
sensors

Article

Traffic Congestion Detection System through
Connected Vehicles and Big Data

Néstor Cárdenas-Benítez 1, Raúl Aquino-Santos 1, Pedro Magaña-Espinoza 2,*,
José Aguilar-Velazco 1, Arthur Edwards-Block 1 and Aldo Medina Cass 3

1 School of Telematics, University of Colima, 333 Universidad Avenue, C.P. 28040 Colima, Col., Mexico;
nestor_cardenas@ucol.mx (N.C.-B.); aquinor@ucol.mx (R.A.-S.); javelazco@ucol.mx (J.A.-V.);
arted@ucol.mx (A.E.-B.)

2 Department of Innovation and Technological Development, Siteldi Solutions S.A. de C.V.,
111 Canario Street, C.P. 28017 Colima, Col., Mexico

3 Department of Innovation and Technological Development, Corporativo STR S.A. de C.V.,
111 Canario Street, C.P. 28017 Colima, Col., Mexico; aldo.medina@corporativostr.com

* Correspondence: pedro.magana@siteldisolutions.mx; Tel.: +52-312-313-2283

Academic Editors: Mihai Lazarescu and Luciano Lavagno
Received: 29 February 2016; Accepted: 22 April 2016; Published: 28 April 2016

Abstract: This article discusses the simulation and evaluation of a traffic congestion detection
system which combines inter-vehicular communications, fixed roadside infrastructure and
infrastructure-to-infrastructure connectivity and big data. The system discussed in this article
permits drivers to identify traffic congestion and change their routes accordingly, thus reducing
the total emissions of CO2 and decreasing travel time. This system monitors, processes and stores
large amounts of data, which can detect traffic congestion in a precise way by means of a series of
algorithms that reduces localized vehicular emission by rerouting vehicles. To simulate and evaluate
the proposed system, a big data cluster was developed based on Cassandra, which was used in
tandem with the OMNeT++ discreet event network simulator, coupled with the SUMO (Simulation
of Urban MObility) traffic simulator and the Veins vehicular network framework. The results validate
the efficiency of the traffic detection system and its positive impact in detecting, reporting and
rerouting traffic when traffic events occur.

Keywords: connected vehicles; big data; traffic congestion detection system; IoT

1. Introduction

Nowadays, the excessive population growth in urban settings represents one of the biggest
challenges for governments worldwide. The rapid growth of city populations directly affects the
ability of countries to reduce contamination in order to improve the quality of life of their citizens.
The urban population in 2014 accounted for 54% of the global population, up from 34% in 1960 and is
expected to grow approximately 1.84% per year between 2015 and 2020, 1.63% per year between 2020
and 2025 and 1.44% per year between 2022 and 2030 [1]. Caring for the needs of a rapidly growing
urban population is a major challenge for countries trying to create more sustainable cities. A clear
example of the impact of population growth on the environment is contamination occurring in the
atmosphere, which increases proportionally to the number of people living in cities and the number
of motor vehicles in circulation [2]. During the last 50 years, human activity, specifically the burning
of fossil fuels, has released an indiscriminate amount of CO2 and other greenhouse gases, sufficient
to retain more heat in the lower layers of the atmosphere thereby altering the global climate [3].
In addition to climatic change, air pollution also represents a major health hazard. According to a
WHO report [4], air pollution in cities and rural areas throughout the world each year causes 3.7 million

Sensors 2016, 16, 599; doi:10.3390/s16050599 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 599 2 of 26

premature deaths, 80% of which are associated with diseases such as ischemic heart disease and stroke;
14% due to chronic obstructive pulmonary disease or acute infections of the lower respiratory tract
and 6% to lung cancer. Globally, excessive air pollution is caused by unsustainable policies in sectors
such as power generation, general industry and waste management, but mainly in the transportation
sector [5]. Road vehicles are the major source of air pollution due to the use of fossil fuels, poor vehicle
maintenance, old vehicles, poor fuel quality and the overuse of vehicles [6]. According to worldwide
estimates published in 2014, there were a total of approximately 1.1 billion cars on the planet, which
produced about 1,730,000,000 tons of CO2, a figure that is expected to grow over the next few years
since some estimates predict that by 2035 the number of cars will reach close 2 billion [7]. In recent years
a study published in Environmental Science & Technology reveals that local spikes in atmospheric
CO2 concentrations may contribute to premature deaths by increasing ozone concentrations [8].

