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Abstract: This paper aims to retrieve temporal high-resolution LAI derived by fusing 

MOD15 products (1 km resolution), field-measured LAI and ASTER reflectance (15-m 

resolution). Though the inversion of a physically based canopy reflectance model using  

high-resolution satellite data can produce high-resolution LAI products, the obstacle to 

producing temporal products is obvious due to the low temporal resolution of high resolution 

satellite data. A feasible method is to combine different source data, taking advantage of the 

spatial and temporal resolution of different sensors. In this paper, a high-resolution LAI 

retrieval method was implemented using a dynamic Bayesian network (DBN) inversion 

framework. MODIS LAI data with higher temporal resolution were used to fit the temporal 

background information, which is then updated by new, higher resolution data, herein 

ASTER data. The interactions between the different resolution data were analyzed from a 

Bayesian perspective. The proposed method was evaluated using a dataset collected in the 

HiWater (Heihe Watershed Allied Telemetry Experimental Research) experiment. The 

determination coefficient and RMSE between the estimated and measured LAI are 0.80 and 
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0.43, respectively. The research results suggest that even though the coarse-resolution 

background information differs from the high-resolution satellite observations, a satisfactory 

estimation result for the temporal high-resolution LAI can be produced using the 

accumulated information from both the new observations and background information. 

Keywords: leaf area index; dynamic Bayesian network; uncertainty analysis; high spatial 

resolution; high temporal resolution 

 

1. Introduction 

The leaf area index (LAI), defined as half of the leaf surface area on a unit ground surface area, is an 

important structural parameter of vegetation [1]. Retrieving LAIs from remotely sensed data is an 

efficient method compared to ground-based measurement [2]. Currently, several satellite LAI products 

have been available, such as MODIS [3], GEOV1 [4], GLASS [5], GLOBMAP [6], and JRC-TIP [7]. 

However, the above LAI products yield a coarse resolution from 500 to 3000 m. In the context of land 

and resource monitoring in a small regional area, temporal high-resolution LAI products are more 

appreciated [8,9]. 

One straightforward method to produce high resolution LAIs is using high resolution satellite data, 
such as Landsat TM/ETM+ [8] and ASTER VNIR [10,11] imagery with 30 m and 15 m resolution, 

respectively. However, the quantitative products from high-resolution remote-sensing observation data 

yield a discontinuous time series that suffers from bad weather conditions. Therefore, to obtain  

high-quality LAI products, researchers have begun to synthetically calculate LAIs using multi-source 

remote-sensing data using dynamic change information from existing remote-sensing products [12,13].  

On the one hand, when multi-source data are considered in producing high-resolution LAIs, more 

time information can be utilized to improve the quality, but on the other hand, certain aspects may yield 

uncertainties from the different source data (e.g., the mismatch between data resolution and inherent 

errors in an individual dataset). An uncertainty analysis on the estimated results will aid users in 

understanding how these products perform and improve the accuracy of future products [14]. From the 

perspective of understanding the interaction processes of information and improving model reliability, 

it is necessary to conduct uncertainty analysis on the inversion models [15,16]. Herein, the uncertainties 

about differently scaled data are analyzed using the posterior entropy of the temporal LAI  

estimation result. 

This paper adopts a dynamic Bayesian network method to calculate temporal high-resolution LAI 

products by combining coarse resolution LAI dynamic information and higher resolution remotely 

sensed reflectance. The uncertainty analysis about the retrieved result is conducted on the posterior 

probability information that is derived from Bayesian inference, and the performance of the retrieved 

LAI was validated using ground measurement data. 
  



Remote Sens. 2015, 7 197 

 

 

2. Study Area and Data 

2.1. Ground Experiment 

The study area is located in the Xiaoman irrigated district in the arid regions of the middle Heihe 

River, which is 8 km south of Zhangye in the Gansu province [17]. The study area is a typical farmland 

ecosystem. Its main type of vegetation is corn. We used a 4 × 4 km2 range (which corresponds to  

4 × 4 MODIS pixels) to arrange the ground experimental observations and collect the field LAI values. 

The ground experiment in the study area is part of the HiWATER (Heihe Watershed Allied Telemetry 

Experimental Research) experiment [17], which was conducted from June to August, 2012. 

