
applied
sciences

Article

SDNPS: A Load-Balanced Topic-Based
Publish/Subscribe System in
Software-Defined Networking

Yali Wang 1,2, Yang Zhang 1,* and Junliang Chen 1

1 State Key Laboratory of Networking and Switching technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China; yaliwan_g@163.com (Y.W.); chjl@bupt.edu.cn (J.C.)

2 College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
* Correspondence: yangzhang@bupt.edu.cn; Tel.: +86-1061198020

Academic Editor: Christos Verikoukis
Received: 31 December 2015; Accepted: 14 March 2016; Published: 24 March 2016

Abstract: Publish/subscribe systems on the traditional Internet suffer from poor scalability and high
delay in the face of the Internet of Things (IoT) environment. Being customizable, the paradigm
of software-defined networking (SDN) provides a chance to establish an IoT-specific network.
In this paper, we propose an SDN-based publish/subscribe system named SDNPS, which can
construct and fine-tune topic-connected overlays for the sake of disseminating events efficiently
and non-redundantly based on a global topology overview. It organizes topics as a Huffman-like
topic tree and codes them into binary strings so that filtering and forwarding events can be operated
directly on SDN-configurable switches, which helps to reduce end-to-end latency. This hierarchical
organization form of topic tree makes it possible to incrementally construct and store overlays, which
contribute to reducing the time and space complexity of routing computation. More specifically,
it achieves a better tradeoff between load-balancing of the overall optimization objective and the
minimal forwarding cost of per-topic overlay.

Keywords: publish/subscribe system; load balancing; overlay network; software-defined networking

1. Introduction

The coming of the Internet of Things (IoT) brings about more and more various smart services.
Occurring with a massive stream of data, these services are typically viewed as event-driven. Generally
speaking, these massive amounts of data from IoT have the following characteristics: (1) predictability,
which means these data show cyclical fluctuations as massive sensors send sensing data periodically;
(2) asynchronous and multicasting-suitable, which means the similar nature of events, which may have
multi-senders and multi-receivers; even receivers are concerned with the what in a communication
instead of the specific who sending events; similarly, multi-senders do not care about who will receive
data; (3) time-sensitive, which means most of the data need to be delivered within a prescribed
time, etc.

Therefore, how to deliver such complex multi-source sensor data in real time efficiently is a vital
problem [1,2]. Fortunately, the publish/subscribe paradigm can exactly facilitate this data dissemination
mode instead of using traditional request-reply messaging. A publish/subscribe system is a universal
many-to-many communication paradigm [3], especially for those applications with loosely-coupled
entities. In a topic-based publish/subscribe system, events are published with specific identifiers called
topics. The publish/subscribe paradigm then guarantees disseminating every new event to those
subscribers who have expressed their interest in the topic similar to the event [4,5].

Appl. Sci. 2016, 6, 91; doi:10.3390/app6040091 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/journal/applsci

Appl. Sci. 2016, 6, 91 2 of 21

However, under the traditional network architecture, due to the lack of global traffic information,
publish/subscribe systems suffer from insufficient utilization of the physical network infrastructure,
such as traffic imbalance on different links. In such a largely distributed IoT environment, the emerging
mass data mega-trends also worsen the traffic imbalance phenomenon. To address this concern,
some methods, including static load balancing (preplanned allocation bandwidth) and dynamic load
balancing (dynamic allocation bandwidth during run-time), were proposed [6–8]. However, this
problem is not solved, essentially owing to the global knowledge insufficiency under the distributed
management of the traditional Internet. On the one hand, the filtering operation, which mainly saves
bandwidth in a publish/subscribe system, is performed by specific components called brokers. This
imposes a significant delay by lengthening the end-to-end path with a detour to the brokers and a
processing delay for matching events against filters’ rules. On the other hand, the best-effort service
provided by the traditional Internet cannot meet delay-sensitive requirements.

Recently, software-defined networking (SDN) [9,10] emerged as a new-style network architecture
that decouples the control plane from the forwarding plane. Maintaining a network-wide view of
up-to-date datapath elements and link state information, SDN makes it possible to enable on-demand
resource allocation, self-service provisioning and network virtualization. OpenFlow as the actual
standard for SDN enables many filtering operations to match received packets efficiently through
specifying the interface to install and modify flows directly on SDN-configurable switches. Therefore, it
is possible to flexibly control the forwarding plane, which is conducive to outperforming the traditional
Internet in the overall performance of the network, as well as assuring the desired performance for
diverse applications, by adopting a traffic management mechanism [11].

In this paper, we propose and construct a topic-based publish/subscribe system in an SDN
environment named SDNPS. The implemented prototype deploys traffic engineering by making full
use of the centralized control nature under SDN. Firstly, we obtain the global overview of the topology
by abstracting and aggregating the network link state. Then, we predict the traffic distribution for some
time to come in terms of the predictability of the mass data from IoT. Finally, we calculate minimum
overlay networks per topic and extract multicast routing paths in light of the well-known shortest
path algorithm. Our design makes a better tradeoff between global load balancing of links and the
minimum cost forwarding for per-topic events.

The contributions of this paper are summed up in the following.

• In SDNPS, we organize all of the topics into a topic tree in terms of their natural language semantics.
On account of the subscription coverage relationship among topics at different levels of the topic
tree, we present a topic-connected overlay constructing algorithm, which solves the specified
multicasting problem among publishers and subscribers. This algorithm achieves minimum
forwarding costs for every topic, as well as load balancing for the whole network. By means of
incrementally generating and storing overlays, the time complexity and the space complexity of
this algorithm are both significantly reduced.

• SDNPS can filter and forward events directly on SDN-configurable switches with the aid
of dexterously mapping topics to binary identifiers and embedding these identifiers into
packet headers as matching fields. This helps to reduce end-to-end latency. We devise traffic
engineering in SDNPS, which performs routing computation based on traffic prediction. It also
dynamically adjusts routing in the presence of physical topology changing induced by traffic
bursting and link/switch failures, as well as subscription topology changing brought by new
(un)subscription events.

The remainder of this paper is structured as follows. In Section 2, the related work is reviewed
and discussed. Section 3 presents the system architecture; other corresponding aspects, including topic
management, topology management and strategy management, are also described. Section 4 presents
the problem statement and model for the minimal cost topic-connected overlay problem (in short
MCTCO), then a heuristic algorithm for this problem is described in detail. Section 5 exhibits the
performance evaluation, and conclusion remarks are given in Section 6.

Appl. Sci. 2016, 6, 91 3 of 21

2. Related Work

In general, the related work can be classified into two categories: (1) routing optimization of
topic-based publish/subscribe systems; (2) SDN-based publish/subscribe systems.

2.1. Routing Optimization of Topic-Based Publish/Subscribe Systems

There have been several famous topic-based publish/subscribe systems, e.g., SCRIBE [9],
Bayeux [10], TERA [12], Corona [13] and NICE [14], etc. Nevertheless, early research work mostly
focused on the realization of distributed systems; the work for the routing optimization problem
is scanty.

Chockler et al. first presented the theoretical problem for a minimum topic-connected overlay
network (in short, Min-TCO) [15] in the conference of the Association for Computing Machinery (ACM)
symposium on the principles of distributed computing (PODC) in 2007. The optimization objective
of Min-Tco was to minimize nodes’ average degree. Additionally, they proposed a greedy merge
algorithm called GM to solve this problem. Chen et al. also tried to address the issue of minimum
average degree topic-connected overlay join problem (MinAvg-Tco-Join) [16] and proposed a divide
and conquer algorithm aiming at this problem. The difference is that Chockler pursued the total
optimal routing cost, while Chen was committed to efficiently constructing the overlay when nodes
dynamically join two or more topic-connected overlays. The latter did to some extent in subsequent
work by devising algorithms for a topic-connected overlay design, which sought a balance between
time efficiency and the number of edges [17].