The excessive use of road vehicles not only harms both the environment but also affects the
quality of life and the economy of the population. The phenomenon of traffic congestion is present
in most developed cities. For example, according to the Dutch company Tom Tom [9], a worldwide
company that produces navigation and mapping products using GPS technology and location-based
products, the city of Istanbul, Turkey, is the world´s most congested city at 58%, followed by Mexico
City and Rio de Janeiro, with 55% and 51%, respectively. In Mexico City, for example, commuters
can spend as much as 23 h per month in congested traffic, a situation that not only exposes them to
high contamination levels, but contributes significantly to stress and obesity problems [10]. The loss
of prolonged time commuting and working hours also has a strong impact on the productivity of
businesses and the overall economy. Annually, the traffic-generated economic losses amounts to over
1.5 billion dollars, or 1% Mexico City’s contribution to the country’s GDP, a very significant figure for a
developing country [11].

This article discusses the simulation and evaluation of a traffic congestion detection system by
means of connected vehicles and big data that accurately identifies traffic congestion, so that drivers
can change their routes thereby reducing potentially harmful emissions and travel time. To meet the
objective set, the developed system monitors, processes and stores large amounts of data reported
from vehicles and fixed infrastructure, communicates to a big data cluster employing Location Routing
Algorithm With Cluster-Based Flooding (LORA_CBF) which, through a series of algorithms, accurately
identifies traffic congestion. The OMNeT++ discreet event network simulator was used to validate
and evaluate the proposed system and the big data cluster [12]. The SUMO traffic simulator [13] was
then coupled with the Veins vehicular network framework [14] to recreate a case study, based on a real
traffic issue, to detect traffic congestion and the impact of the proposed system in terms of reducing
traffic congestions.

2. Related Work

Today, the Internet is an indispensable tool for billions of people as it enables them to overcome
many communication barriers (space, time, distance), as well as help them simplify many everyday
activities. However, this was not always the case. In the past 50 years, the Internet’s evolution has been
unprecedented as it evolved from being a small research network, consisting of a small number of
nodes, to a huge global network that supplies services around the world [15]. It continues to grow at
an incredible pace, expanding to other areas, devices and contexts of everyday life, due greatly to the
advances and integration of Micro-Electro-Mechanical Systems (MEMS) and wireless communication
technologies. These important advances have led to the development of increasingly smaller devices
with monitoring, computing and wireless communications capabilities, all of which contribute to the
Internet of Things (IoT) [16]. The relatively new discipline of ubiquitous computing, whose aim is
to integrate technology into the activities or things used in everyday life, or to monitor the behavior
of the world around us, was first conceived of in the late 1980s. Given the precedents of the Internet
and ubiquitous computing, the IoT refers to the integration of devices with monitoring, actuation,
computing and communication capabilities into everyday activities, using devices that can identify

Sensors 2016, 16, 599 3 of 26

behavior in the physical world and use the infrastructure, tools and cyber space services to make
decisions [17]. By 2020, it is estimated there will be more than 20 billion devices involved in the
Internet of Things, in large part due to the expansion of the world’s telecommunications infrastructure,
a figure 30% higher than the items/devices that currently exist [18]. With the growth of the Internet’s
infrastructure, along with increased user growth and more integrated IoT devices, it is estimated that
between 2005 and 2020, the volume of data worldwide will grow from 130 exabytes to 40,000 exabytes.
Considering the challenges imposed by the increasing volume of data worldwide, the term “big data”
was coined, which not only solves the paradigm of storing large amounts of data, which is seen as the
new oil of the 21st century, but also considers processing schemes, using technologies and techniques
to extract valuable and relevant information [19].

