OR applied to the IoT that is out there, so far mainly in
conference papers. The OR journals have been slower to report this application area, although many
papers on the adoption of new technology in general have appeared in recent years.

Our review has shown that OR techniques are starting to be applied to some of the major
research challenges of the IoT, particularly that of Data Management, where the OR sub-discipline
of Data Analytics is developing new approaches to the analysis of “big data” and has become a
field whose skills are much in demand by business. The challenge of developing business models
for investing in the IoT is also seeing a significant amount of work done by OR practitioners in the
field of Decision Analysis, including Game Theory, Analytical Hierarchy Process (AHP) and Data
Envelopment Analysis (DEA). The more Information and Communications Technology (ICT)-oriented
challenges of the IoT such as network architecture have not attracted as much OR attention as yet,
although the OR techniques of Routing and Graph Theory have much potential for contributing to the
solution of such problems. Few case studies which attempt to evaluate the efficiency and effectiveness
of the IoT have been reported, partly due to its complexity and partly due to the lack of real-world
data with which to evaluate such performance measures as return-on-investment (Houston et al. [71]).

In this paper we discuss some selected research challenges and applicable OR methods in greater
depth—the breadth of topics in the paper precluded doing so for all research challenges and OR
methods. Of the “hard” OR methods the topics selected were: the application of Simulation to the



Systems 2017, 5, 24 26 of 32

challenge of Scalability, the application of Reliability Theory to the challenge of Robustness and the
application of Game Theory to the challenge of industry investment in the IoT. Of the Systems Thinking
methods the topics selected were General Systems and Complexity theory, Self-organizing Systems
theory, the application of Soft Systems Methodology (SSM) to Intelligence and Context Awareness,
the application of System Dynamics (SD) to Internet/IoT Diffusion and Software Engineering, the
application of SSM to Technology Transfer and the application of Multimethodology to industry
investment in the IoT.

Systems Thinking approaches such as General Systems Theory (GST) and Complexity Theory are,
we believe, of great importance for improving (not “solving”) some of the technical and non-technical
problems of the IoT, and an increasing amount of work is being done by the systems thinking
community, as published in such new journals as International Journal of Information Technologies
and Systems Approach, and Systems.

The IoT is best viewed as a Complex Adaptive System (CAS) and will require new forms of
Systems Engineering, Software Engineering, Project Management and other disciplines to develop
and manage it in the years ahead. The SD approach has great potential for solving several of the
research challenges of the IoT. The main strength of the SSM approach is its support to learning about,
and making sense of, complex problem situations, i.e., its epistemological framework. The systems
approach termed Multimethodology can potentially be applied to many IoT research challenges, as
they require a mix of several “hard” and “soft” techniques. The global IoT business ecosystem includes
so many businesses, technologies, governments, legal systems and cultures, and is changing so fast,
that the vision of the early founders of OR as being “the search for an overall balance between multiple,
changing, conflicting, partly incommensurable and partly immeasurable or intangible objectives, as
distinguished from a notion of optimality that aims at maximizing or minimizing the quantitative
value of an objective function” (Ulrich [84]) is sorely needed in this field.
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