Onus et al. tended to minimize the maximum degree of topic-connected overlay (MinMax-Tco) [18],
and presented the low degree topic-connected overlay problem [19]. They proved that the two problems
are both NP-complete.

Darugar et al. proposed a web services network architecture and integrated publish/subscribe
system, which presents a topic as a routing entity, including the functionality for topic creation,
subscription and publication in accordance with the basic modes of web services [20]. This architecture
can be implemented across any suitable computer network. However, how to deploy it on SDN is not
discussed in this patent.

There were other systems that did not attempt to minimize the average degree or maximum
degree of the overlay. In [9,12], a separate overlay, such as a multicast tree, was maintained for each
topic through a distributed protocol. However, the average degree would be roughly twice the average
subscription size.

Other systems, like SIENA [21], turned to reducing the number of non-interest relay nodes,
while relaxing topic-connectivity, which can potentially decrease the overlay degree. They did not
dispose of the tradeoff between the extra overhead incurred by forwarding unwanted events and the
overlay degree.

2.2. SDN-Based Publish/Subscribe Systems

The current network architecture has seriously affected the network expansion because of its
insufficiency to cater to the massive proliferation of services and users. As an evolution of programming
networks, SDN has successfully attracted momentous attention from both academia and industry.
On the academic side, the OpenFlow Network Research Center [22] has been created. Some work
on standardization for SDN at the Internet Engineering Task Force(IETF), the Internet Research Task
Force (IRTF) and other organizations was also developed. On the industry side, the Open Network
Foundation was created for promoting SDN and standardizing the OpenFlow protocol.

The work in [23] first studied the impact of SDN on the design of future message-oriented
middleware, such as publish/subscribe systems. This paper pointed out that publish/subscribe
systems could adopt a logically centralized controller model w.r.t. maintenance, monitoring and

Appl. Sci. 2016, 6, 91 4 of 21

control for the overlays. The authors presented a new publish/subscribe model, which is SDN-like
with some properties borrowed from SDN.

The Google Corporation deployed a private WAN called B4, which adopted a software-defined
networking architecture [24] to connect Google’s data centers across the planet. Through the
mechanism of centralized traffic engineering service, B4 achieved nearly 100% link utilization.

Koldehofe et al. proposed a reference architecture for building middleware, which befitted future
Internet applications, accompanying a solution for realizing content-based routing at the line-rate
relying on this architecture [25]. This architecture had some reference significance for us, even if it was
for a content-based publish/subscribe system and there were no experimental data to support it.

Jokela et al. implemented a multicast forwarding fabric called LIPSIN, which was suitable for
large-scale topic-based publish/subscribe systems [26]. By placing a Bloom filter into data packets,
LIPSIN achieved efficient multicasting on the network layer. The work in [27] proposed and evaluated a
content-based publish/subscribe middleware in SDN, which achieved high performance in forwarding
speed and bandwidth management. The work in [28] proposed a methodology for both vertical and
horizontal scaling of the distributed control plane as an expansion to [27].

Hakiri et al. proposed a data-centric publish/subscribe paradigm for proactive overlay SDNs and
presented a solution for realizing an SDN controller that operated in a distributed manner [29]. Vilalta
et al. proposed an end-to-end orchestration for IoT services using an SDN/NFV-enabled edge node
under SDN [30].

Syrivelis et al. proposed a particular architectural context for ICNconcerning how SDN and
ICN could concretely be combined and outlined a possible realization in a novel design for ICN
solutions [31]. They also pointed out several possible testbed deployments. However, they did not
implement it, and there was no experimental verification as a consequence.

3. Architecture

This section delves into the overall architecture of SDNPS. Learning from the traditional Internet,
we adopt hierarchical thinking to organize brokers and manage routing. All of the participants are
partitioned into multiple clusters according to their regional characteristics (belonging to the same
data center or LAN). Each cluster is a logically-autonomous area containing a representative broker
and some agent brokers, as well as a certain number of SDN-configurable switches, communicating
with other clusters through border switches. All of the clusters are treated equivalently. Above this, we
adopt a global server to manage topology and to compute routing holistically. It is important to note
that we devise an alternative distributed schema (it is still under testing) in order to avoid single point
failure and heavy burden on the server. As depicted in Figure 1, the system is logically structured
in three layers: the switch hardware layer, the cluster controller layer and the global management
layer. The switch hardware layer does not run complex control protocols. Its primary task is filtering
and forwarding events. The controller layer runs both the OpenFlow protocol and network control
applications. A controller is meanwhile a representative broker of the cluster where it is located.
The global management layer consists of a major server and a standby server, which have global
information about the physical topology and subscription topology. The servers enable central traffic
engineering by constructing topic-connected overlay networks based on global traffic prediction and
link information collection.

As depicted in Figure 2, we devise a strategy-driven topic tree aggregation routing schema.
From the subscription list and topic tree, we extract the subscription topology in incremental storage
mode. From link state database(LSDB) and cluster information, we extract the cluster-level physical
topology. Then, we compute multicast routing paths per topic based on the subscription topology and
cluster-level physical topology, as well as the strategy base in our schema.

Appl. Sci. 2016, 6, 91 5 of 21

controller

switch hardware

 global management

cluster cluster

Border switches:
Interconnect clusters

Controller&
Representative

Switch

Agent

server

Server:compute global routing
Controllers:configure a cluster
Switches:forward events
Agent：collection and dispatch information
Terminal:subscribe,unsubscribe and publish events

Terminal

Figure 1. System architecture overview.

Subscription
Tree

Strategy
Set

Cluster
Information

Subscription
Topology

Routing
Computation

Topic Tree

Routing
Table

Physical
Topology

LSDBNeighbor
Information

M
e

s
s
a

g
e

 In
te

rfa
c
e

Figure 2. Topology/routing management.

3.1. Topology Management

SDNPS maintains two kinds of topologies: subscription topology and physical topology.
For the former, every cluster (to be more exact, the representative broker) has global subscription

information for all topics, which constitutes to the subscription topology. Each new (un)subscription
event should be broadcast to all of the clusters, so that every cluster can receive it and then update
its subscription topology. The representative broker of the cluster, which originally generates

Appl. Sci. 2016, 6, 91 6 of 21

(un)subscription events, also answers for forwarding this (un)subscription information to the server.
This is the subscription topology.

For the latter, on the one hand, a controller detects the physical link states of its own cluster,
which forms an intra-cluster topology; on the other hand, it maintains the reachability information to
the neighbor clusters they selected by periodically sending out heartbeat information, then applying
network virtualization [32] technology to abstract the physical network to the virtual network with
tuples (source cluster, destination cluster, and bandwidth), which forms the cluster-level topology.
When centralized routing computation is adopted, every controller delivers its cluster-level topology
formatted with JSON (JavaScript Object Notation) to the server. Then, the server forms an inter-cluster
topology by aggregating and abstracting these data and computing inter-cluster routing paths. When
distributed routing computation is adopted, every controller maintains this inter-cluster topology
through a distributed protocol and computes inter-cluster routing paths, respectively. In this paper, we
adopt the centralized routing computation for brevity. In subsequent work, we will adopt distributed
computation for better flexibility and reliability. This is the physical topology.

Each update of the cluster topology or subscription topology would trigger a routing recalculation,
so as to add or delete paths among relevant switches.

3.2. Topic Management

In topic-based publish/subscribe paradigm, topics contact publishers and subscribers. However,
topics are not arbitrary strings in actual systems. To prevent from topic bursting, topics must be
registered to the server before they are put into use. In SDNPS, topics are structured as a topic
tree in which a topic covers all of the topics in its descendant nodes. That is to say, if a subscriber
subscribes to a topic, then it also automatically subscribes to those topics on its subtrees. Due to the
subscription cover relationship between father topic and child topics in the topic tree, we devise an
incremental minimal cost topic-connected overlay algorithm, which significantly reduces the time and
space complexity.