IoT and big data have been identified as two critical emerging technologies in the field of IT as
shown in the IT Gartner Hype Cycle, shown in Figure 1. A Hype Cycle, is a study that can represent
the novelty, adaptation, maturity and impact of specific technological applications. According to the
study of emerging technologies [20], IoT and big data technologies will become technologies that are
conventionally embedded in many everyday products in the next five to ten years.

Sensors 2016, 16, 599 3 of 26

Internet of Things, in large part due to the expansion of the world’s telecommunications
infrastructure, a figure 30% higher than the items/devices that currently exist [18]. With the growth
of the Internet’s infrastructure, along with increased user growth and more integrated IoT devices, it
is estimated that between 2005 and 2020, the volume of data worldwide will grow from 130 exabytes
to 40,000 exabytes. Considering the challenges imposed by the increasing volume of data worldwide,
the term “big data” was coined, which not only solves the paradigm of storing large amounts of data,
which is seen as the new oil of the 21st century, but also considers processing schemes, using
technologies and techniques to extract valuable and relevant information [19].

IoT and big data have been identified as two critical emerging technologies in the field of IT as
shown in the IT Gartner Hype Cycle, shown in Figure 1. A Hype Cycle, is a study that can represent
the novelty, adaptation, maturity and impact of specific technological applications. According to the
study of emerging technologies [20], IoT and big data technologies will become technologies that are
conventionally embedded in many everyday products in the next five to ten years.

Figure 1. Big data and the IoT represented by hype cycle curve (source: elaborated by authors, based
on [20]).

Although large-scale adoption of big data technologies will take another 5 to 10 years, this time
could be significantly reduced if big data challenges can be solved quickly. The complexity of data
integration, real-time data handling, existing data warehouse architectures, data security and privacy
represent some of the major challenges that restrict the adoption of big data technologies [21]. In
response, several researchers have proposed new approaches and strategies based on scheme
mapping, record linkage and data fusion, to reduce the complexity of data integration [22–24].
Additionally, some investigations have proposed novel architectures to process or analyze data in
real-time big data applications [25–27]. Research along these lines is important as existing data
warehouse technologies cannot currently handle the additional demands of new dynamic data
sources and analytic workloads that users actually demand. For these reasons, tools are presently
being developed to assist existing infrastructure migrate to new big data schemes [28]. Regarding
data privacy and security challenges, several authors have addressed these topics and have
implemented schemes and policies to encrypt and protect data source confidentiality [29–32].
Importantly, [33] proposes a novel approach ensuring privacy by preserving the centralized
computation of moving objects. Additionally, the Liebig approach utilizes asymmetric cryptography
using two keys in conjunction with Shamir’s secret. This cryptographic approach guarantees data
security and preserves the data source privacy.

On the other hand, the IoT is presently the object of significant research as it will be implemented
on a large scale within the next decade or so. Presently, several investigations have developed IoT

Figure 1. Big data and the IoT represented by hype cycle curve (source: elaborated by authors,
based on [20]).

Although large-scale adoption of big data technologies will take another 5 to 10 years, this
time could be significantly reduced if big data challenges can be solved quickly. The complexity of
data integration, real-time data handling, existing data warehouse architectures, data security and
privacy represent some of the major challenges that restrict the adoption of big data technologies [21].
In response, several researchers have proposed new approaches and strategies based on scheme
mapping, record linkage and data fusion, to reduce the complexity of data integration [22–24].
Additionally, some investigations have proposed novel architectures to process or analyze data
in real-time big data applications [25–27]. Research along these lines is important as existing data
warehouse technologies cannot currently handle the additional demands of new dynamic data sources
and analytic workloads that users actually demand. For these reasons, tools are presently being
developed to assist existing infrastructure migrate to new big data schemes [28]. Regarding data privacy
and security challenges, several authors have addressed these topics and have implemented schemes
and policies to encrypt and protect data source confidentiality [29–32]. Importantly, [33] proposes a novel
approach ensuring privacy by preserving the centralized computation of moving objects. Additionally,
the Liebig approach utilizes asymmetric cryptography using two keys in conjunction with Shamir’s
secret. This cryptographic approach guarantees data security and preserves the data source privacy.

