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Abstract: A drought-monitoring and forecasting system developed for the Tuscany region was
improved in order to provide a semi-automatic, more detailed, timely and comprehensive operational
service for decision making, water authorities, researchers and general stakeholders. Ground-based
and satellite data from different sources (regional meteorological stations network, MODIS
Terra satellite and CHIRPS/CRU precipitation datasets) are integrated through an open-source,
interoperable SDI (spatial data infrastructure) based on PostgreSQL/PostGIS to produce vegetation
and precipitation indices that allow following of the occurrence and evolution of a drought event.
The SDI allows the dissemination of comprehensive, up-to-date and customizable information
suitable for different end-users through different channels, from a web page and monthly bulletins, to
interoperable web services, and a comprehensive climate service. The web services allow geospatial
elaborations on the fly, and the geo-database can be increased with new input/output data to respond
to specific requests or to increase the spatial resolution.

Keywords: drought observatory; drought indices; remote sensing; spatial data infrastructure;
interoperability; dissemination

1. Introduction

Global challenges that environmental applied research is facing in the last years are related to
minimizing the climate change impacts while increasing environmental resilience (from agricultural
production to human wellbeing, natural resource conservation, etc.). Tuscany, Italy and the whole
Mediterranean Basin constitute one of the “hot spots” highlighted by the last IPCC report [1], which
mainly is experiencing the effects of climate change. Moreover, the particular geography and the
millennial overexploitation of natural resources have made Tuscan territory particularly vulnerable to
natural hazards.

The analysis of temperature and precipitation trends in the last decades shows an increase
of the extreme events’ frequency, intensity, extent and duration. Heat waves and droughts have
important and increasing repercussions on physical, chemical and biological systems, and on some
socioeconomical aspects such as health, agriculture, natural ecosystems and tourism [2].

The drought event that started in 2016 and was still in progress at the end of 2017 is only
the last of a series of dramatic and costly examples of prolonged droughts in Tuscany that have
been systematically recurring every 4–5 years in this century. The last two episodes (2011–2012 and
2016–2017) cost the Tuscan agricultural industry over 500 million euro of losses in crop production
and livestock (estimates from Coldiretti, the National Confederation of Farmers), and water resources
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experienced a significant decrease of surface and groundwater availability. Drought is the second most
important natural disaster (after flooding) that affects population [3]. Moreover, with respect to other
natural extreme events, drought is a creeping phenomenon [4], characterized by a slow and often
difficult-to-define onset and a long-lasting evolution; its intensity and spatial extent are extremely
variable and its impact on the environment and human activities can show up late and persist even
after the end of the drought event [5].

One of the main issues to cope with drought is the temporal gap existing between the onset
and development of a dry period, and the response in managing drought-related emergencies.
Although these extreme events require effective actions, policymakers and water users often show low
preparedness because of the lack of a proactive approach consisting of monitoring and forecasting
activities, mitigation measures and public education. In this context, it is crucial to be providing
scientifically based technical support able to deliver simple, timely and reliable information in order to
increase readiness, response and recovery capabilities [2,6,7].

Advances in information and communication technology (ICT), as high-performance computing,
processing and storing, new coding standards, the availability of open and costless data, and the strong
impulse of the geoinformation technology foster the development of self-sustained monitoring and
forecasting systems. All these new technological improvements in the ICT infrastructure, coupled with
scientific advances, allow a timely, ready-to-use and user-specific upgrading of the early-warning
communication. In addition, sharing effective and reliable information, describing the complexity of the
phenomenon, implies that most efforts must be addressed to the implementation of a comprehensive
framework [8–10] based on a coherent workflow, from data acquisition to information delivering [11].
It should be based on the interoperability [12] and open-data concepts, and on the integration of
different data sources, both climate-based and satellite-derived.

Several monitoring and forecasting systems have been developed at different spatial scales, from
global to sub-national, even if few of them are still operational. At continental level there are the
European Drought Observatory (EDO) [13], developed by the Joint Research Centre (JRC), and the
African [14] and Latin American and Caribbean Flood and Drought Monitors, both developed by
Princeton University. The US Drought Monitor [15] is one of the most well-known examples of national
systems, and another example is the Australian service (http://www.bom.gov.au/climate/drought/),
run by the Australian Government Bureau of Meteorology. In Italy, the Hydro–Meteo–Climate Service
of the Regional Environmental Agency (ARPA) of Emilia Romagna is probably the most comprehensive
drought observatory (https://www.arpae.it/index.asp?idlivello=991), together with the Tuscan one.

Starting from these examples, even though climate change is a global phenomenon, its impacts can
be detected at a local level; and from the needs of the Tuscany region and the Tuscan Water Authority
to identify areas with the highest impact risk in order to take earlier decisions, the LaMMA Consortium
(Environmental Modelling and Monitoring Laboratory for Sustainable Development), in collaboration
with the Institute of Biometeorology of the National Research Council (IBIMET–CNR), implemented
a system prototype for the identification of drought occurrences and trends [16]. This system is based
on a monitoring component and on a forecasting one, and is based on two types of indices: direct
climate-based and indirect vegetation-based indices.

Over the years of testing, the framework has evolved from the point of view both of the enrichment
of the set of indices, and the improvement in the spatial resolution; but the main bottleneck has
remained the non-automation of the operational chain and the lack of a unique working environment,
which limits the resource optimization.

For these reasons, looking forward the development of a permanent Tuscan drought
observatory (DO), our research studies are actually concentrated on the implementation of a spatial
data infrastructure (SDI) that follows the service-oriented architecture (SOA) paradigm [17], based on
the Open Geospatial Consortium (OGC) (http://www.opengeospatial.org/) standards. The framework
has been conceived as a database-centred architecture, using the open-source PostgreSQL (https:
//www.postgresql.org/) database management system (DBMS).

http://www.bom.gov.au/climate/drought/
https://www.arpae.it/index.asp?idlivello=991
http://www.opengeospatial.org/
https://www.postgresql.org/
https://www.postgresql.org/
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The main innovation of this approach consists in integrating the geographic data flows (from the
downloading of remote sensing data to the storage of final indices) and all the related geoprocessing
functions in a single environment.