Now that SDN switches can perform filtering operations at low latency [27], we can manipulate
flow matching to support this work. The topic tree is an arbitrary multi-bifurcated tree. Transforming
the topic tree into a binary tree and then coding this binary tree by the left branch with zero and the
right branch with one, we get a binary string named the topic-expression (tp) for each topic. Figure 3
exhibits the methods of encoding a topic tree in this paper.

In particular, all of the events matching the topic tree constitute the event space called Ω, which
is a one-dimensional space. Ω can be divided into subspaces according to topics. Any subspace can
be identified by a topic-expression. In order to define the subscription cover relation of topics, two
functions are defined: dlsu f f ix(tp) is used for deleting all of the rear “1" of tp; dlzero(tp) deletes the
rear “0” of tp. If tpi equals dlzero(dlsu f f ix(tpj)), we say topic tpi is the father of topic tpj. It is obvious
that topic-expression has a partial relation. It fulfills the following characteristics: (1) a subspace tpi
covers the subspace tpj, iff tpi is a prefix of dlzero(dlsu f f ix(tpj)), written tpi � tpj; (2) if tpi � tpj, the
subscriber set Sj of tpj is a subset of the subscriber set Si of tpi, written Sj ⊆ Si.

For a topic tpi, there are three kinds of events: publish events, subscribe events and unsubscribe
events. Subscribe and unsubscribe events should be broadcast to all of the nodes. Therefore, flooding is
an appropriate method. Publish events should be routed to those subscribers who have subscribed to
them beforehand. SDN-configurable switches must identify these three types of events so that they can
perform different processing. For this purpose, we encode event type simultaneously. Two-bit binary
coding meets this requirement. This two-bit type code for events is stitched with tpi, forming the
identifier (called typetp) of a topic tpi. When an event is generated, the typetp is enclosed in its packet
header. It is noteworthy that the subspace relationship mentioned above allows the events whose topics
have the cover relation to share a common subpath. Recall that the routing of a publish/subscribe
system is an obvious multicast problem, so we adopt the IPV6 multicast address to embed typetp.
Figure 3 describes this process.

Appl. Sci. 2016, 6, 91 7 of 21

Medical

All

Fire Traffic

Alarm State Jam Statis. Help

All

Fire

Traffic

Medical

Alarm

State Jam

Statis. Help

0

00

001

0011

000

0001 0010

00101 00110

All:Traffic:Jam 0010

1 1 1 1 1 1 1 1 flags scope type …… ……

the value
is 0

fixed prefix: ff topic codeevent
type

2bit4 bit4 bit8 bit 103 bit

global
scope:e

e.g.

 the code of topic“Traffic”is‘001’
The corresponding IPV6 code is :
 ff0e:0190:* for subcribe event
 ff0e:4190:* for unsubscribe event
 ff0e:8190:* for publish event

length

7 bit

topic
length

code Event type

00 subscribe

01 unsubscribe

10 publish

Figure 3. Topic identifier.

The length of the IPV6 address is 128 bits. According to Figure 3, except for the frontal 25 bits,
which are occupied by a fixed section, there are 103 bits for topic codes. Theoretically, the code space is
2103. This means that there are at most 2103 topics, and it is adequate for our system. In fact, the excessive
number of topics, which is associated with the items of flow entries in flow tables, may increase the
workload for flow table lookup and degrade the forwarding performance at SDN-configurable switches.
Therefore, the flow table entries’ aggregation is indispensable to address this problem. This can be
easily implemented in light of the hierarchy of the topic tree.

3.3. Strategy Management

Sometimes, some clusters may prohibit events with specific topics from passing through for
security or privacy reasons. We adopt a strategy to define these constraints. The introduction of
a strategy makes it possible to distinguish different powers among clusters, which contributes to
preventing the system from some unfavorable conditions, such as information leakage, network traffic
anomalies, etc. The organization of the strategy is also in accord with the topics in the topic tree. The
strategy information is formatted as an XML file, and any cluster can download and store this file.
The administrator is responsible for the configuration of the strategy, including addition, deletion and
modification of the strategy. When a new strategy message comes, the strategy module will merge it
with the existing strategy data. If there is an update to the strategy data, this will be reflected in the
subscribe list, and the corresponding routing computation will be triggered.

The strategy is usually implemented in the forwarding plane by setting the filter conditions.
However, even if efficient filtration technology, such as a Bloom filter, is used, this still causes a delay.
Nevertheless, we innovatively adopt another method in SDNPS. We impose a strategy on the routing
schema in the period of routing computation. When computing the routing path for topic t, relative
strategy constraints will be considered. If the strategy is cluster level, the routing path should not
include clusters constrained by it. However, if the strategy is broker level, routing computation will

Appl. Sci. 2016, 6, 91 8 of 21

not be affected; those brokers constrained by the strategy autonomously decide whether to receive this
type of event or not.

3.4. Traffic Engineering Architecture

We design traffic engineering for our system to achieve approximate optimal performance. All of
the functions are deployed on the server and controllers. The server accounts for seeking optimized
routing paths among clusters while controllers split flows among multiple paths to balance traffic.
Figure 4 shows an overview of the traffic engineering architecture.

Traffic
Optimization

Traffic
Prediction

Topology
Aggregation

Traffic
Information

Link
Traffic

Allocation

Openflow
Entry
Table

Information
Collection

Controller

Topology
Abstract

OpenFlow Switch

Server

Figure 4. Traffic engineering overview.

The controllers operate over the following aspects:

(1) The information collection module provides information for traffic prediction. It is responsible
for gathering statistics information, including packet size and the number of every flow, the
queue size for every port of the switch, etc.

(2) The link traffic allocation module allocates traffic evenly among multiple links between any two
connected clusters. Besides this, it also answers for installing and updating flow tables.

(3) The topology abstract module detects switch connection information when the system starts and
abstracts away topology information. When there is a link state change at run-time, it reports
this information to the topology aggregation module and traffic prediction module. We call it
link-level abstraction, which lays the basis for the link traffic allocation module in the controllers
and the traffic aggregation module in the server.

The server achieves the following functions:

(1) The topology aggregation module chalks up the network topology graph in which vertices
represent clusters and edges represent the links between clusters by consolidating topology
information from multiple controllers and then aggregating trunks between clusters. We call it
cluster-level abstraction, which is the basis of inter-cluster routing computation. This abstraction
significantly reduces the size of the graph, thus simplifying the routing optimization algorithm.

(2) The traffic prediction module is responsible for predicting future traffic for a period of time in
terms of traffic statistics information of the past time. Treating prediction values as inputs to
the optimization algorithm can gain more reasonable routing congestion avoidance. The reason
why traffic can be predicted is mainly due to the characteristics of data in the Internet of things
(IoT) environment.

(3) The traffic optimization algorithm computes optimal or suboptimal routing paths according to
the global network topology and traffic value,s which are obtained from the traffic prediction

Appl. Sci. 2016, 6, 91 9 of 21

module and the topology aggregation module mentioned above. This module will be described
in detail in the remainder of this paper.

3.5. Event Routing

The routing of SDNPS is divided into two levels: routing among clusters, also known as
inter-cluster routing, and routing in a cluster, also known as intra-cluster routing. Because the server
has holistic information about publish information, subscribe information and a global topology,
it takes charge of computing inter-cluster routing. Similarly, the controllers are responsible for
intra-cluster routing.

3.5.1. Inter-Cluster Routing

The topology abstract module, which is run on the controller, has the topology information of
the cluster in which it is located. Naturally, it can also perceive its adjacent clusters through the link
information of border switches. We map the cluster-level routing table into the link-level routing table
by allocating the traffic evenly among relevant links and then write it into flow tables of switches.