During the ground experimental period, the ground LAI of corn was measured using the wireless 

sensor network method LAINet [18]. The performance of LAINet has been widely validated through 

comparison with other commercial instruments, such as LAI-2000 [18] and TRAC [19]. Figure 1 shows 

the distribution of the 42 LAINet nodes (green symbols) in the study area. We collected the ground LAIs 

from 25 June to 24 August 2012. 

 

Figure 1. Distribution of the instruments in the study area. The green symbols are the 

location of the LAINet nodes. 

2.2. Data 

The data used in this article are MODIS LAI products (MOD15A2), ASTER images and the field 

measurements collected using LAINet, an automated LAI measurement system based on a wireless 

sensor network technique. 

We used MODIS LAI products (MOD15A2) as background information to construct the LAI 

dynamic process. MOD15A2’s spatial resolution and time interval were 1 km and eight days [3], 

respectively. MOD15A2’s acquisition dates ranged from DOY (day of year) 153 to DOY 265 in 2012 
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(which corresponded with the ground experiment time). Details on the above data are shown in  

Table 1. Before the MODIS LAI data can be used to establish the LAI dynamic process, the  

Savitzky-Golay filter [20] was used to reduce or eliminate the spatial and temporal discontinuity of the 

MODIS LAI time-series data. 

Table 1. The spatial and temporal information of satellite data and the ground data. 

Data Source Spatial Resolution Temporal Resolution DOY 

MOD15A2 1 km 8 days 153/161/169/177/185/193/201/209/217/225/233/241/249/257/265

ASTER 15 m Varied 152/167/192/215/224/231/240/247/263 

LAINet ground point 5 days 177~232 

The nine high-quality (high resolution, clearer, cloudless) ASTER surface reflectance images’ data 

with 15-m resolution were used as high-resolution remote-sensing observations to update the background 

information. The specific times for the images are shown in Table 1. Before these data were used to 

invert the LAI, they were corrected through geometric calibration using a ground-measured settlements 

vector layer of the study area as the reference image, and the calibrated errors were within 0.5 pixels. 

MODIS is high temporal resolution, low spatial resolution whilst ASTER is high spatial resolution, low 

temporal resolution. 

The field-measured LAINet data were used as ground truth data. We aggregated the observed daily 

LAINet data into a dataset with 5-days interval by calculating the average value of 5 days. The details 

on the processing method and results from a comparison with other instruments are in [18]. 

3. Methods 

3.1. Methods Overview 

The framework for estimating temporal, high-resolution LAIs is based on a dynamic Bayesian 

network (DBN), which combines the dynamic-change information from coarse-resolution LAI products 

with observation information from high-resolution remote-sensing data. In the DBN method,  

the dynamic-change information was introduced using a simple fitted equation, and the observation 

information was introduced through the canopy reflection model. The uncertainty of the  

multi-source information’s interactions and estimated results were analyzed and validated using the 

field-measured data. 

The diagrammatic chart for the proposed framework is shown in Figure 2 and is further divided into 

four steps. In the first step, the ASTER LAIs are generated using a constrained inversion method. 

Specifically, together with the ASTER reflectance data, some selected ground-truth values were used to 

generate the look up table (LUT), which was used to estimate the high-resolution LAIs. Several other 

methods also have been used: inversion of physically based canopy reflectance models using the 

traditional optimization method, neural networks, genetic algorithm [21]. The output from the first step 

includes 15-m-resolution ASTER LAIs and their corresponding posterior probability distributions. The 

process is shown in part A of Figure 2. In the second step, a fitted LAI growth equation was established 

using the MODIS LAI data to describe the background LAI information. The fitted equation was also 

used to calculate the LAI state transition probability between each time slice. The second step is shown 
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in part B of Figure 2. In the third step, the information derived from the above steps is updated by the 

dynamic Bayesian network method. In this step, the state transition probability in part B is updated using 

the conditional probability distribution from part A; next, the information entropy and maximum 

probability were calculated using the updated posteriori probability distribution, which is shown in part 

C of Figure 2. Through an iteration composed of steps 1 to 3, the coarse-resolution background 

information is updated using high-resolution satellite observations, and the updated result is the LAI 

posteriori probability distribution for each time slice. All of the above steps will be introduced in detail 

in Section 3.2 to Section 3.5. 

 

Figure 2. The diagrammatic chart for temporal, high-resolution leaf area index (LAI) retrieval. 