Moreover, efforts and the breakthroughs of the community that works on open-source systems
are allowing an ever-closer and more effective interaction between different languages and software.
In fact, the integration of the PL/R (R procedural language) wrapper [18] into the procedural language
of PostgreSQL (PL/pgSQL) has allowed the creation of advanced statistical procedures using the
R engine (https://cran.r-project.org/). The application of this approach actually focused on the
implementation of the monitoring part of the operational chain, and allows working with datasets
with different spatio–temporal dimensions, ensuring a versatility and a flexibility, so as to effectively
respond to the needs of actual users and also to future demands.

The overall aim of this paper is to present a comprehensive operational monitoring and
forecasting system based on open and interoperable technological solutions, implemented to facilitate
the communication of scientific knowledge on drought assessment for decision-making processes.

2. Study Area and Data

The drought observatory is focused on monitoring and forecasting conditions over Tuscany,
even if datasets refer to larger areas based on the image size (for satellite products) or other needs
for climatological purposes. Tuscany is a geographically complex region of central Italy (Figure 1),
with half of its territory covered by forests, and characterized by a rainfall regime influenced by latitude,
distance from the sea and orography, and ranging from about 600 mm in the southern coastal area,
to 2700–2800 mm in the northern part of the Apennines (reaching a height of almost 2000 m a.s.l.).

Figure 1. Area of interest of the drought observatory.

This complexity makes particularly important the availability of a system as comprehensive and
integrated as possible to respond to the different user requests.

https://cran.r-project.org/
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Input datasets include both in-situ and remote-sensing parameters, in order to implement and
validate geoprocessing procedures and model runs (Table 1).

One of the two sources of rainfall data for the monitoring system is the Climate Hazards
Group InfraRed Precipitation with Station data (CHIRPS) precipitation dataset [19,20], that has the
double advantage of being one of the global daily datasets with the highest spatial resolution (0.05°),
and coming from the combination of satellite and ground-based data.

Ten meteorological stations, representing the provincial capitals, were also selected both to
validate the CHIRPS dataset for the Tuscany area and to calculate one of the two climate-based indices.

For the analysis of vegetation response to temperature and moisture stresses, a set of
remote-sensing products from the Moderate-Resolution Imaging Spectroradiometer (MODIS) was
selected: the Normalized Difference Vegetation Index (NDVI) [21], the Enhanced Vegetation Index
(EVI) [21] and the Land Surface Temperature (LST) [22].

For the forecasting system, gridded monthly precipitation data from the CRU (Climate Research
Unit) TS v.4.00 dataset [23] is used to calculate SPI 3, together with a series of atmospheric predictors.

Table 1. Datasets used in the monitoring and forecasting framework.

Parameter Dataset Time Extent Time Resolution Spatial Extent Spatial Resolution

Monitoring

Rainfall CHIRPS from 1981 daily 50° S–50° N 0.05°
Rainfall Rain gauges from 1955 daily punctual /
NDVI MODIS from 2000 16 days 1200 km× 1200 km 250 m
EVI MODIS from 2000 16 days 1200 km× 1200 km 250 m
LST MODIS from 2000 8 days 1200 km× 1200 km 1 km

Forecasting SPI 3 CRU from 1901 3-monthly global 0.5°

3. Operational Chain

The operational chain implemented to calculate drought indices and to deliver final products
is based on automatic and semi-automatic procedures. The operational system is made up of three
sections (Figure 2): the monitoring and forecasting systems that are the core of the DO, and the
dissemination part from which results of the SDI elaborations can be delivered or analyzed to support
decision making.

Figure 2. Workflow model of the drought-monitoring and forecasting operational system.
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4. Monitoring System

The monitoring system is developed integrating state-of-the-art science and advances in
technologies, and selecting a set of coupled rainfall-based and satellite-derived indices (Table 2),
taking into account: (1) types of drought; (2) availability and consistency of data; (3) geographical
characteristics; (4) time and spatial variability; and (5) main final users.

Table 2. Set of indices selected for the monitoring system section.

Index Input Data Time Series Time Scale Spatial Resolution

Climate-based SPI Rainfall from 1981 Multi-monthly 0.05°(3, 6, 12, 24)
EDI Rainfall from 1955 Daily Point

Vegetation-based

TCI LST from 2000 8 days 1 km
VCI NDVI from 2000 16 days 250 m
VHI TCI and VCI from 2000 16 days 250 m

E-VCI EVI from 2000 16 days 250 m
E-VHI TCI and E-VCI from 2000 16 day 250 m

Precipitation, as the first and main parameter pointing out drought occurrence, is used in many
indices, among which the most widespread Standardized Precipitation Index (SPI) [24] and the
less-known Effective Drought Index (EDI) [25] are considered better than others [26], providing
different timescales of drought occurrence, and detecting its variation and duration.

The SPI, widely considered a robust and reliable index [27,28], allows multiple timescale tracking
(usually 3, 6, 12, 24 months) of dry/wet periods, detects drought variation and duration, and provides
a comparison between geographically different locations thanks to its standardization (Figure 3).

Figure 3. Examples of SPI (Standardized Precipitation Index) maps for the Italian area: (a) SPI 12 of
July 2012; (b) SPI 3 of July 2014.

For these reasons, and to have the possibility of expanding the geographical area of
analysis as necessary, the CHIRPS dataset was considered suitable. Indeed, working over larger
territory or different climatic zones–since the spatial distribution of weather stations is often
inadequate–encourages the employment of a dataset that merges precipitation detected both by
satellites and rain gauges.