When a border switch receives an event, it just searches for its flow tables. If there is a matched
item, it processes the event in terms of the corresponding instructions. If a table-miss event occurs, it
forwards the packet or its header to the controller in order to get further instructions. Substantially,
the routing is accomplished through flow tables. The installation of the flow tables is essential for
efficient routing. The controllers are responsible for installing flow tables of the switches attached to
them in terms of global routing computation (we call it inter-cluster routing), which is completed by
the server. The inter-cluster routing schema is substantially a multicast routing on the experience of
“link matching” [33] and multi-stream multi-source multicasting routing [34].

3.5.2. Intra-Cluster Routing

By abstracting clusters into nodes, we get a cluster-level topology, which lays the foundation for
the inter-cluster routing mentioned above. However, every cluster may have multiple border switches
to connect with other adjacent clusters, so the routing table obtained from inter-cluster routing must
be mapped into flow entries on switches.

When a broker receives an event published by a sensor or other terminal device, which is
connected to it, it firstly identifies the type and the topic (t) of the event, then searches the topic tree for
its binary code. Following this, it multicasts this event using UDP by encapsulating the type and topic
code into the packet header as the IPV6 address. This IP address is the IPV6 multicast address for topic
t. Finally, it delivers this event to the representative broker by reliable transmission, called TCP, aiming
at ensuring that every event can be transferred to the representative broker. When a broker receives an
event from another broker or switch, it checks its subscription list to decide whether to receive it or not.

4. Traffic Optimization Algorithm

4.1. Problem Definition

The publish/subscribe system is represented by an undirected graph G(V, E) with n nodes and m
edges, where V is a set of nodes (clusters) and E is a set of links, respectively. Assume that |V| = n,
|E| = m. For each link e = (i, j), a non-negative parameter named the bandwidth capacity c(e) is
associated with it.

Postulate that there are in total |T| topics in SDNPS; |PubIntt| events for topic t, which may be
originated from a set of publishers (source nodes), need to be disseminated to all subscribers denoted
by SubIntt (destination nodes), who have registered their interests in topic t beforehand, where
PubIntt ⊆ V and SubIntt ⊆ V. Note that |PubIntt| ≥ 1, |SubIntt| ≥ 0 and 1 ≤ t ≤ |T|. For events
tagged with topic t, there are |PubIntt| publishers; each of them has a different publish probability.

Appl. Sci. 2016, 6, 91 10 of 21

Let Pubprt(i)(1 ≤ i ≤ |PubInt|) denote the probability of node i publishing events tagged with topic t,
Pubprt(i) ∈ [0, 1]. We denote δt = (PubIntt, SubIntt, Pubprt) as a multicast session for topic t.

4.2. Problem Model

First, we model the nodes’s publish and subscribe interests formally: given a set of nodes V
and a set of topics T, a publish interest function PubInt, which is defined to be a probability-valued
function over domain V × T, and a subscription interest function SubInt, which is similarly defined
to be a Boolean-valued function over the same domain. That is to say, we say a node is interested in
publishing an event with topic t iff PubInt(v,t) ∈ (0,1), and a node is interested in receiving a topic t iff
SubInt(v,t) = true.

Then, The problem is formally defined as follows: Given G = (V, E), link bandwidth capacity
c: C(E)→ R+, a publish interest function PubInt and a subscribe interest function SubInt over V × T,
a topic t ∈ T, we define the topic-connected subgraph Gt = (Vt, Et) of G for topic t to be a minimal
support graph induced by δt = (PubIntt, SubIntt, Pubprt), such that the cost is minimum. It is worth
noting that the ‘minimum’ can be measured in different ways, such as minimal cost or minimal
numbers of nodes and edges. We call it ‘the minimal cost topic-connected overlay’ problem (MCTCO).

Definition 1 (The bottleneck bandwidth of the path). Given G = (V, E), r(e) is the available bandwidth of
edge e (e ∈ E), a path path(s, d) between s and d is described by a sequence of links e(s, i), e(i, j), e(j, k), · · · , e(u,
d), each of which belongs to E. The bottleneck bandwidth of path(u, v) is given in the following:

rp(path(u, v)) = min(r(s, i), r(i, j), r(j, k), · · · , r(u, d)) (1)

Definition 2 (MCTCO). Given G = (V, E), a cost matrix c(E), a topic t, two interest function PubIntt

and SubIntt over V × T, construct a topic-connected overlay network Gt = (Vt, Et), such that Σe∈Et C(e) is
minimum, limited (PubIntt

⋃
SubIntt) ⊆ Vt ⊆ V, Et ⊆ E.

The following lemma goes immediately after Definition 2.

Lemma 1. MCTCO is NP-hard.

Proof. Consider the distinguished Steiner tree problem in graphs. Given an undirected graph
G(V, E), an accident with a cost function c: c(E)→ R+, and a terminal set D where D ⊆ V(G), find a
tree Tr in G, such that D ⊆ V(Tr) and C(E(Tr)) is minimum. Karp et al. has proven that the Steiner
tree problem is one of the classical NP-hard problems [29].

Now, consider the MCTCO problem. According to the definition, the constructed overlay network
must be acyclic; that means a tree spanning all of the publish nodes (set S) and subscribe nodes (set D).
There are probably some indispensable relay nodes. Note that the MCTCO is identical to the Steiner
tree problem if we select one node s from S as the root node and treat S− {s}⋃ D as terminal nodes.
Therefore, MCTCO can be reducible to the Steiner tree problem.

Hence, the MCTCO problem is NP-hard.
Note that the above problem considers only one topic. For a set of topics, we can construct a set of

minimal topic-connected overlay subgraphs. To avoid the imbalance of link traffic, when constructing
minimal topic-connected overlay subgraphs, link residual bandwidth is considered as an important
factor. Following, we define the residual bandwidth of graph G.

Definition 3 (The residual bandwidth of graph G). Given G = (V, E). Υ(e) is the residual bandwidth of link
e, the residual bandwidth of graph G is defined as the minimum available bandwidth for all links in E. That is,

<(G) = mine∈E(Υ(e)) (2)

With the above definitions, the load-balanced MCTCO problem can be mathematically stated
as follows:

Appl. Sci. 2016, 6, 91 11 of 21

Maximize <(G).
Subject to:

Gt(Vt, Et) ⊆ G(V, T) ∀t ∈ T (3)

|Et| = |Vt| − 1 ∀t ∈ T (4)

∀e ∈ E ξT(e) =

{
1 i f e ∈ ET

0 i f e /∈ ET
(5)

ℵ(e) =
|T|

∑
t=1

|PubInt|

∑
i=1

Pubprt(i) · b · ξT(e) (6)

ℵ(E) ≤ C(E) (7)

Υ(e) = C(E)− ℵ(e) (8)

The objective function <(G) measures the maximum residual bandwidth of graph G using
constraint set Equation (8). Among the links of graph G, maximizing the bottleneck bandwidth of
the link, which is the minimal residual bandwidth of all links, contributes to balancing traffic. When
<(G) is less than zero, the instance is infeasible. Constraint set Equations (3) and (4) ensure that every
topic-connected subgraph is acyclic. Constraint Equation (5) is a decision function, which indicates
whether a link e of graph G is an edge of subgraph GT or not. Constraint Equation (6) defines the
consumed bandwidth of link e in graph G; here, b is a bandwidth unit. Constraint Equation (7) restricts
that the consumed bandwidth cannot go beyond the capacity of link e.

4.3. The Load-Balanced Topic-Connected Overlay Algorithm

Aiming at the objective function mentioned above, we put forward a heuristic algorithm.
This algorithm is evolved from the algorithms solving the multi-stream multi-source multicasting
routing problem (MMMRP) [34]. There are other incidental algorithms proposed for inter-cluster routing.

Algorithm 1 Inter-cluster routing algorithm.

Require: G = (V, E), C(E)
// C(E) is the bandwidth capacity matrix

Ensure: max(minR(E))
//min(R(E)) = min(Rei j), for ∀i, j eij ∈ E
//R(E) is residual bandwidth matrix, equals C(E) initially.