3.2. Step 1: Generating a Look-Up Table Constrained Using Ground Observations 

Currently, estimating the LAI from remote-sensing data will generally rely on a canopy reflectance 

(CR) model; however, a CR model has more than one free variable besides the target variable, so it is 

difficult to retrieve the value of the target variable by inverting the CR model. Many techniques have 

been developed to reduce the effects of the free variables and improve the reliability of the retrieved 

variable, such as using ground-truth data to constrain the model parameters [22–24]. In this work, there 

were 42 LAINet nodes deployed in the experiment area; as a result, many LAI data recorders were 

available and some of the data can be selected as constraints when inverting a CR model. 

Here, a coupled radiation transfer model called PROSAIL (PROSPECT + SAIL) is used to generate 

the look-up table. The PROSAIL model consists of the leaf optical properties model PROSPECT [25] 

and the canopy reflectance model SAIL [26]. The PROSPECT model’s input parameters involve 

chlorophyll content (Cab), dry matter content (Cm), equivalent water thickness [(EWT)-Cw] and the 

leaves’ structural parameter (N); the output of this model includes hemispherical reflectance and 

transmittance. The SAIL model’s input parameters include leaf reflectance (ρ ) and leaf transmittance 

(τ ), which were simulated using the PROSPECT model, the average leaf angle (ALA), soil reflectance 

(ρ ), horizontal visibility (VIS), view zenith angle (θ ), solar zenith angle (θ ), and relative azimuth 

angle (∅). The function relationship between the vegetation parameters as shown above and through the 

reflectance can be simply described as follows 
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Before the ground data were used to constrain the inverted model, the sensitivity of the model’s free 

variables was inspected. The specific process underlying this process can be further decomposed into 

three sub-processes. First, the ranges of the four PROSPECT input parameters were determined by the 

statistics from the LOPEX’93 dataset (Leaf Optical Properties Experiment) [27]. Second, we kept any 

three input parameters fixed while changing the remaining parameter within its statistical range, and its 

impact on the estimated LAI was documented. Third, the sensitivity of the four parameters was 

calculated and arranged from strong to weak. In this work, the calculated result is in the following order: 

Cm, N, Cab, and Cw. The sensitivity order reveals that the estimated LAI is least sensitive to Cab and Cw 

(i.e., the LAI almost did not change when these parameters changed).  

To implement Step 1, the ground-measured LAI values were selected using the criterion that there 

are pure vegetation pixels in the area surrounding the measured point within 45 × 45 m2, which 

corresponds to ASTER 3 × 3 pixels. We used the four groups of measured data to fix the Cm and N 

values. The soil reflectance can be calculated using the soil-reflectance (SOILSPECT) model [28]; the 

horizontal visibility (VIS) was set as a constant in accordance with the empirical experiment, and the 

solar and observation geometries can refer to the MODIS reflectance products. When all of the free 

variables have been determined, the LUT can be generated by forward simulating the PROSAIL model 

with varying LAI values. Consequently, the estimated LAI is the value that minimizes the deviation 

between the simulated and satellite reflectances. When the model and observed data uncertainties are 

considered, the estimated results are generally expressed as a probability distribution. 

3.3. Step 2: Fitting the LAI Growth Equation 

Unlike satellite observations, which directly drive the inverted canopy reflectance model, the dynamic 

change information of LAI growth is auxiliary information on the target parameter when the canopy 

reflectance model is inverted. There are many methods to describe the temporal trend for LAI growth, 

such as growth model simulation. However, compared with the complicated biophysical-based model, 

the statistical model, which is characterized by its simple form and capacity to drive data, is more easily 

used in application.  

Here, we used a LAI growth equation fitting method using temporal MODIS LAIs developed by  

Qu [29]; thus, the fitted LAI growth-trend information is introduced into the inversion processes as 

background information. It should be noted that there is a scale mismatch between the background 

information and satellite observations; as a result, the trend for changes in one MODIS LAI pixel in the 

time series can only be regarded as a general trend for all of the ASTER pixels within 1 × 1 km2. The 

formula is shown in Equation (2). 

( ) ( ) 1
1

t
t t

t

l
P LAI P LAI P

l
+

+

 
∝ ×  

 
(2) 

where ( )P ⋅  indicates the probability distribution of the variables, so the uncertainties of different source 

data is conducted using probability operation; 1tl +  and tl are the filtered MODIS LAI values at the t + 1 

and t time slices, and +1t t
l l  is the background information. LAIt and LAIt + 1 are the predicted ASTER 
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LAIs in their corresponding time slices. The model is a simple dynamic iterative equation; the predicted 

value of the next moment  is a function of the previous moment inversion value .  