Sensors 2016, 16, 599 4 of 26

On the other hand, the IoT is presently the object of significant research as it will be implemented
on a large scale within the next decade or so. Presently, several investigations have developed
IoT applications for natural disasters [34,35], generalized and specialized industries [36–38], smart
homes [39–41], medicine [42–44], agriculture [45–47], urban planning and intelligent cities [48–50]
and the design of Intelligent Transport Systems (ITS) [51–53]. In the fields of ITS and smart cities,
allowing vehicles to be interconnected, forming vehicular ad-hoc networks (VANETs), has enormous
applications related to safety, internet connectivity, entertainment, file transfer and importantly, the
detection and avoidance of dangerous or problematic traffic conditions [54]. Although VANETs have
several applications, scalability and data aggregation represent two of their major challenges. Their
large number of mobile nodes create a high volume of location querying and updating of messages,
which often cause network congestion. Additionally, the large volume of data that each node shares
with others causes a significant throughput decrease as the network adds new nodes, thus affecting
network performance [55]. The authors of [55,56] concur that the end-to-end throughput available
for each node tends to zero as the VANET grows, regardless of the routing protocol. In [55], Saleet
affirms that data from multiple nodes can be combined using data aggregation techniques to ensure the
scalability of protocols, even if the number of nodes significantly increases. Importantly, although data
aggregation is often used in static Wireless Sensor Networks applications [57–59], they are increasingly
being applied to VANETs [60–62]. Data aggregation techniques can be classified as either syntactic or
semantic [62]. In the syntactic aggregation approach, vehicular data from several nodes are compressed
into one package to reduce overhead. In semantic aggregation, the data from each node is summarized
to report vehicular group location, forwarding smaller data packets, although with some accuracy loss.

Because traffic congestion represents one of the most important problems in urban environments,
several researches have proposed possible solutions through VANETs and ITS. The AUTOPIA system,
for example, proposes reducing traffic by implementing a control algorithm based on Fuzzy, which
takes into account the information of each vehicle through vehicle-to-infrastructure communication
(V2I) [63]. The authors of [64,65], propose helping solve traffic congestion problems by managing
traffic lights, by altering the frequency and timing of the traffic light changes based on the number
vehicles on each street. A video camera is used to detect vehicles and count them [66], an algorithm
then detects the real-time traffic flow and possible traffic congestion. Other work carried out in [67]
addresses the issue of vehicular traffic through prediction based information from cellular networks,
proposing models to statistically correlate network information to incidents or events of vehicular
traffic. In [68], the authors propose using a unique EPC (Electronic Product Code) to identify vehicles
utilizing an RFID (Radio Frequency Identification) reader to read EPC code. Secondly, they obtain
the position of vehicles by using GPS technology and then use GPRS technology to transmit the data
of mobile objects to provide a vehicle count to detect congestion. Importantly, the significant work
proposed in [69] provides a tool to extract information from social networks, particularly Twitter,
related to traffic congestion in certain areas. The compilation of “tweets” is then processed by an
algorithm to determine whether a specific area is congested or not. Exploring a different way to detect
vehicular traffic, this paper promotes the use of vehicle-to-vehicle (V2V), vehicle to infrastructure and
infrastructure-to-infrastructure (I2I) communication to enable vehicles to share their positions, speeds,
paths and travel times. With that data, a big data cluster can identify traffic congestion events and
inform drivers so that they can make real-time decisions to avoid traffic congestion. Importantly, the
big data cluster generates metrics that can lead to public policies for cities to improve the quality of life
of its habitants from the environmental, health and economic points of view.