1: for each topic t do
2: Gt = MSG(S, t));

//call for MCTCO algorithm

3: cb = ∑
|t.PubInt|
i=1 t.Pubpr(i) · b ;

4: for each e ∈ E(Gt) do
5: c(e) = c(e)-cb;

//update the residual bandwidth;
6: end for
7: end for

Appl. Sci. 2016, 6, 91 12 of 21

The main idea of inter-cluster routing algorithm (Algorithm 1) is as follows. For every topic
t, we construct a topic-connected overlay subgraph Gt that spans its publish nodes and subscribe
nodes (Line 2). Following, we compute the consumed bandwidth ∑

|PubInt|
i=1 Pubprt(i) · b of links in Gt

(Line 3) with the node’s publishing probability considered. Then, we update the residual bandwidth
by subtracting ∑

|PubInt|
i=1 Pubprt(i) · b from cj if ej is in Gt (Line 5). These are repeated until all topics are

processed (Lines 1–7).

Algorithm 2 Minimal cost topic-connected overlay algorithm (MCTCO).

Require: G = (V, E), PubInt, SubInt, P
Ensure: Gt is a tree, SubInt

⋃
PubInt ∈ Gt, Gt j G

min(∑ c(eij)), for ∀i, j eij ∈ Gt
1: if T.father is NULL then
2: Gt = ∅; modify c(E) by strategy set for topic t;
3: for each source si ∈ PubInt do
4: Tree Ti = WidestPTathTree (G, si);
5: end for
6: for each dj ∈ SubInt do
7: EnQueue (Q, dj);
8: end for
9: while not empty (Q) do

10: currnode = DeQueue (Q);
11: while TRUE do
12: nextnode = the nextnode in path(currnode, S1);
13: nextwidth = rp(path(currnode, S1));
14: for each si ∈ PubInt− {S1} do
15: tempwidth=rp(path(currnode, si)) in Ti;
16: if tempwidth > nextwidth then
17: nextnode = the nextnode in path(currnode, si);
18: nextwidth = tempwidth;
19: end if
20: end for
21: Add (currnode, nextnode) to Gt;
22: if nextnode in PubInt then
23: break;
24: end if
25: currnode = nextnode;
26: end while
27: end while
28: traverse graph Gt to get all the connected subgraph;
29: Add the widest edges which can connect two

subgraphs to Gt until Gt is connected;
30: else
31: TF = T.father; Gt = Gt. f ather.topic;
32: TFnodes = TF.subscribelist

⋃
TF.publishlist;

33: Tnodes = T.subscribelist
⋃

T.publishlist;
34: Bnodes = Tnodes-TFnodes;
35: for each node N in Bnodes do
36: Add the widest path from N to VGt to Gt;
37: end for
38: end if

Algorithm 2 is constructing a topic-connected overlay network. Remember that we organize
topics as a topic tree. Owing to the overlay relationship between child topic and its father topic, when

Appl. Sci. 2016, 6, 91 13 of 21

a topic is in the first layer in the topic tree, we build the overlay network completely ab initio for this
topic; otherwise, we generate the overlay network for a topic from its father topic overlay network
by adding some vertices and edges. For the first case, we firstly generate |PubInt| (also denoted with
|S|) spanning trees, which are widest (Lines 2–4). There are several algorithms proposed for this,
e.g., a modified Dijkstra’s algorithm or a modified Bellman–Ford algorithm, etc. In this paper, we
adopt a modified Kruskal’s algorithm, which has the same time complexity asymptotically and a
faster run-time compared to the modified Dijkstra algorithm. Then, we find the widest path from each
destination vertex (SubInt) to any source vertex (PubInt) (Lines 6–27); this procedure will generate
several disjoint and acyclic subgraphs. Finally, we merge these subgraphs into a minimum spanning
tree (also known as a minimum overlay network) (Lines 28–29). For the latter case, we first figure out
the vertices that are not in the father topic’s overlay network (denoted as Gt. f ather), but meanwhile
in its own publishlist or subscribelist (Lines 31–34). Then, we add these vertices to Gt. f ather to form a
connected spanning tree adopting the Kruskal algorithm (Lines 35–37).

Algorithm 3 depicts the routing fine-tuning operations for physical topology change. In fact,
any changes on the subscription topology or physical topology would trigger a routing update. For
the first case, when a node v adds to the subscribelist for topic t, the routing update algorithm first
checks the overlay Gt; if v /∈ Gt, it finds the shortest and widest path from v to Gt and adds this path
to Gt. On the contrary, if a node v unsubscribes from topic t, it first checks whether v is a leaf node
in Gt or not. If v is a leaf node, it will remove node v, as well as the edge attached to v. Otherwise, v
is a relay node, and there is nothing to do. There is no difficulty in performing this update, so this
algorithm is omitted in this paper. For the latter, as any link can suffer from a failure, the traffic flowing
through the invalid link originally should take detours via other links. When a new link comes into
operation, it should share the traffic of other links to balance the load as much as possible. To avoid
traffic vibrating, this process moves mildly. It just depend on subsequent adjustment. Algorithm 3
carries out routing fine-tuning when the link state changes. Note that the routing update induced by
node failure is included in Algorithm 3, because this situation equals multiple links’ failure.

Algorithm 3 Routing fine-tuning algorithm for physical topology change.

Require: G = (V, E)C(E), L
//C(E) is the residual bandwidth capacity matrix
//Gt is overlay network for topic t

Ensure: max(minR(E))
//min(R(E)) = min(Rei j),for ∀i, j eij ∈ E
//R(E) is residual bandwidth matrix, equals C(E) initially.

1: if the links set is invalid
2: find the affected overlay network set GA;
3: foreach Gt in GA
4: merge the connected subgraphs split by failed links
5: endfor
6: else //there is newly added link
7: update the residual bandwidth matrix
8: endif

4.4. Complexity Analysis for Algorithm 2

Lemma 2. The time complexity of Algorithm 2 is O(max(n · log m, n·|PubInt| · |SubInt|)).

Proof. The time complexity of WidestPathTree(G, si) is O(n · log m). Here, n is the number of
vertices and m is the number of edges. This procedure is executed |PubInt| times. Therefore, the time
complexity of Lines 2–4 is O(n · |PubInt| · log m).

The time complexity from Lines 5–27 in Algorithm 2 is O(n · |PubInt| · |SubInt|). Here,
|PubInt| ≤ n, |SubInt| ≤ n.

Appl. Sci. 2016, 6, 91 14 of 21

Lines 28–29 adopt Prim’s algorithm to merge several connected components into a connected
graph; the time complexity of the worst case is O(n2). If the Fibonacci heap and adjacency list are used
for storing edges and weights, the time complexity can be reduced to O(m + n · log(n)).

Therefore, the time complexity of constructing a topic-connected overlay network ab initio is the
sum of these three items discussed above, that is O(max(n · log m, n · |PubInt| · |SubInt|)).

The function of Lines 31–36 equals Line 29; the same algorithm can be adopted. Therefore, the
time complexity of constructing a topic-connected overlay network based on its father topic overlay
network is O(m + n · log(n)).

Therefore, the total time complexity of Algorithm 2 is O(max(n · log m, n · |PubInt| · |SubInt|)).

5. Performance Evaluation

This section is dedicated to an analysis for the performance evaluation of the proposed SDNPS.
A series of experiments are conducted for evaluating the proposed algorithms.

5.1. Performance Evaluation of SDNPS

The SDNPS has been evaluated on a simple SDN testbed consisting of commodity PC hardware
and virtualization technologies. Figure 5 presents the experimental tandem topology with three hops.
All link rates are 10 Mb/s, and the packet lengths are 200 bytes. The elements are virtualized by three
IBM servers with an eight-core CPU and 16 G of memory. We would like to stress that using virtual
machines does validate our schema, but gives very conservative performance bounds. We test the
performance of SDNPS from the following aspects.