In order to validate the CHIRPS dataset for the Tuscany region, a comparison of monthly
precipitation timeseries from 10 rain gauges and the corresponding values of the CHIRPS grid cells for
the period 1981–2010 has been done. an overall underestimation of CHIRPS monthly rainfall emerges
from the analysis (R correlation = 0.69; mean bias = −8 mm; RMSE = 10.4 mm), which is acceptable for
gridded datasets and our purposes.
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Instead, the EDI index, calculated with a daily timestep, is more sensitive to each single rainfall
event and shows a more detailed influence of precipitation on the recovery from an accumulated deficit.

EPi =
i

∑
n=1

[
∑n

m=1 Pm

n

]
, (1)

DEP = EP − MEP, (2)

EDI =
DEP

ST(DEP)
, (3)

where EP is the effective precipitation; Pm is rainfall of m days before; and i represents the number
of days (usually equal to 365 days) along which rainfall is summed in order to calculate the drought
intensity. MEP is the mean climatological effective precipitation (calculated over a 30-year period);
DEP is the deviation of the effective precipitation from the MEP indicating a water deficit/surplus for
a specific day. EDI is the standardized value of DEP, where ST(DEP) is the standard deviation of each
daily DEP.

Additionally, EDI is effective to spatially recognize the onset of a drought episode [26], and
consequently can be used at the punctual level for further specific information.

The second group of indices, focused on vegetation health monitoring, represents an indirect
drought-responsive way to analyze the phenomenon, and satellite-derived indices are widely used due
to their spatio–temporal characteristics of full ground cover and quasi-continuous time observations.
The vegetation performance, usually used for agricultural drought monitoring, is also useful to have
an indication of the intensity of a drought event; woody plants, in fact, with their deep root systems,
have evolved mechanisms to cope with dehydration conditions stronger than those of herbaceous
plants [29], and therefore a decrease in the forest productivity can indicate a prolonged lack of
water availability.

The vegetation indices selected for the DO are related to temperature and moisture stresses
throughout a combination of NDVI or EVI, and LST parameters. They are [30] the Vegetation
Condition Index (VCI) and the Temperature Condition Index (TCI).

VCIi =
NDVIi − NDVImin

NDVImax − NDVImin
∗ 100, (4)

where NDVIi, NDVImin, and NDVImax are respectively the last NDVI image available and the absolute
minimum and maximum values along the timeseries, related to the same period.

TCIi =
LSTmax − LSTi

LSTmax − LSTmin
∗ 100, (5)

where LSTi, LSTmin, and LSTmax are respectively the last LST image available and the absolute minimum
and maximum values along the timeseries, related to the same period. In accordance with the study of
Sun and Kafatos [31], we use daytime LST instead of brightness temperature for calculating TCI.

We are actually evaluating the possibility to use EVI instead of NDVI due to its characteristics
of being less influenced by scattering related to aerosols [32] and less susceptible to saturation [33]
in forests with high vegetation cover (Figure 4). However, the evaluation of the performance of the
former with respect to the latter is still a work in progress.

The 8-days TCI images are averaged to be compatible with the 16-days time resolution of VCI.
The combination of VCI and TCI originates the comprehensive Vegetation Health Index

(VHI) [30,34].
VHIi = a ∗ TCI + b ∗ VCI, (6)

where a and b are coefficients that quantify the VCI and TCI contributions to the vegetation response,
respectively. Since our environment is complex and characterized by different vegetation types (from
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Mediterranean evergreen coniferous and broad-leaf forests to temperate coniferous and deciduous
broad-leaf ones) responding differently to temperature and water availability, we assigned the same
weight (0.5) to the coefficients to simplify the computation of the index.

Figure 4. (a) E-VCI (Enhanced-Vegetation Condition Index) related to the 16–31 October 2017 period;
(b) VCI (Vegetation Condition Index) related to the 16–31 October 2017 period.

Concerning the vegetation indices, due to the different spatial resolutions of TCI (1 km) and VCI
(250 m), the calculation of the comprehensive VHI index has been combined with resampling functions
in order to obtain a final map with higher details (250 m) (Figure 5).

Figure 5. VHI (Vegetation Health Index) related to the 16–31 October 2017 period.

4.1. Monitoring SDI Architecture

To implement a reliable and science-based local operational monitoring system, a well-structured
SDI is an essential prerequisite to produce effective spatial information, and to support the whole
operational chain, from the data acquisition, to its management, processing and dissemination. An SDI
is defined as ”sources, systems, network linkages, standards, and institutional issues involved in
delivering spatially-related data from many different sources”, and information for purposes other
than those it was created for “to the widest possible group of potential users at affordable costs” [35].
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Based on this general concept, an SDI can create an environment able to facilitate the discovery,
accessibility, sharing and reuse of research data, contributing to support decision-making processes
related to the impact of drought occurrences at the local level. In the last decades, the SDI conceptual
model has evolved, from the oldest [35–37] more product-based, to the most recent process-based
ones [38]. The first considers only standardized data production, access and delivering, linking
different spatial databases; the latter, more comprehensive and widely used, includes databases also
hosting metadata and tools that allow an active, flexible and responsive input/output visualization,
data processing and downloading in order to obtain information useful for decision makers, technicians
or researchers [39].

Williamson [40] considers the SDI development a more complex concept and in constant evolution
“because of the social, political, cultural and technological context to which such development
must respond”.

In the research context and in our perspective, an SDI built to support a DO should respond
to some fundamental requirements: research data openness, interoperability, flexibility, scalability,
responsiveness and specific user needs. For this reason, our user-oriented and process-based DO SDI
is focused on the best use of climate data for drought assessment and their translation in information,
in opposition to simple data sharing.

Even if the top-down SDI implementation approach required for global and national SDIs
emphasizes the need of a full standardization and uniformity [41], in practice its implementation in
a local bottom-up approach requires a compromise between the application of OGC/ISO standards
and the system optimization that has to respond to different actual and future user needs and their
available resources [41,42]. Indeed, standard implementation, if strictly applied, could make more
complex and heavier the services’ development and usage.