3. Proposal Architecture

3.1. Architecture

This section explains the proposed architecture for the system. Figure 2 shows the general
traffic detection system. The proposed system includes the use of vehicular communication and

Sensors 2016, 16, 599 5 of 26

big data clusters to detect traffic congestion using V2V, V2I and Infrastructure to Infrastructure (I2I)
communications. The system uses the LORA-CBF algorithm because it has been previously validated
in urban scenarios. LORA-CBF was selected because it is a dynamic, hierarchical (gateway, cluster
heads and member roles), multi-hop algorithm, which avoids the flooding of control packets and
controls unnecessary retransmissions [70–72]. To achieve V2V and V2I communication, the system
uses On-Board Units (OBU) which obtain vehicle position and speed at one-second intervals and
forwards their data to cluster head cars, which are responsible for performing the data aggregation, an
approach reported in [73]. To forward the aggregated data, cluster head cars send the information to
the Road Side Unit (RSU) directly or through cluster/gateway nodes. The RSUs are then responsible
for forwarding the information packets to the big data cluster for storage and further processing to
determine if significant traffic congestion is present in specific locations. All the vehicular information
is encapsulated in DATA packets by the LORA-CBF algorithm which permits the network nodes to
both transmit and receive them. When DATA packets are received by an RSU, they are un-encapsulated
and re-encapsulated by Hypertext Transfer Protocol (HTTP) for their transmission in a TCP packet to
the big data cluster.

Sensors 2016, 16, 599 5 of 26

in urban scenarios. LORA-CBF was selected because it is a dynamic, hierarchical (gateway, cluster
heads and member roles), multi-hop algorithm, which avoids the flooding of control packets and
controls unnecessary retransmissions [70–72]. To achieve V2V and V2I communication, the system
uses On-Board Units (OBU) which obtain vehicle position and speed at one-second intervals and
forwards their data to cluster head cars, which are responsible for performing the data aggregation,
an approach reported in [73]. To forward the aggregated data, cluster head cars send the information
to the Road Side Unit (RSU) directly or through cluster/gateway nodes. The RSUs are then
responsible for forwarding the information packets to the big data cluster for storage and further
processing to determine if significant traffic congestion is present in specific locations. All the
vehicular information is encapsulated in DATA packets by the LORA-CBF algorithm which permits
the network nodes to both transmit and receive them. When DATA packets are received by an RSU,
they are un-encapsulated and re-encapsulated by Hypertext Transfer Protocol (HTTP) for their
transmission in a TCP packet to the big data cluster.

Figure 2. General architecture of the traffic detection system.

3.2. Big Data Cluster

Cars forming part of the network of connected vehicles generate a continuous stream of
information that is sent to the Cluster which receives it by means of an API resident on an application
server, responsible for receiving and interpreting data in order to detect traffic congestion events.

This section details the features of the Cluster and defines criteria for interpreting traffic
congestion events.

Traffic congestion is considered any event which combines low vehicle speeds and long queues
formed by this slow moving cars. The system maintains a registry with the threshold speed and
length of acceptable cues for each road in the scenario to enhance the sensibility of the traffic
congestion alert generation.

Figure 2. General architecture of the traffic detection system.

3.2. Big Data Cluster

Cars forming part of the network of connected vehicles generate a continuous stream of
information that is sent to the Cluster which receives it by means of an API resident on an application
server, responsible for receiving and interpreting data in order to detect traffic congestion events.

This section details the features of the Cluster and defines criteria for interpreting traffic
congestion events.

Traffic congestion is considered any event which combines low vehicle speeds and long queues
formed by this slow moving cars. The system maintains a registry with the threshold speed and length

Sensors 2016, 16, 599 6 of 26

of acceptable cues for each road in the scenario to enhance the sensibility of the traffic congestion
alert generation.

