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Abstract: In this paper, we address the problem of simple mixtures identification using a SAW 
sensor based e-nose. First, we propose a linearized form of the SAW sensor’s response to mixtures. 
This equation is then used to set up a linear least squares problem whose residuals are suitable to 
identify the number of compounds present in a mixture thanks to a supervised learning algorithm.  
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1. Introduction 

In this paper, we propose an approach to tackle the problem of simple mixture identification 
using an array of SAW sensors. These sensors are based on the propagation of mechanical waves 
produced by piezoelectric materials along a layer coated with chemically interactive materials. 
Volatile compounds are absorbed onto the surface of the sensitive material, changing its properties 
and yielding to a measurable frequency shift. In [1], authors established that the frequency shift is the 
superposition of a mass loading effect and of a viscoelastic contribution. Both can be modelled by 
first order linear differential equations + = ( ), ∈ ,  where  and  are 
respectively the frequency shift due to the mass loading effect and to the viscoelastic contribution, , ,  and  are the time constants and the gains of the contribution and ( )  is the 
concentration profile which is not known. The total frequency shift is then given by 	 = + . 
One can show, by discretizing the differential equations and solving the recurrence equations, that 
the expression of [ ] can be written as [ ] = 	 + + [ ] where [ ] is the sum of the 
particular solution of the discretized equation for the two contributions. In this paper, we assume 
that the response of the sensor to a mixture is a weighted sum of the responses to each individual 
compounds: 

[ ] = 	 [ ] = , , + , , + [ ] (1) 

This assumption can be verified experimentally. The selected e-nose was composed of 6 
functionalized diamond coated SAW sensors. The sensors were exposed to , , , , , 
to the binary mixtures + , + , + , + , +  and to the 
ternary mixtures + + , + + , + + . Several cycles 
exposition—purge were done. The assumption was tested by solving a least squares optimization 
problem to estimate the coefficients 	 , and by measuring the relative error between the true mixture 
signals and the one reconstructed from the pure signals. Tables 1 and 2 show the average relative error. 
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Table 1. Binary mixture reconstruction error.  

Mixture +  	 +  +  +  +  

Relative error 23.01% 10.89% 19.9% 11.47% 12.84% 

Table 2. Ternary mixture reconstruction error. 

Mixture + +  + +  + +  

Relative error 24.6% 55.62% 37.76% 

These tables show that the assumption is plausible for the binary mixtures since the average 
error is near the variance of the successive experiments and that the assumption does not hold for the 
ternary mixtures. However, this is still informative since the objective consists in estimating the 
number  of compounds in simple mixture. 

2. Estimation of the Number of Simple Mixture’s Components 

2.1. Notation and Definitions 

In the rest of this paper, [. ] denotes a polynomial of degree 	 , ( ) the set of subsets of  

of cardinality equal to 	 , S the cumulative sum and = 	 	if	 = 0( )	otherwise is the  iterated 

cumulative sum of the sequence 	 . 

2.2. Linearisation of the Sensor’s Response 

Prior to propose a linear form for the sensor’s response, we remind that a direct consequence of 
the Faulhaber’s formula allows to conclude that the  iterated cumulative sum of a sequence 
whose general term is a polynomial of degree  is a polynomial of degree + . Moreover, it can 
be easily be prooved by induction that the  iterated cumulative sum of a sequence whose general 

term is a sum of geometric series [ ] = 	∑  can be written in the form = ∑ +[ ]. 
Equation (1) can be rewritten [ ] = ∑ + [ ]. For the sake of clarity, we note  the 

set 1⋯2 . Let’s compute [ ] + ∑ (−1) [ ]∑ ∏ ∈∈ ( )\∅ . The previously described 

results and the fact that the iterated cummulative sum operator is linear yield to: 

[ ] + (− ) [ ] −
∈∈ ( )\∅ =	 [ ] + (− ) − −

∈∈ ( )\∅
+ (− ) [ ] −

∈∈ ( )\∅ + (− ) [ ] −
∈∈ ( )\∅ 	. 