Starting from these concepts, the DO SDI technological components are organized in typical
client–server architecture, and interact from the data provider’s download data process to the result
representation to end-users, following general OGC guidelines [39,43,44]. OGC standards are used in
several elements developed into the DO SDI, starting from the data model, designed using Unified
Modeling Language (UML) (ISO TC/211), to PostGIS open-source software that “provide[s] the most
complete implementation of OGC simple feature specifications (SFS) of any free and open-source
software (FOSS) database management systems (DBMSs)” [45], and follows the OGC Structured
Query Language (SQL) standards [46,47]. The data model is developed following a participative
approach among the researchers involved in data collection and analysis for the application schema
implementation. Moreover, to ensure the platform interoperability between geospatial data and
services, three main services are considered in the general SDI architecture: catalog service, data service
and processing service [48,49]. This release of the DO SDI includes OGC Catalogue Service for
the Web (CSW) and Web Map Service (WMS) [50]. Concerning the Web Processing Service (WPS),
some constraints have been still overcome with further developments [51].

The design of the DO SDI is built using the most spread open-source software, according to the
required functionalities. The architecture, designed for the DO monitoring framework optimization,
is composed of three layers (Figure 6a–c): (1) providers layer for retrieving input data; (2) drought
framework layer for managing metadata and processing stored data; and (3) client-side layer for
result dissemination. All the three layers communicate through specific representational state transfer
(REST) web services following the SOA paradigm. Even if the REST paradigm is only marginally
considered in the OGC’s standard implementation (i.e., for the WMTS [52]), we preferred it to the
Simple Object Access Protocol (SOAP) ones because it is lightweight and has less client-side complexity
to manage by the users [53]. Furthermore, RESTful web services provide functions of data extraction
and downloading in an effective and highly flexible way.

The overall objective in developing a local DO SDI is to provide an appropriate environment
in which both users and producers of spatial information can cooperate in a cost-efficient and
cost-effective way to better achieve their targets.
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Figure 6. Drought observatory architecture and web services for data import, storing and geoprocessing:
(a) providers layer; (b) framework layer; (c) client-side layer.

4.1.1. Providers Layer

The providers layer (Figure 6a) is in charge of managing input data coming from different
sources (CHIRPS rainfall, and MODIS LST, NDVI, EVI) and storing them in the geodatabase (GeoDB)
implemented into the framework layer (Figure 6b).

The OGC data formats actually supported by the DO SDI are the NetCDF [54,55] for input CHIRPS
rainfall dataset, and the Well-Known Text (WKT) [56] for vectors used for the extraction and processing
functions. MODIS data are in Hierarchical Data Format–Earth Observing Systems (HDF–EOS) format,
approved standard recommended for use in NASA Earth science data systems.

Specific Bash scripts have been developed in order to download and prepare input data before
saving them into the GeoDB. Geospatial Data Abstraction Library (GDAL) and PostGIS reprojection,
tiling and storing functions have been used in order to improve the GeoDB performance and to
harmonize the datasets with the data model. All datasets have been reprojected into a common
and widely used reference system: the EPSG:4326 (i.e., Latlong, WGS84). The same Bash scripts call
RESTful Web Services supplied by the framework layer to store the datasets in the GeoDB. Moreover,
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a cron daemon (crontab file) has been enabled to start the scripts automatically for a continuous
input-data updating.

4.1.2. Drought Framework Layer

The drought framework layer (Figure 6b) is the main component of the DO SDI architecture,
in which the PostgreSQL database represents the only environment for data storage and geoprocessing.
At this implementation stage, geoprocessing queries do not completely follow OGC WPS
specifications [57], working with REST Web Services instead of SOAP. All the services allow the
storage of new data while their retrieving and processing are developed locally using the REST
paradigm, and called through simply HTTP GET and POST operation requests [44]. PostgreSQL is
used to store input data (rainfall, LST, NDVI, EVI), to perform all geoprocessing procedures (queries,
indices elaborations, statistical operations, etc.), and to generate intermediate data (LSTmin, LSTmax,
NDVImin, NDVImax, EVImin, EVImax) and output images (SPI, TCI, VCI, E-VCI, VHI, E-VHI) with
different formats, that is, GeoTIFF, PNG, ASCII Grid (Figure 7).

Figure 7. GeoDB components of the framework layer.

Though all the indices are calculated inside PostgreSQL, the different complexities of vegetation
and rainfall index computation has forced us to use different libraries. TCI and VCI, in fact, result
from simple arithmetic operations that can be done directly in PL/pgSQL using the PostGIS library,
successfully taking advantage of its features. The SPI index, instead, is obtained with more complex
statistical functions (fitting of a gamma probability distribution, transformed into a standard Gaussian
variable). For this reason, SPI elaboration has been implemented with the integration of a specific
R library [58] with the PostGIS library. The integration between the R engine and PostGIS is made
possible by PL/R, the R wrapper for PostgreSQL.

For the implementation of the SPI processing, different approaches are possible in order to
maximize the performance. In the first approach, currently employed, the SPI procedure is managed by
a Java 2 Enterprise Edition (J2EE) service that creates time-saving parallel threads, each one working
simultaneously on specific subregions of rainfall grids and calling iteratively the PL/R function.
The PL/R function performs a pixel-by-pixel SPI calculation over time vectors. This approach
consumes more CPU resources but saves RAM consumption. The number of parallel treads influences
the total time needed to calculate the SPI (the higher the number, the lesser the time consumption).
The second approach consists of a PL/R routine that works over a single vector of matrix of a tiled
subregion. This approach consumes less CPU resources, but is more RAM-consuming. The comparison
of the two approaches will show which of them performs better to further reduce the time consumption.
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The framework layer also supplies a suite of RESTful Web Services (Figure 6b), developed using
JAX-RS (Java API for RESTful Web Services), for retrieving stored data (inputs, intermediate and
outputs) and handling the geospatial operations developed with PL/pgSQL (i.e., the extraction of
raster portions from a given polygon, basic statistics, and model runs).