The cluster is composed of 10 identical computers and an application server. Each one of the
computers possesses 16 GB DDR3L RAM, 500 GB HDD, Core i7 processor at 2.2 GHz, and a Gigabit
Ethernet interface. The 10 computers are connected in a star topology to a 10/100/1000 Base-T 24-port
Switch. Each computer runs a 64-bit Ubuntu 14.04.1 LTS operating system, to which Java 1.7.0_75 and
Cassandra 2.0.2 were installed. The application server has 16 GB DDR3 RAM, 1 Tb HDD, Intel Xeon
E5 processor at 2.4 GHz and a Gigabit Ethernet interface, running a Windows Server 2008 operative
system, to which SQL Server 2008 R2, JDK—JRE 1.8 and Tomcat 8 were installed.

The cluster is formed by a node that serves as Master and 9 nodes that act as slaves. All nodes
are configured in a communication ring to selectively share their public keys, allowing each node
to connect via SSH with its two neighboring nodes without a password. The application server
communicates only with the master node using SSH, as shown in Figure 3.

Sensors 2016, 16, 599 6 of 26

The cluster is composed of 10 identical computers and an application server. Each one of the
computers possesses 16 GB DDR3L RAM, 500 GB HDD, Core i7 processor at 2.2 GHz, and a Gigabit
Ethernet interface. The 10 computers are connected in a star topology to a 10/100/1000 Base-T 24-port
Switch. Each computer runs a 64-bit Ubuntu 14.04.1 LTS operating system, to which Java 1.7.0_75
and Cassandra 2.0.2 were installed. The application server has 16 GB DDR3 RAM, 1 Tb HDD, Intel
Xeon E5 processor at 2.4 GHz and a Gigabit Ethernet interface, running a Windows Server 2008
operative system, to which SQL Server 2008 R2, JDK—JRE 1.8 and Tomcat 8 were installed.

The cluster is formed by a node that serves as Master and 9 nodes that act as slaves. All nodes
are configured in a communication ring to selectively share their public keys, allowing each node to
connect via SSH with its two neighboring nodes without a password. The application server
communicates only with the master node using SSH, as shown in Figure 3.

Figure 3. Diagram of the big data cluster network.

For this application, we decided to use a Kappa architecture because the system does not require
the speed layer of the lambda architecture to process the real-time data. The badge collects the
incoming stream in a specified amount of time to estimate traffic congestion events. Figure 4 shows
the used architecture and the main data flow.

VANET

Spring Hadoop DB

QueryTraffic processing
job

Cassandra tablesInput stream

SQL Server Tables

SPRING API

SPRING API

Figure 4. Big data architecture.

Figure 3. Diagram of the big data cluster network.

For this application, we decided to use a Kappa architecture because the system does not require
the speed layer of the lambda architecture to process the real-time data. The badge collects the incoming
stream in a specified amount of time to estimate traffic congestion events. Figure 4 shows the used
architecture and the main data flow.

Sensors 2016, 16, 599 6 of 26

The cluster is composed of 10 identical computers and an application server. Each one of the
computers possesses 16 GB DDR3L RAM, 500 GB HDD, Core i7 processor at 2.2 GHz, and a Gigabit
Ethernet interface. The 10 computers are connected in a star topology to a 10/100/1000 Base-T 24-port
Switch. Each computer runs a 64-bit Ubuntu 14.04.1 LTS operating system, to which Java 1.7.0_75
and Cassandra 2.0.2 were installed. The application server has 16 GB DDR3 RAM, 1 Tb HDD, Intel
Xeon E5 processor at 2.4 GHz and a Gigabit Ethernet interface, running a Windows Server 2008
operative system, to which SQL Server 2008 R2, JDK—JRE 1.8 and Tomcat 8 were installed.

The cluster is formed by a node that serves as Master and 9 nodes that act as slaves. All nodes
are configured in a communication ring to selectively share their public keys, allowing each node to
connect via SSH with its two neighboring nodes without a password. The application server
communicates only with the master node using SSH, as shown in Figure 3.

Figure 3. Diagram of the big data cluster network.