First, one can notice that the term ∑ (−1) [ ]∑ ∏ ∈∈ ( )\∅  is a weighted sum of 

polynomials of degree up to 2 − 1 so it is a polynomial  of degree 2 − 1. Secondly, the 
term ∑ (−1) [ ] ∑ ∏ ∈∈ ( )\∅  is a sequence which will be considered as an unknown in 

the next section. For the sake of clarity, this term is denoted as [ ] in the rest of this article. Finally, 
one can remark that the term ∑ (− ) ∑ ∑ ∏ ∈∈ ( )\∅  is equal to 0. Indeed, this 

term can be simplified by remarking that the sum indexed by the set  can be split into two parts: 
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− 1 − 1
∈∈ ( )\∅= − 1 − 1 − 1

∈∈ ( \ )\∅ + − 1 − 1
∈∈ ( \ )\∅= − 1 − 1

∈∈ ( \ )\∅ + − 1 − 1
∈∈ ( \ )\∅ . 

Two specific cases should be noticed: = 1 →	 ( \ )\∅ = ∅ and = 2 →	 ( \ )\∅ = ∅. Consequently, we have: (−1) − 1 − 1
∈∈ ( )\∅= − − 1 − 1

∈∈ ( )\∅+ (−1) − 1 − 1
∈∈ ( )\∅ 	+ − 1 − 1

∈∈ ( )\∅+ − 1 − 1
∈∈ ( )\∅  

Moreover, we have: (−1) − 1 − 1
∈∈ ( )\∅+ − 1 − 1

∈ =∈ ( )\∅ − 1 − 1
∈∈ ( )\∅− − 1 − 1

∈∈ ( )\∅  

since the series are telescoping. Hence, we have ∑ (−1) ∑ ∑ ∏ ∈∈ ( )\∅ = 0. 
Hence, by posing = −(−1) ∑ ∏ ∈∈ ( )\∅ , Equation (1) can be rewritten in the linear form: 

[ ] = [ ] + [ ] + [ ]  (2) 

2.3. Optimization Problem Formulation 

In this section, we assume that  samples [0]… [ − 1] were digitalized. We define the 
vector  and  of respective length  and 4 + : = [ [0] … [ − 1]] , =	 … 	 … 	 [0]… [ − 1] . And the ( ) × (2 )  matrices  and : =[0] … [0]⋮ ⋮[ − 1] … [ − 1] , = 1⋮1 0⋮( − 1) …… ( − 1)⋮( − 1)  and we form the matrix =
[ ]. With these definitions, Equation (2) can be rewritten as = . As the number of 
variables is greater than the number of equations (4 +  variables vs.  equations), we should 

add a regularization term to avoid overfitting. We define the matrix = 0 ,0 ,  where 

 is the second order differenciation matrix. The identity matrix prevents the coefficients  and  
to grow unbounded, and the matrix  smooths the unknown sequence . The parameters can be 
estimated by solving the optimization problem = 	 | − | + || ||² whose solution is 
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= √ 0  [2]. The residuals are defined as = −  and the mean squared error (MSE) as = . 
2.4. Experimental Results 

In this section, we propose an approach, based on supervised learning, to estimate the number 
of compounds in simple mixtures. In particular, we compare the performances of three different sets 
of features. The first set is composed of the steady state amplitude of the response of each sensors 
whereas the second set is composed of the RMS error obtained from the least squares optimization 
problem for = 1, 2, 3 and for each sensor. The third set is the concatenation of these two sets. Table 
3 gives the results obtained over a 5-fold cross validation process using the LMNN algorithm [3]. It 
exhibits that the proposed features are only outperformed by the steady state when = 3. It also 
shows the interrest of using both features since in this case the performances are increased. 

Table 3. Performances obtained using the steady state amplitude (1), the MSE errors (2) and the 
concatenation of the two feature spaces (3). 

  
Predicted   Predicted  Predicted  

1 2 3 1 2 3 1 2 3 

Actual  
1 90.4% 8.1% 1.5% 1 93.1% 6.9% 0.0% 1 96.3% 3.2% 0.5% 
2 25.6% 72.0% 2.6% 2 19.7% 76.7% 3.6% 2 6.7% 92.8% 0.4% 
3 9.0% 9.0% 82.0% 3 8.1% 11.1% 80.8% 3 3.0% 3.0% 94.0% 

 (1) (2) (3) 

3. Conclusions 

In this paper, we established that the response of SAW sensors to a simple mixture of volatile 
compounds can be linearized thank to iterated cumulative sums. This linear equation allows the 
formulation of a regularized linear least squares problem whose residuals, in conjunction with the 
steady state amplitudes of the signals and supervised learning algorithms, are suitable to estimate 
the number of compounds in a mixture (the estimation accuracy is higher than 90%). 
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