As shown in part B of Figure 2, each pixel of a MODIS LAI has its own background information 

value because there is a spatial resolution difference, so each MODIS pixel corresponds to multiple 

ASTER pixels. In other words, there will be many ASTER pixels sharing the same background 

information. However, because every ASTER pixel has its own reflectance, after the background 

information is updated by high resolution observations, each ASTER pixel has its own  and  

values. The uncertainties raised from different data scales are discussed in the following section. 

3.4. Step 3: Retrieving the Temporal High-Resolution LAI  

A method based on a dynamic Bayesian network was developed by Qu et al. [29,30] and is employed 

here to retrieve temporal high-resolution LAIs. We used reflectance and background information as 

preconditions to deduce the conditional probability of the LAIs, while the previous works [29,30] used 

only reflectance data.  

Figure 3 shows a diagram of the inversion process schematic for the dynamic Bayesian network. ~  is the high-resolution remote-sensing observation at time T. ~  is the MODIS LAI, and ~  is the inversion result at time T; the arrow indicates the relationship between the parameters. The 

green rectangular box indicates the growth model prediction based on the background information, and 

the red rectangle box indicates the inversion process restrained by the high-resolution observation and 

field-measured data. In the proposed method, which takes advantage of the fitted model predication, not 

every moment throughout the time series needs remote-sensing observation data. 

 

Figure 3. The schematic diagram for dynamic Bayesian network retrieval. 

Assuming that the high-resolution remote-sensing observation data ( ~ , ~ ,⋯ , ~ ) 
and MODIS LAIs with eight-day intervals ~1 ~2 ~3 ~ 1 ~, , , , ,( )LAI LAI LAI LAI T LAI TM M M M M−  are available, 

the posterior probability of ~LAI TA  at time T, which is denoted as ( )LAI ~T REF ~T LAI ~TP A | A ,M , can thus be 

derived using the Bayes theorem: 

( )
( ) ( ) ( )

( )
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(3) 

This formula is implemented through the following three steps. (1) The canopy reflection model is 
used to calculate the conditional probability at time T, ( )~ ~|REF T LAI TP A A ; (2) The dynamic fitted model 
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is used to calculate the state transition probability at time T, ( )~ ~ 1|LAI T LAI TP A A − ; (3) The probability 

distribution of (1) is used to update the probability distribution of (2) and obtain the posteriori probability 

of the LAI at time T. When a high-resolution remote-sensing observation is available, if the probabilities 

of (1) and (2) have been calculated, the posterior probability distribution of the LAI at this moment can 

be calculated.  

To estimate LAIs based on the posterior probability distribution of each moment, two methods are 

available. One requires taking the value that corresponds to the maximum probability of the posterior 

probability distribution as the final LAI; the other requires taking the expectation of the posterior 

probability distribution as the final LAI. Here, we used the first method to calculate the LAI for  

each moment. 

3.5. Step 4: Calculating the Information Entropy and Maximum Probability 

The information entropy represents the statistical characteristics of the information source, and it can 

measure the randomness of the information source and average uncertainty of the probability 

distribution. Through calculating the information entropy of the LAI probability distribution, we can 

analyze the uncertainty for the LAI of each pixel for each time slice. The formula for calculating 

information entropy is shown in Equation (4) [31]:  

( ) ( ) ( ) ( )( )2 2
log 1 log

i i i i
H x E p x p x p x = =    (4) 

 is the information entropy, and  is the probability value in the probability distribution. In 

the Bayesian inference process, each LAI inversion result is expressed through a posterior probability 

distribution, which can be used to calculate its information entropy. A higher information entropy value 

represents a greater uncertainty; in contrast, a lower information entropy value represents less uncertainty.  

As addressed in Section 3.4, the estimated LAI is determined by the value with the maximum 

probability in the estimated posterior probability distribution. As a result, when the LAI value is 

retrieved, it also has a corresponding probability value. A higher maximum probability value represents 

greater LAI reliability; in contrast, a smaller maximum probability value represents lower LAI reliability.  