A key component of an interoperable SDI is the catalog of metadata, useful for data and
resource discovery and evaluation using space, time and thematic attributes before accessing
them [59,60]. Catalogs also require web interfaces for metadata and data publishing, based on open
standards, and the WMS is one of the OGC standards, used for graphical representation (images) of
geospatial data [50].

The drought framework layer includes the open-source Comprehensive Knowledge Archive
Network (CKAN) data-management platform (http://ckan.org/) and GeoServer data-publishing
web server (http://geoserver.org/), respectively used to harvest the catalog and to publish data
and metadata. CKAN supports ISO 19139 (geographic information—metadata—XML schema
implementation) encoding for metadata description, and it is also able to manage the OGC CSW
and WMS standards.

Through the supplied API (application programming interface) functions composed of RESTful
Web Services, GeoServer API and CKAN Services, spatial data are discovered and ready to be reused
by any third-party client applications, guaranteeing the integration of this climate data with other
information types and therefore the interoperability of the whole system. Figure 8 shows the first
release of the data catalog implemented for the Drought Climate Service.

Figure 8. Data catalog implemented by CKAN (Comprehensive Knowledge Archive Network)
data-management platform for the IBIMET–CNR Drought Climate Service.

http://ckan.org/
http://geoserver.org/
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4.1.3. Client-Side Layer

A process-based SDI should stress information communication in order to reach a wide range of
users and facilitate effective decision planning [38].

The web services implemented in the client-side layer (Figure 6c) support the development of
customized applications for result dissemination and service handling.

Different customized client applications are developed following the specific users’ needs
(researchers, practitioners, public authorities and community), taking advantage of interoperable
services supplied by the drought framework layer.

Through the supplied RESTful API functions of the drought framework layer, it is also possible:

• to create WebGIS applications, customized websites, and services that require DO SDI data;
• to develop a plugin for other desktop GIS applications such as QGIS or ArcGIS;
• to share and to integrate DO data with other interoperable SDIs.

Moreover, a complete catalog is supplied through CKAN and GeoServer GUI implementation,
and data are visualized in several formats and standard protocols: WMS, GeoTIFF—considered
an important de facto standard—PNG, and AAIGrid.

5. Forecasting System

The forecasting system is based on an empirical approach to predict meteorological drought using
the SPI 3, a few months in advance (Figure 9) from large-scale observed climate indices. The forecast’s
window (25°–65° N; 20° W–45° E) has a spatial resolution of 0.5°.

Figure 9. SPI 3 (Standardized Precipitation Index) seasonal forecast for winter 2018, where the 3 months
are December 2017 and January–February 2018. February is the reference time stamp, and represents
the last contributing month of the 3-month period. Color scale indicates the probability of occurrence
of a wet (green) or dry (yellow–orange) period. The example shows a zoom on the Tuscany region.
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This seasonal forecast empirical system adopts a physically based statistical approach which uses
a multivariate regression (MR) model to estimate future anomalies [16].

The SPI-3 dependent variable of the MR model is calculated using the CRU rainfall dataset, more
suitable than CHIRPS for this analysis because of its long timeseries. For the SPI computation, which
is done by using the SPEI R package (https://CRAN.R-project.org/package=SPEI), the Pearson III
distribution and the period 1961–2010 are used for standardizing the variable to a Gaussian distribution
with zero mean and standard deviation of one. Predictors are selected among observed atmospheric
and oceanic climatic indices according to the list in Table 3, then they are centered and standardized by
using the overall mean and standard deviation, respectively. The de-trending procedure is applied by
monthly subsetting each timeseries, since an MR model is built for each forecast month.

Table 3. Climatic indices identified as possible predictors.

Parameter Long Name Reference Source

AMO Atlantic Multidecadal Oscillation [61] ESRL-PSD https://www.esrl.noaa.gov

MEI Multivariate ENSO Index [62] ESRL-PSD https://www.esrl.noaa.gov

NAO North Atlantic Oscillation [63] CPC http://www.cpc.ncep.noaa.gov

SV-NAM Seasonally Varying NH Annular Mode [64] HOK http://www.bio.mie-u.ac.jp/

MZI Modified Zonal Index [65] IRI-DL http://iridl.ldeo.columbia.edu

MED-SST Mediterranean SST, 1st EOF, 2nd EOF CPC http://www.cpc.ncep.noaa.gov

TRI-SST Atlantic Tripole SST, 1st EOF [66] ESRL-PSD https://www.esrl.noaa.gov

GUI-SST Guinea Gulf SST, 1st EOF, 2nd EOF IRI-DL http://iridl.ldeo.columbia.edu

IND-SST Indian Ocean SST, 1st EOF, 2nd EOF IRI-DL http://iridl.ldeo.columbia.edu

SISCI Eurasian Snow Cover Extent [67] Rutgers GSL https://climate.rutgers.edu

Furthermore, a maximum of five months leading up to the forecast SPI-3 are set for each predictor
to be included in the design matrix, that is, the matrix of the regressors. For example, the design matrix
of the SPI-3 model of May is composed of the predictors’ timeseries from October to February, since
the SPI-3 of May is computed by using the precipitation of March, April and May. The de-trending
procedure is based on a local nonparametric regression and is applied to the dependent variable as well.
Finally, 12 design matrices with 43 observations, that is, monthly values of the 1974–2015 timeseries,
and 13 ∗ 5 predictors, are set, being 13 indices and five leading timesteps. Then, a procedure of deletion
has been applied in order to address the well-known issue of multi-collinearity in MR models by
eliminating linear combinations as well as high correlation between explanatory variables. From this
filtered design matrix, a double-steps procedure is applied to select the best model in terms of
predictive performance: (1) Find the eight best models for each group of one up to 12 predictors
according to the adjusted R2 index; (2) find the best model among those identified at (1) by means of
10-fold cross-validation criterion and RMSE index. More in-detail, the procedure at (1) is performed by
means of the “leaps” R library [68], that uses an efficient algorithm to return the best model: in practice,
it iteratively computes the adjusted R2 index, which is calculated from the classical R2 taking into
account a penalization for models with numerous predictors (adjR2 = R2 − ( p