1

2 3

6

Switch

Broker

Controller
 &
 Broker

4

7
5

Figure 5. Experiment topology.

5.1.1. Delay and Loss Rate for 1:1 Transmission

This set of experiments is devised to study the end-to-end delay characteristics of the SDNPS
on the aforementioned testbed. we first analyze end-to-end delay between a pair of publisher and
subscriber connected via a one-hop path (from Node 1 to Node 2), two-hop path (from Node 1 to
Node 4) and three-hop path (from Node 1 to Node 6) in the topology, as depicted in Figure 5. For every
test, 100,000 UDP packets are sent continuously from a publisher to a subscriber. We recorded the time
period from the time that the first packet is sent from the publisher to the time that the last packet was
received by the subscriber as end-to-end delay. As every test is repeated 1000 times, we compute the
average value for end-to-end delay and packet loss. Table 1 depicts the results.

Table 1. Average delay and loss rate for 1:1 transmission.

Hops Source Destination Average Delay (ms) Average Loss Rate

1 1 2 2439.16 4.23%
2 1 4 2754.45 3.21%
3 1 6 15,098.67 0.00%

Appl. Sci. 2016, 6, 91 15 of 21

From Table 1, the average delay rises very quickly with the increase of the hop count. However,
there is a dramatic phenomenon: the greater the delay, the lower the packet loss rate. The main reason
is due to the performance of the virtual machine we adopt. The reception capacity of the virtual
terminal node limits the performance of SDNPS.

5.1.2. Delay and Loss Rate for 1:m Transmission

This set of experiments studies the delay and loss rate characteristics of the aforementioned
testbed when faced with one publisher and multi-subscribers. The same experimental methods and
evaluation methods are adopted. Table 2 presents the results. Compared to Table 1, the number of
subscriptions does not impact delay significantly, as the average delays of these three tests increased
(albeit slightly). This also validates our design. If unicast routing is adopted, there will be four-times
the packets injected into the network for 1:4 transmission. In this case, the performance worsens greatly.
Thus, we can draw a conclusion: SDNPS reaps benefits from its multicast routing.

Table 2. Average delay and loss rate for 1:m transmission.

Hops Source Destination Average Delay (ms) Average Loss Rate

1 1 2,3 2679.00 5.85%
2 1 2,4,5 13,248.00 0.00%
3 1 2,4,6,7 18,974.67 0.01%

5.1.3. Delay and Loss Rate for M:1 Transmission

In this section, we conduct a set of experiments to evaluate the performance of the SDNPS when
facing multi-publishers and one subscribers. Table 3 shows the results. For every test, there are two
publishers sending 100,000 packets simultaneously to one subscriber. There is no doubt that the
bottleneck is still on the side of end hosts.

Table 3. Average delay and loss rate for m:1 transmission.

Hops Average Delay (ms) Average Loss Rate

1 4872.0 6.41%
2 22,138.0 0.12%
3 23,843.0 0.00%

5.1.4. Delay and Loss Rate w.r.t. Flow Entries

Tables 4–6 present how the flow entries impact the performance of SDNPS under one-to-one
transmission mode. During the experiment, the flow table items of each switch vary between 1000 and
50,000 entries. With the augments of the flow entries at the switches, the delay is on the increase
(but slightly) accordingly. This indicates that the entry size of the flow table has a slight effect on the
processing delay of switches.

Table 4. Evaluation w.r.t. flow entries within 1 hop.

Flow Entries Average Delay (ms) Average Loss Rate

1000 2476 4.78%
5000 2927 2.15%

10,000 3044 4.98%
50,000 3200 2.53%

Appl. Sci. 2016, 6, 91 16 of 21

Table 5. Evaluation w.r.t. flow entries within 2 hops.

Flow Entries Average Delay (ms) Average Loss Rate

1000 2791 3.29%
5000 3325 0.00%

50,000 3574 0.21%

Table 6. Evaluation w.r.t. flow entries within 3 hops.

Flow Entries Average Delay (ms) Average Loss Rate

1000 15098 0.00%
5000 17486 0.00%

50,000 17959 0.00%

5.1.5. Throughput

From the above experiments, a lower delay means a higher loss rate. Additionally, we also clarify
that the processing limitation at end hosts mainly causes the packet loss. In this experiment, we
evaluate the ability of the switch and the end hosts to handle high incoming event rates within one hop.
A publisher sends packets at varying rates. Beyond a certain packet rate, some packets are dropped by
end hosts. We repeat this experiments many times, then find the fact that when the delay for 100,000
packets is larger than 3500 ms, the loss rate is fairly small. In another set of comparison experiments,
we substitute a fast machine for the virtual machine as the end hosts; the delay for 100,000 packets
should keep at least 2200 ms in order to get a very low loss rate. We can infer that the switches have
the ability to forward events to the end hosts.

5.1.6. Normality and ANOVA Tests

To validate our experiments listed above, we perform some statistical analyses, including
normality tests, which indicate whether the data from our experiments submitted to a normal
distribution, and ANOVA tests, which analyze whether the factor we considered significantly affects
the experimental results.

For normality tests, we conduct one-dimensional probability distribution verification leveraging
the Kolmogorov–Smirnov test (k-s test). In this way, we verify the normal distribution characteristic of
all of the experiments listed as Tables 1–6 at the confidence level of 95% (α = 0.05).

In addition, we conduct one-way ANOVA analysis for the experiments listed as Tables 4–6.
We take the delay time as samples to analyze whether the size of flow entries has a significant effect on
the end-to-end delay of one-to-one transmission mode. The results are listed as Tables 7–9. The results
indicate that the size of flow entries has an effect on delay under the three experimental scenarios.

Table 7. One-way ANOVA table for Experiment 4.

Source SS df MS F Prob > F

Columns 2.89589× 108 3 96,529,767.33 10,824.11 0
Error 3.56365× 107 3996 8918.3 - -
Total 3.25226× 108 3999 - - -

Appl. Sci. 2016, 6, 91 17 of 21

Table 8. One-way ANOVA table for Experiment 5.

Source SS df MS F Prob > F

Columns 2.24876× 108 2 162,438,146.02 23,342.45 0
Error 2.08559× 107 2997 6958.92 - -
Total 3.45732× 108 2999 - - -

Table 9. One-way ANOVA table for Experiment 6.

Source SS df MS F Prob > F

Columns 4.67267× 109 2 2,336,332,543.5 65,192.3 0
Error 1.07405× 108 2997 35,873.6 - -
Total 4.78007× 109 2999 - - -

5.2. Performance Evaluation of Algorithm MCOTO

The algorithms for constructing topic-connected overlays for topics are different in light of their
level in the topic tree. If a topic is in the first level, the algorithm is similar to MMMR [31]. The
difference is, the output of MMMR is a forest; in our algorithm, we merge the forest into a connected
graph, and we call it CMMMR. Consider an extreme situation: if the topics are all in the first level of
the topic tree, our algorithm is typical CMMMR. If the topic tree degenerates into a single-branch tree,
The majority of overlays are constructed by expanding the overlays of their father topics, and we call it
EMCOTO. Otherwise, we call it MCOTO.

We implement our algorithms in Java to measure the effect under the three cases in terms of:
(1) the execution time; (2) the maximum diameter; (3) the residual bandwidth.

The experiments are based on the following assumptions: The network is homogenous, in which
the available bandwidths for the links are identical. The workload ranges: |T| ∈ [40, 80, 120, 160, 200]
or |T| ∈ [1000,10,000]. The values of p(t) are distributed according to a Zipf distribution (with α = 2.0).