In evaluating the uncertainty of the estimated results, the results are acceptable if the shape of the LAI 

posteriori probability distribution is more concentrated, its maximum probability value is higher, and its 

information entropy is smaller; under these conditions, the LAI reliability is greater. Thus, calculating 

the information entropy and maximum probability of the posterior probability distribution can provide 

a quantitative analysis and evaluation for the reliability of the LAI inversion results (i.e., the uncertainty). 

4. Results and Discussion 

4.1. PROSAIL Model Parameters Determined through Fixed Ground Measurements 

Four ground point values were selected from three days of measurement data as constraints to 

determine the PROSAIL model’s parameters. The information for these data is shown in Table 2. Using 

the method illustrated in Section 3.2, the PROSAIL model’s parameter values (or ranges) used to create 

the LUT were determined; the results are in Table 3.  
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Table 2. Information on the measured points used to constrain the input parameters. 

ID DOY Lon Lat 

258 192, 207, 222 100.36976E 38.854710N
259 192, 207, 222 100.35221E 38.856950N
286 192, 207, 222 100.35146E 38.869710N
229 192, 207, 222 100.34615E 38.867900N

Table 3. The PROSAIL input parameters. 

Variables Unit Range Variables Unit Range 

Cab µg/cm2 30  - 0.232 
Cm g/cm2 0.008 VIS km 20 
Cw cm 0.0191  degree 20~30 
N - 1.518  degree 35~45 

LAI m2/m2 0~6.5 ∅ degree 125 
ALA degree 45    

4.2. Evaluation of the Performance of the Estimated LAI  

Figure 4 is the scatter plot for the estimated LAI and field-measured values (30 field-measured points 

were selected). In this figure, the four groups of field-measured data that were previously used to 

constrain the PROSAIL model’s parameters were not included, and the remaining data were used to 

verify the inversion results. Figure 4 shows that the determination coefficient R2 and RMSE between the 

estimated and measured LAI were 0.80 and 0.43, respectively. It is suggested that the inversion results 

are highly credible in general.  

 

Figure 4. The scatter plot figure with the estimated and field-measured values. 

4.3. The Time-Series Analysis of the Estimated LAI 

High-spatial-resolution LAI images of corn throughout the growing season in the study area were 

obtained using the dynamic Bayesian network. The ASTER inversion results for 30 May 2012 were 

selected as the initial values for the dynamic process model. The time interval is 6~8 days (because the 

times for the ASTER and MODIS deviate by 1~2 days, the time interval for the inversion results is not 

fixed at eight days), the time ranges from 1 June to 21 September 2012, and the spatial resolution is 15 m; 
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images of the results are shown in Figure 5. The images with dates underlined in Figure 5 represent high-

resolution remote-sensing observations that were used to update background information at the indicated 

date, and their results simultaneously contain the dynamic change information for the MODIS LAIs and 

the spatial information of the high-resolution remote-sensing observations. The remaining images 

without underlined dates represent moments without high-resolution remote-sensing observations, the 

results for which only contain dynamic change information. 

 

Figure 5. The high-resolution and time-series results for the estimated LAIs from the 

ASTER and MODIS LAI data for the year 2012; the underlined data were estimated from 

the ASTER and MODIS LAI data. 

Figure 5 shows that at the beginning of the inversion, DOY-153~DOY-161, the inversion results are 

mainly influenced by the dynamic change information from the MODIS LAI because the high-resolution 

remote-sensing observations were not used to update the background information. The different MODIS 
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LAI pixels exhibit different dynamic change characteristics, which clearly exhibit stripes between the 

pixels on the 161st day. As mentioned in Section 3.3, the dynamic change information errors produced 

by the scale differences produce errors in the results. However, after the 167th day, with high-resolution 

remote-sensing observations gradually incorporated into the model through the time series, our inversion 

model can correct the deviations in the previous moment and continuously increase the inversion  

result’s accuracy. 

 
(a) 

 
(b) 

Figure 6. The updated high-resolution remote-sensing observation results for the information 

entropy and maximum probability; (a) information entropy, (b) maximum probability. 
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4.4. The Uncertainty Analysis for the LAI Inversion 

Figure 6 shows the information entropy and maximum probability results, which correspond to the 

time when the high-resolution remote-sensing observations were available. Figure 6a shows the 

information entropy results, and Figure 6b shows the maximum probability results. In Figure 6a,b, 

obvious stripes appear (such as on the 167th day) on the initial day, mainly because each MODIS LAI 

was initially derived from different fitted dynamic process models. Therefore, larger deviations between 

the values predicted by the fitted model and inverted by the PROSAIL model will produce a lower 

maximum probability and higher information entropy, and vice versa. Therefore, if the higher resolution 

information is insufficient for injection into the inversion process, the estimated results can only reflect 

the coarser resolution information.  