n−p−1 )(1 − R2), where
n and p are the number of samples and parameters, respectively), for all the possible combinations
of predictors. The algorithm output is basically the ranking of the models with different number
of predictors. From this ranking, the selection of the best model is done by applying a 10-fold
cross-validation procedure, that iteratively divides the data samples in a training and control set,
using the training for estimating the linear regression coefficients, and the control for evaluating the
predictive performance of each model. Finally, the model with the minimum RMSE value is chosen.
The entire procedure has been carried out at each grid cell of the spatial domain. Thus, an evaluation
of the predictive performance of the best model for each SPI-3 can be done, summarizing the results
obtained in each grid cell, and such an evaluation is reported in Table 4. In particular, the columns
signif 0.05 and signif 0.10 represent the percentage of predictors in the best model that are individually
significant at level α = 0.05 and α = 0.10 of the t-test,respectively. The value of these indices are quite
high, attesting to the robustness of the chosen models. On the other hand, the range of the adjR2, which

https://CRAN.R-project.org/package=SPEI
https://www.esrl.noaa.gov
https://www.esrl.noaa.gov
http://www.cpc.ncep.noaa.gov
http://www.bio.mie-u.ac.jp/
http://iridl.ldeo.columbia.edu
http://www.cpc.ncep.noaa.gov
https://www.esrl.noaa.gov
http://iridl.ldeo.columbia.edu
http://iridl.ldeo.columbia.edu
https://climate.rutgers.edu
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is composed of the minimum and maximum values obtained throughout the spatial domain, shows
criticality for some individual cell grids and a few months; nevertheless, the great number of values
above 0.50 reveals generally a good model definition. This behavior is more pronounced during the
winter season, when drought can be more critical. The predictive performance of the selected models is
generally good (see the minimum values in the column range RMSE with respect to the corresponding
observed SPI values). Lower performance was identified in the summer period, when dryness events
are common and thus have weaker impacts.

Table 4. Model evaluation and predictive performance: summary of the results obtained in each
grid cell (signif 0.05 and signif 0.10 represent the percentage of predictors in the best model that are
individually significant at level α = 0.05 and α = 0.10 of the t-test, respectively; adjR2 and RMSE range
are the minimum and maximum values of Root Mean Square Error obtained throughout the spatial
domain; the SPI range contains the minimum and maximum values of the observed Standardized
Precipitation Index).

Month Evaluation Predictive Performance
Signif 0.05 (%) Signif 0.10 (%) Range AdjR2 Range RMSE Range SPI

Jan 52.0 71.0 (0.18; 0.56) (0.611; 1.042) (−2.007; 5.349)
Feb 69.0 85.0 (0.36; 0.71) (0.531; 0.797) (−1.960; 3.623)
Mar 87.0 94.4 (0.61; 0.79) (0.350; 0.632) (−2.260; 2.581)
Apr 60.2 76.2 (0.30, 0.61) (0.601; 0.938) (−3.853; 2.589)
May 77.5 86.0 (0.49; 0.74) (0.444; 0.769) (−3.727; 2.547)
Jun 63.5 81.6 (0.48; 0.68) (0.529; 0.832) (−3.256; 2.485)
Jul 42.0 62.4 (0.16; 0.39) (0.839; 1.297) (−3.917; 5.940)

Aug 68.2 82.6 (0.29; 0.74) (0.523; 1.235) (−6.528; 2.801)
Sep 65.5 79.4 (0.30; 0.55) (0.629; 0.879) (−2.375; 2.614)
Oct 70.2 83.9 (0.24; 0.53) (0.543; 0.782) (−2.196; 3.130)
Nov 81.7 92.4 (0.52; 0.72) (0.442; 0.694) (−2.042; 2.546)
Dec 60.9 77.8 (0.26; 0.56) (0.631; 0.881) (−2.299; 2.233)

6. Dissemination

A stable, well-structured and interoperable SDI allows one to have a wide database of drought
indices, constantly fed by input data, that guarantees the analysis of different drought aspects at high
spatial resolution. Firstly, climate-based indices give information about the extension, intensity and
duration of a drought event, whereas vegetation-based indices inform on its impacts. Secondly, with
the availability of a long timeseries of these indices, it is possible to conduct trend analysis, useful not
only for scientific purposes but also for decision makers for adaptation planning.

Vegetation index maps can be also cross-checked with other types of layers, such as Tuscan
boundaries and land cover, to mask urban areas and water bodies, and for a more detailed analysis of
results. During a drought occurrence, in fact, the Tuscan land cover is used in order to classify and
localize which forest type or tree crops are more affected (Figure 10).

All the final results are analyzed and compared to have a coherent overview of the signal during
a drought event and to prepare effective information for end-users. The final information is actually
provided through different communication channels in order to reach different targets.

6.1. Web Page

A first synthetic information suite suitable for the generic public and media is provided on
a specific web page (Figure 11) of the LaMMA Consortium website. News on the current conditions
are monthly updated and local impacts from media are also reported (http://www.lamma.rete.toscana.
it/siccita-situazione-corrente). From the web page, it is also possible to access the monthly bulletins.

http://www.lamma.rete.toscana.it/siccita-situazione-corrente
http://www.lamma.rete.toscana.it/siccita-situazione-corrente
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Figure 10. Zoom of vineyard and olive grove areas particularly affected by the 2016–2017 drought
event (VHI-Vegetation Health Index map related to the 16–31 October 2017 period).

Figure 11. Web page with a recap of the situation of the current conditions.
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6.2. Monthly Bulletins

Monthly bulletins are published both on the web page of the LaMMA Consortium and through
the ISSUU web platform (http://issuu.com/consorziolamma), describing more detailed analysis on
both current and future conditions (Figure 12) useful for decision makers in the agricultural and
environmental departments of the Tuscany region, and regional or local water authorities.