5.2.1. The Execution Time

The workstation used in the experiments is an Intel(R) Core(TM) (i5-3230 at 2.6 GHz) machine.
We fixed the number of nodes at 200 and varied the number of topics in the range of {40,80,120,160,200},
while the number of relevant nodes (including publishers and subscribers) is 30, in which 20% are
publishers. These relevant nodes are generated randomly. In MCOTO, the number of topics at the first
level is half of the total number. The results are shown in Figure 5. Note that the time magnitude is
104 ms. As we can observe, the shape of the topic tree greatly affects the efficiency of the algorithms.
The execution time under three cases increases along with the number of topics (Figure 6). When the
topic tree is a single-branch tree, the execution time is the smallest. When all of the topics have no
inclusion relationship, the execution time is maximum.

5.2.2. Topic Diameter

The topic diameter is defined as the maximum shortest distance between any two nodes on
the same topic-connected overlay. Here, distance is measured with hop count. We use the same
experimental parameters in Section 5.2.1. We compute the maximum shortest distance of all of
the topic overlays, then take the mean value as the topic diameter. Figure 7 is a comparison of our
algorithms in different cases for the diameter metric. The diameter increases for all three case. However,
in EMCOTO, the diameter increases slowly. The main reason is that we expand the overlays from other
relevant overlays that have been generated so that the number of the edges is less than the overlays
we construct ab initio.

Appl. Sci. 2016, 6, 91 18 of 21

40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 Number of Topics

E
xe

cu
tio

n
T

im
e(

m
s)

CMMMR
MCTCO
EMCTCO

Figure 6. The execute time in three cases.

40 60 80 100 120 140 160 180 200
4.5

5

5.5

6

6.5

7

7.5

8

8.5

 Number of Topics

T
op

ic
 D

ia
m

et
er

CMMMR
MCTCO
EMCTCO

Figure 7. The topic diameter on different topic numbers.

5.2.3. The Residual Bandwidth

The residual bandwidth is defined in Definition 3. Here, we still adopt the aforementioned
parameters. However, the publish events for every topic vary between 10,000 and 100,000. Assume
that the bandwidth of all of the links is equal to 1000 units. Every publish events occupies 0.02 unit per
link in the overlay. Figure 8 shows how different workloads impact the residual bandwidth.

40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

 Number of Topics with 10000 Events per Topic

th
e

R
es

id
ua

l B
an

dw
id

th

CMMMR
MCTCO
EMCTCO

(a)

40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

 Number of Topics with 100000 Events per Topic

th
e

R
es

id
ua

l B
an

dw
id

th

CMMMR
MCTCO
EMCTCO

(b)

Figure 8. The residual bandwidth. (a) 10,000 events per topic; (b) 100,000 events per topic.

From the experimental results, the performance scales in terms of the topic tree. To obtain a better
tradeoff between execution time and the residual bandwidth, the topic tree should be skillfully devised.
Besides the natural language semantics of topics, the relevant node set is a primary factor to organize
a topic tree.

Appl. Sci. 2016, 6, 91 19 of 21

6. Conclusions

In this paper, we attempt to construct a topic-based publish/subscribe system in an SDN environment.
The improvements provided by SDNPS constitute the basis for a highly reliable event diffusion

infrastructure able to efficiently balance the load of links and avoid imprudent forwarding for events.
By encoding topics and embedding them into packet headers as IPV6 multicast addresses, we can
directly perform filtering and forwarding operations on SDN switches without detours to brokers.
As a result, this significantly reduces the end-to-end latency.

The paper pays most of its attention to the inter-cluster routing mechanism incidentally with
several different aspects of the event dissemination mechanism and proposes algorithms to construct
topic-connected overlay networks, which in fact are a set of minimal cost Steiner trees induced by
relevant publishers and subscribers. Particularly, our algorithms are interrelated with the topic tree.
In this way, we can restrict the event dissemination scope to those pertinent nodes only, which
greatly saves the bandwidth. Simultaneously, we also take the residual bandwidth into account.
By maximizing the residual bandwidth as the optimization objective, we realized a load-balanced
routing schema.

For all that, there are still some rough edges. These can be ameliorated later. In the future, we
are going to work on two aspects of the system. The first fundamental aspect that must be pursued
is the real-time requirement for some events, e.g., real-time alarm event for the Internet of Things
(IoT). End-to-end latency can be cut down further by manipulating and fully capitalizing on the
programmable characteristic of SDNs. Second, we will extend our experiments and test the system
with reference to [35].

Acknowledgments: This research is supported by the National Natural Science Foundation of China under
Grant Nos. 61372115, 61132001; the “973” program of the National Basic Research Program of China Grant No.
2012CB315802; the National High-tech R & D Program of China (863 Program) under Grant No. 2013AA102301.

Author Contributions: Yali Wang and Yang Zhang conceived of the whole paper. Yali Wang and Yang Zhang
designed and performed the experiments. Yali Wang analyzed the data. Yali Wang wrote the paper. Yang Zhang
and Junliang Chen revised the whole paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SDN software-defined networking
JSON JavaScript Object Notation
MCTCO minimal cost topic-connected overlay

References

1. Banno, R.; Takeuchi, S.; Takemoto, M.; Kawano, T.; Kambayashi, T.; Matsuo, M. Designing overlay networks
for handling exhaust data in a distributed topic-based Pub/Sub architecture. J. Inf. Process. 2015, 23, 105–116.

2. Sun, Y.; Qiao, X.; Cheng, B.; Chen, J. A low-delay, lightweight publish/subscribe architecture for
delay-sensitive IoT services. In Proceedings of the 2013 IEEE 20th International Conference on Web
Services (ICWS), Santa Clara Marriott, CA, USA, 27 June–2 July 2013; pp. 179–186.

3. Eugster, P.T.; Felber, P.A.; Guerraoui, R.; Kermarrec, A.M. The many faces of publish/subscribe.
ACM Comput. Surv. 2003, 35, 114–131.

4. Chockler, G.; Melamed, R.; Tock, Y.; Vitenberg, R. Spidercast: A scalable interest-aware overlay for
topic-based pub/sub communication. In Proceedings of the 2007 Inaugural International Conference
on Distributed Event-Based Systems, Toronto, ON, Canada, 20–22 June 2007; pp. 14–25.

5. Voulgaris, S.; Gavidia, D.; van Steen, M. Cyclon: Inexpensive membership management for unstructured
p2p overlays. J. Netw. Syst. Manag. 2005, 13, 197–217.

Appl. Sci. 2016, 6, 91 20 of 21

6. Jafarpour, H.; Mehrotra, S.; Venkatasubramanian, N. Dynamic load balancing for cluster-based
publish/subscribe system. In Proceedings of the Ninth Annual International Symposium on Applications
and the Internet, Seattle, WA, USA 20–24 July 2009; pp. 57–63.

7. Cheung, A.K.Y.; Jacobsen, H.A. Load balancing content-based publish/subscribe systems. ACM Trans.
Comput. Syst. 2010, 28, 9.

8. Baldoni, R.; Querzoni, L.; Tarkoma, S.; Virgillito, A. Distributed event routing in publish/subscribe systems.
In Middleware for Network Eccentric and Mobile Applications; Springer: Heidelberg, Germany, 2009; pp. 219–244.

9. Castro, M.; Druschel, P.; Kermarrec, A.M.; Rowstron, A.I. SCRIBE: A large-scale and decentralized
application-level multicast infrastructure. IEEE J. Sel. Areas Commun. 2002, 20, 1489–1499.

10. Zhuang, S.Q.; Zhao, B.Y.; Joseph, A.D.; Katz, R.H.; Kubiatowicz, J.D. Bayeux: An architecture for scalable
and fault-tolerant wide-area data dissemination. In Proceedings of the 11th International Workshop on
Network and Operating Systems Support for Digital Audio and Video, Port Jefferson, NY, USA, 25–26 June
2001; pp. 11–20.