To further investigate the information and uncertainty variation throughout the study area using a 

time series, we re-scaled the calculated information entropy into a range from 0 to 1. The re-scaled value 

and the mean and standard deviation of the information entropy and maximum probability were plotted 

in Figure 6. The results show that the variation tendency for the information entropy and maximum 

probability are opposed. Although the maximum probability of the 247th day exhibited a downward 

trend, it remained in a high value range compared with the previous values. Similarly, the time to the 

information entropy peak was consistent with the time to the lowest maximum probability, which is 

consistent with their meaning; the maximum probability represents the highest probability for a certain 

value, and a lower maximum probability corresponds to a greater uncertainty. The information entropy 

represents the degree of information chaos; higher information entropy corresponds to greater 

uncertainty. Thus, the information entropy negatively correlates with the maximum probability. 

Through calculating the information entropy and maximum probability of the posterior probability, 

where high-resolution remote-sensing observation data are gradually incorporated, the information 

entropy for the LAI posterior probability presents a decreasing trend, and the maximum probability 

presents an increasing trend. Thus, if the posterior information for the LAI gradually accumulates, the 

LAI reliability continually increases. 

5. Conclusions 

To retrieve the temporal high-resolution LAI products, this paper proposed a method to combine three 

sources of data from the Bayesian probability framework, in which the dynamic-change information coming 

from fitted coarse-resolution LAI products were used as the temporal background information and both 

high-resolution remote-sensing observation data and field-measured LAI were used as the new observed 

information. The dynamic Bayesian network was then used to combine the canopy reflectance model 

and fitted dynamic model. Moreover, the information entropy and maximum probability calculated from 

the probability distribution were used to analyze the uncertainties of the retrieved results. Based on the 

results, the following conclusions can be made:  

(1) The determination coefficient R2 and RMSE between the estimated and measured LAIs are  

0.80 and 0.43, respectively. Thus, using multisource data to invert time-series and high-resolution 

LAIs is feasible, and it is an effective method to solve the problems with current remote sensing 

products, for which the resolution is low and the time is discontinuous. 
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(2) The quantity of high-resolution remote-sensing observation data is an important factor for the 

inversion accuracy throughout the time series. In this paper, nine images of high-resolution 

remote-sensing observation data were used to update the background information, which 

constitutes nearly two-thirds of the inversion results. However, when the data are rarely updated, 

depending solely on the model’s prediction may lead to predicted values that gradually deviate 

from the real values; this deviation cannot be corrected until the observation data are provided. 

(3) Calculating the information entropy and maximum probability of the probability distribution not 

only quantitatively expresses the uncertainties of various states in the inversion process but also 

provides the change in the uncertainty during the information interaction process. The results 

demonstrate that in most cases, high-resolution observation data can provide effective 

information to update the background information. Thus, this method is feasible for inverting 

temporal high-resolution LAIs by incorporating the coarse-resolution LAI products and  

high-resolution remote-sensing observation data. 

The current results also suggest that other aspects should be considered for future work. First, the 

background information data’s quality should be taken into account. MOD15A2 is acquired from a single 

sensor, the data quality for which is affected by weather conditions, such as cloud cover and aerosols. 

Thus, to improve the reliability of the background information, MCD15A2, which is acquired from two 

synthesized sensors, may be an alternative that could be employed in future work. Second, the posterior 

information can be used to release more information. Furthermore, the PROSAIL model is selected to 

simulate the crop canopy reflectance in our current work; if possible, when the forest vegetation 

parameters are conducted, the geometric-optical model, such as Li-Strahler model [32,33] should be 

taken into consideration. Finally, in the current work, the coarse-resolution (1 km) LAI products were 

used as background information to invert high-resolution (15 m) LAI products. However, from the 

perspective of information iteration, the retrieved posterior information can thus be further used as 

background information if higher-resolution remote-sensing data (such as Quickbird or Worldview data) 

are available to invert the higher resolution LAI products. 
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