Figure 12. Some example pages of the monthly bulletin: (a) main page with a summary of all indices;
(b) rainfall anomaly for the last month and the last 3 months; (c) SPI (Standardized Precipitation Index)
forecast for the next month.

The bulletin contains a deep analysis of each index, even if during colder seasons the elaboration
of vegetation indices is not performed; only the period between April and October is considered,
due to the minor influence of cloud cover on satellite-based data. Following a specific request of
the Tuscan Water Authority, starting from June 2017 the number of indices was increased, including
maps of minimum and maximum temperature of the last month, and rainfall anomalies of three
specific periods: the last month, the last three months and the cumulative period starting from the
1st of October, considered the beginning of the hydrological year.

The number of accesses to the main page and bulletins from 1 January 2016 to 30 November
2017 was 17,225, most of which (13,000) were linked to the actual long-lasting drought period
2016–2017 (from 1 October 2016 to 30 November 2017); the peak of accesses was obviously centered
during the hottest months, June–September (about 2000 accesses/month), when the water demand is
typically higher.

6.3. WebGIS Application

A WebGIS application (http://www.lamma.rete.toscana.it/webgis-siccita) based on open-source
solutions has been customized for the LaMMA Consortium’s drought web page in order to integrate
different datasets and share maps of drought indices with researchers, decision makers and other
stakeholders [69].

Thanks to the advances in open-source technologies, further developments are foreseen to improve
spatial data visualization and analysis functions. The new DO WebGIS version will be developed in
J2EE as a single-view application. It will supply a control panel to select and view all stored images,
and a toolbar for simple geospatial operations (raster extraction, queries over a subarea or a single
pixel, raster overlay, etc.). To visualize geographical data, a GeoMap component will be implemented
using OpenLayers, the open-source library for WebGIS applications.

http://issuu.com/consorziolamma
http://www.lamma.rete.toscana.it/webgis-siccita
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6.4. Climate Services

In the framework of the European Research and Innovation Roadmap for Climate Services [70],
the research community is called upon to respond to a new challenge to produce raw data
and processed usable information to provide European Climate Services (ECS) with high-quality
and scientifically proven data, in order to answer a complex query or support a decision [51].
The implementation of CS, in fact, is actually considered at the international level one of the best
ways to provide science-based climate information and specific support to decision makers with
different needs, as stated in the Paris Agreement (http://unfccc.int/paris_agreement/items/9485.php),
Article 7, Paragraph 7, and by the World Meteorological Organization (WMO) [71].

Some different types of CS have been developed in the last years [72], including climate change
scenario platforms and web portals where physical data and climate-related products (e.g., maps,
charts, reports, guidelines, advice and bulletins) are available.

The aim of DO is to turn scientific information from drought-monitoring and forecasting into
operational information and services, as also recommended by the World Meteorological Organization
(WMO) in the Priority Needs for the Operationalization of the Global Framework for Climate Services
(2016–2018) paper (http://www.wmo.int/gfcs/implementation-plan). Also suggested by Giuliani [73],
the availability of open-source tools and standardized interoperable SDI web services ensures the
sustainability in the development of web applications with geo-referenced data and customized
territorial analysis that could be connected to other climate services. This approach facilitates the
creation of value-added products and services by researchers involved in climate investigations.

Actually, the DO information products will also be shared through the IBIMET-CNR Climate
Services platform (https://climateservices.it/), developed in collaboration with the LaMMA
Consortium (Figure 13) in the context of national and international research projects, and tailored
to the needs of end-users involved in the related activities. Moreover, through the Drought Climate
Service (DCS) interface under development, researchers and other skilled users will be able to directly
elaborate or download any drought index dataset using RESTful API web services.

The DCS is inspired by some Global Framework for Climate Services (GFCS) principles
(http://www.gfcs-climate.org/principles), aiming to:

• provide better accessibility and usability of climate information by users,
• ensure operational and continuously updated services,
• encourage global, free and open exchange of climate-relevant data,
• facilitate and strengthen—not duplicate,
• be built through partnerships.

Figure 13. Climate Services of IBIMET-CNR: web page dedicated to the drought observatory.

http://unfccc.int/paris_agreement/items/9485.php
http://www.wmo.int/gfcs/implementation-plan
https://climateservices.it/
http://www.gfcs-climate.org/principles
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7. Future Perspectives

Several drought-monitoring systems have been developed, especially at the international and
national levels, but due to the complexity of the phenomenon, only few of them are still operational
and comprehensive, and therefore able to explore all the aspects of the problem. In Italy, in addition to
the Tuscan DO, the only example at the regional level is the operational service of the Emilia Romagna
Environmental Agency.

The need for creating a Tuscan DO has arisen in response both to the deep, negative effects of the
2011–2012 drought event on water resources, human activities and the environment in general, and
to the delayed action of decision makers. The regional operational service implemented by applying
emerging ICTs and following the interoperability, open-data and open-source concepts, provides the
decision makers with useful, effective and timely data and information dissemination, where the
internet is the perfect vehicle, and the monthly bulletin represents the comprehensive communication
instrument that anybody can use as a first decision support.

Compared to the initial drought-monitoring prototype based on manual procedures (and local
ground-based rainfall datasets), the actual DO, built on a robust SDI, standard web services and
semi-automatic geoprocessing procedures, has several advantages.

The presented DO SDI architecture is a process-based, multipurpose and multi-user operational
service that does not necessarily need strong technical capacities to retrieve and use data and
information; it is interoperable, open, expandable and customizable, thus also allowing one to respond
to one of the GFCS principles, asserting that the “framework will address needs at three spatial scales:
global, regional and national”, including climate-vulnerable developing countries. Furthermore, the
development of a local SDI can also contribute to increase effectiveness of higher SDI hierarchies
(national, regional, global), thanks both to the involvement of local users to identify their needs and
priorities, and to the availability of information specifically produced.

Moreover, Giuliani et al. [73] assert that GFCS should address future efforts towards the adoption
of interoperable geospatial solutions and web-based services.