11. Liotou, E.; Tseliou, G.; Samdanis, K.; Tsolkas, D.; Adelantado, F.; Verikoukis, C. An SDN QoE-Service
for dynamically enhancing the performance of OTT applications. In Proceedings of the 2015 Seventh
International Workshop on Quality of Multimedia Experience (QoMEX), Costa Navarino, Greece, 26–29 May
2015; pp. 1–2.

12. Baldoni, R.; Beraldi, R.; Quema, V.; Querzoni, L.; Tucci-Piergiovanni, S. TERA: Topic-based event routing for
peer-to-peer architectures. In Proceedings of the 2007 Inaugural International Conference on Distributed
Event-Based Systems, Toronto, ON, Canada, 20–22 June 2007; pp. 2–13.

13. Ramasubramanian, V.; Peterson, R.; Sirer, E.G. Corona: A High Performance Publish-Subscribe System for
the World Wide Web. In Proceedings of the Symposium on Networked Systems Design and Implementation,
San Jose, CA, USA, 8–10 May 2006; Volume 6, pp. 115–117.

14. Banerjee, S.; Bhattacharjee, B.; Kommareddy, C. Scalable Application Layer Multicast; ACM: New York, NY,
USA, 2002; Volume 32.

15. Chockler, G.; Melamed, R.; Tock, Y.; Vitenberg, R. Constructing scalable overlays for pub-sub with many
topics. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing,
Portland, OR, USA, 12–15 August 2007; pp. 109–118.

16. Chen, C.; Jacobsen, H.A.; Vitenberg, R. Divide and conquer algorithms for publish/subscribe overlay design.
In Proceedings of the 2010 IEEE 30th International Conference on Distributed Computing Systems (ICDCS),
Genova, Italy, 21 June 2010; pp. 622–633.

17. Chen, C.; Jacobsen, H.A.; Vitenberg, R. Algorithms based on divide and conquer for topic-based
publish/subscribe overlay design. IEEE/ACM Trans. Netw. 2015, 24, 422–436.

18. Onus, M.; Richa, A.W. Minimum maximum-degree publish-subscribe overlay network design. IEEE/ACM
Trans. Netw. 2011, 19, 1331–1343.

19. Onus, M.; Richa, A.W. Parameterized maximum and average degree approximation in topic-based
publish-subscribe overlay network design. Comput. Netw. 2015, doi:10.1109/ICDCS.2010.54.

20. Darugar, P.T.; Martinez, F.; Toth, P.K. Network Publish/subscribe System Incorporating Web Services
Network Routing Architecture. US Patent 7,349,980, 25 March 2008.

21. Baldoni, R.; Beraldi, R.; Querzoni, L.; Virgillito, A. Efficient publish/subscribe through a self-organizing
broker overlay and its application to SIENA. Comput. J. 2007, 50, 444–459.

22. Nunes, B.A.; Mendonca, M.; Nguyen, X.N.; Obraczka, K.; Turletti, T. A survey of software-defined
networking: Past, present, and future of programmable networks. Commun. Surv. Tutor. IEEE 2014,
16, 1617–1634.

23. Zhang, K.; Jacobsen, H.A. SDN-like: The next generation of pub/sub. IEEE Trans. Intell. Transp. Syst. 2013,
14, pp. 883–893.

24. Jain, S.; Kumar, A.; Mandal, S.; Ong, J.; Poutievski, L.; Singh, A.; Venkata, S.; Wanderer, J.; Zhou, J.; Zhu, M.;
et al. B4: Experience with a globally-deployed software defined WAN. In ACM SIGCOMM Computer
Communication Review; ACM: New York, NY, USA, 2013; Volume 43, pp. 3–14.

25. Koldehofe, B.; Dürr, F.; Tariq, M.A.; Rothermel, K. The power of software-defined networking: Line-rate
content-based routing using OpenFlow. In Proceedings of the 7th Workshop on Middleware for Next
Generation Internet Computing, Montreal, QC, Canada, 3–7 December 2012; p. 3.

Appl. Sci. 2016, 6, 91 21 of 21

26. Jokela, P.; Zahemszky, A.; Rothenberg, C.E.; Arianfar, S.; Nikander, P. LIPSIN: Line speed publish/subscribe
inter-networking. ACM SIGCOMM Comput. Commun. Rev. 2009, 39, 195–206.

27. Tariq, M.A.; Koldehofe, B.; Bhowmik, S.; Rothermel, K. PLEROMA: A SDN-based high performance
publish/subscribe middleware. In Proceedings of the 15th International Middleware Conference, Bordeaux,
France, 8–12 December 2014; pp. 217–228.

28. Bhowmik, S.; Tariq, M.A.; Koldehofe, B.; Kutzleb, A.; Rothermel, K. Distributed control plane for
software-defined networks: A case study using event-based middleware. In Proceedings of the 9th
ACM International Conference on Distributed Event-Based Systems, Oslo, Norway, 29 June–3 July 2015;
pp. 92–103.

29. Hakiri, A.; Berthou, P.; Patil, P.; Gokhale, A. Towards a publish/subscribe-based open policy
framework for proactive overlay software defined networking. ISIS 2015, Available online: http://www.
isis.vanderbilt.edu/biblio/ (accessed on 29 August 2015).

30. Vilalta, R.; Mayoral, A.; Pubill, D.; Casellas, R. End-to-End SDN Orchestration of IoT Services Using an
SDN/NFV-enabled Edge Node. In Proceedings of Optical Fiber Communication Conference, Anaheim, CA,
USA, 20–24 March 2016.

31. Syrivelis, D.; Parisis, G.; Trossen, D.; Flegkas, P.; Sourlas, V.; Korakis, T.; Tassiulas, L. Pursuing a software
defined information-centric network. In Proceedings of the 2012 European Workshop on Software Defined
Networking (EWSDN), Darmstadt, Germany, 25–26 October 2012; pp. 103–108.

32. Tseliou, G.; Adelantado, F.; Verikoukis, C. Resources negotiation for network virtualization in LTE-A
networks. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney,
Australia, 10–14 June 2014; pp. 3142–3147.

33. Banavar, G.; Chandra, T.; Mukherjee, B.; Nagarajarao, J.; Strom, R.E.; Sturman, D.C. An efficient multicast
protocol for content-based publish-subscribe systems. In Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems, Austin, TX, USA, 31 May–4 June 1999; pp. 262–272.

34. Chen, Y.R.; Radhakrishnan, S.; Dhall, S.; Karabuk, S. On multi-stream multi-source multicast routing.
Comput. Netw. 2013, 57, 2916–2930.

35. Munoz, R.; Mangues-Bafalluy, J.; Vilalta, R.; Verikoukis, C.; Alonso-Zarate, J.; Bartzoudis, N.; Georgiadis, A.;
Payaro, M.; Perez-Neira, A.; Casellas, R.; et al. The CTTC 5G end-to-end experimental platform: Integrating
heterogeneous wireless/optical networks, distributed cloud, and IoT devices. IEEE Vehicul. Technol. Mag.
2016, 11, 50–63.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Routing Optimization of Topic-Based Publish/Subscribe Systems
	SDN-Based Publish/Subscribe Systems

	Architecture
	Topology Management
	Topic Management
	Strategy Management
	Traffic Engineering Architecture
	Event Routing
	Inter-Cluster Routing
	Intra-Cluster Routing

	Traffic Optimization Algorithm
	Problem Definition
	Problem Model
	The Load-Balanced Topic-Connected Overlay Algorithm
	Complexity Analysis for Algorithm 2

	Performance Evaluation
	Performance Evaluation of SDNPS
	Delay and Loss Rate for 1:1 Transmission
	Delay and Loss Rate for 1:m Transmission
	Delay and Loss Rate for M:1 Transmission
	Delay and Loss Rate w.r.t. Flow Entries
	Throughput
	Normality and ANOVA Tests

	Performance Evaluation of Algorithm MCOTO
	The Execution Time
	Topic Diameter
	The Residual Bandwidth

	Conclusions