Once the basic architecture is defined, several implementations are possible: input datasets
and outputs can be increased or replaced with more detailed or locally suitable new data/models;
new procedures of analysis can be easily integrated (also thanks to PL/R libraries) with a relatively
low development workload.

RESTful Web Services allow high interoperability, as they may be integrated into any client
application needing data from the DO SDI (e.g., to use rainfall data in hydrological models,
or vegetation indices for agroecological studies as crop models and yield estimates). Furthermore,
following the open-source concept, all the RESTful APIs developed are made available on the GitHub
platform (https://github.com/n3tmaster/DroughtGWS).

The drought framework implemented can be used as the core of the IBIMET-CNR DCS (Drought
Climate Service), enhancing the value chain of scientific climate knowledge, providing an adaptive,
efficient and responsive environment able to communicate science-based, effective, comprehensive
and timely climate information, ready to use and customized for different levels of users, within,
between and outside scientific communities. This approach seems to converge on the most recent
advancements in geospatial technologies to support CS [73], adopted at higher geographical levels
(national and global). Indeed, the different information tools developed guarantee a continuous and
on-demand service to several local users, from the Tuscany region or the Tuscan Water Authority
(AIT), who can ask at any time updated information related to a specific index or periods more useful
for their assessments, to researchers that need data for their further investigations, and even in other
geographical areas covered by the available datasets.

Thanks to technological evolutions, new satellite products and scientific research, the DO SDI is
a continuous work in progress.

In fact, from an interoperability point of view, the natural evolution of the DO is the integration
of the forecast system into the SDI, even if this task has some constraints linked to the amount of

https://github.com/n3tmaster/DroughtGWS
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data required (rainfall and predictor datasets) and to the complexity of the statistical computations,
for which a deep performance evaluation is needed.

Moreover, due to the importance of water resources for agriculture, which is the main sector
affected by drought events, the challenge for the next period is to push the DO SDI potentialities for
local applications that need more detailed information. In the coming year, in fact, is planned the
evaluation of new user-tailored drought indices (including the possible use of the E-VCI instead of the
classical VCI), and the implementation and validation of a model for the actual evapotranspiration
(AET) estimates in a farm with an annual crop rotation system alternating tomatoes, wheat and
chickpeas. The model provides an estimate of AET with a high spatio–temporal resolution, based
on ground and remote-sensing data [74], combining estimates of potential evapotranspiration (ET0)
and of fractional vegetation cover derived from NDVI, in order to simulate both transpiration and
evaporation processes. The NDVI will come from Sentinel 2-MSI (MultiSpectral Instrument) satellite
images with a high resolution of 10 m. NDVI images will be also used to monitor the crop growth in
relation to the irrigation system, in order to study a satellite-based model for crop water requirements
and irrigation optimization.

As a consequence, in order to improve the overall performance of the whole SDI, new sophisticated
tuning procedures will be implemented into the PostgreSQL DB (e.g., the creation of new spatial
indices, the optimization of PL/R processes, etc.). Moreover, the increase of climate data volume and
the introduction of agrometeorological models could require new approaches for processing data.
Distributed computing and the use of cluster, grid or cloud infrastructure seems to be a promising
way [73] towards an efficient processing solution for generating information on climate change impacts
at different scales.
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Abbreviations

The following abbreviations are used in this manuscript:

IPCC Intergovernmental Panel on Climate Change
ICT Information and communication technology
EDO European Drought Observatory
JRC Joint Research Centre
ARPA Regional Environmental Agency
LaMMA Environmental Modelling and Monitoring Laboratory for Sustainable Development
IBIMET-CNR Institute of Biometeorology of the National Research Council
DO Drought observatory
SDI Spatial data infrastructure
SOA Service-oriented architecture
OGC Open Geospatial Consortium
DBMS Database management system
PL Procedural language
CHIRPS Climate Hazards Group InfraRed Precipitation with Station data
MODIS Moderate-Resolution Imaging Spectroradiometer
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NDVI Normalized Difference Vegetation Index
EVI Enhanced Vegetation Index
LST Land surface temperature
CRU Climate Research Unit
SPI Standardized Precipitation Index
EDI Effective Drought Index
VCI Vegetation Condition Index
TCI Temperature Condition Index
VHI Vegetation Health Index
UML Unified Modeling Language
SQL Structured Query Language
CSW Catalogue Service for the Web
WMS Web Map Service
WPS Web Processing Service
SOAP Simple Object Access Protocol
REST Representational State Transfer
NetCDF Network Common Data Form
WKT Well-Known Text
HDF–EOS Hierarchical Data Format–Earth Observing Systems
GDAL Geospatial Data Abstraction Library
JAX-RS Java API RESTful Web Services
J2EE Java 2 Enterprise Edition
API Application programming interface
CKAN Comprehensive Knowledge Archive Network
XML eXtensible Markup Language
EPSG European Petroleum Survey Group
MR Multivariate regression
SST Sea surface temperature
AMO Atlantic Multidecadal Oscillation
MEI Multivariate ENSO Index
ENSO El Niño/Southern Oscillation
NAO North-Atlantic Oscillation
SV-NAM Seasonally Varying NH Annular Mode
NH Northern hemisphere
MZI Modified Zonal Index
MED-SST Mediterranean SST
TRI-SST Atlantic Tripole SST
GUI-SST Guinea Gulf SST
IND-SST Indian Ocean SST
EOF Empirical orthogonal function
SISCI Eurasian Snow Cover
ESRL–PSD Earth System Research Laboratory–Physical Sciences Division
CPC Climate Prediction Center
HOK Hokkaido University
IRI-DL International Research Institute for Climate and Society-Data Library
GSL Global Snow Laboratory
WMO World Meteorological Organization
CS Climate services
DCS Drought Climate Service
GFCS Global framework for climate services
AIT Tuscan Water Autority
AET Actual evapotranspiration
ET0 Potential evapotranspiration
MSI MultiSpectral Instrument
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