For this application, we decided to use a Kappa architecture because the system does not require
the speed layer of the lambda architecture to process the real-time data. The badge collects the
incoming stream in a specified amount of time to estimate traffic congestion events. Figure 4 shows
the used architecture and the main data flow.

VANET

Spring Hadoop DB

QueryTraffic processing
job

Cassandra tablesInput stream

SQL Server Tables

SPRING API

SPRING API

Figure 4. Big data architecture. Figure 4. Big data architecture.

Sensors 2016, 16, 599 7 of 26

Cassandra is used to support a high flow of inserts and queries, using its distributed architecture.
Figure 5 provides the data model implemented in Cassandra to store and view vehicle information:

Sensors 2016, 16, 599 7 of 26

Cassandra is used to support a high flow of inserts and queries, using its distributed architecture.
Figure 5 provides the data model implemented in Cassandra to store and view vehicle information:

Figure 5. Cassandra data model to store vehicular information.

The OnRoad_Vehicle_Data model consists of an integrated primary key, which is composed by
cluster_id to identify each of the monitoring points, timestamp id to provide the date and time when
the vehicular information was sent and a vehicle id to provide a unique identifier for each car in the
VANET. The data in each record includes latitude vehicle, longitude vehicle, speed vehicle,
temperature vehicle, as well as a package counter. All of this information is sent at one-second
intervals from the vehicles in the VANET to the application server which forwards all the information
to the Cluster.

SQL Server is used to store a traffic event log from the information contained in Cassandra, as
well as a catalog of coverage points. Figure 6 shows how the model is implemented:

(a) (b)

Figure 6. (a) Data model to store catalog coverage points; (b) data model to store the detected alerts.

The OnRoad_Cluster_Data model is a catalog containing the following fields: road_id to provide
the street on which the vehicles are traveling; cluster_id to define the coverage points; road_sequence
to identify a number of consecutive coverage points on the street, applicable in settings where the
streets are linear or curved; latitude_point and longitude_point to determine the decimal format GPS
coordinates of the center point of the coverage; diameter_point to determine the coverage diameter
in meters from the point of coverage and average_speed to provide the average speed in km/h for
cars with the diameter of the coverage point.

The Traffic_Congestion_Alerts model is a set of traffic alerts which contain a primary key called
congestion_id, a unique alert identifier, the timestamp of the alert, latitude_congestion and
longitude_congestion which keeps the approximate traffic congestion epicenter. Congestion_length
shows the approximate traffic congestion length in meters and the average_speed field represents the
average speed of cars within the traffic congestion.

Figure 5. Cassandra data model to store vehicular information.

The OnRoad_Vehicle_Data model consists of an integrated primary key, which is composed by
cluster_id to identify each of the monitoring points, timestamp id to provide the date and time when
the vehicular information was sent and a vehicle id to provide a unique identifier for each car in the
VANET. The data in each record includes latitude vehicle, longitude vehicle, speed vehicle, temperature
vehicle, as well as a package counter. All of this information is sent at one-second intervals from the
vehicles in the VANET to the application server which forwards all the information to the Cluster.

SQL Server is used to store a traffic event log from the information contained in Cassandra, as well
as a catalog of coverage points. Figure 6 shows how the model is implemented:

Sensors 2016, 16, 599 7 of 26

Cassandra is used to support a high flow of inserts and queries, using its distributed architecture.
Figure 5 provides the data model implemented in Cassandra to store and view vehicle information:

Figure 5. Cassandra data model to store vehicular information.

The OnRoad_Vehicle_Data model consists of an integrated primary key, which is composed by
cluster_id to identify each of the monitoring points, timestamp id to provide the date and time when
the vehicular information was sent and a vehicle id to provide a unique identifier for each car in the
VANET. The data in each record includes latitude vehicle, longitude vehicle, speed vehicle,
temperature vehicle, as well as a package counter. All of this information is sent at one-second
intervals from the vehicles in the VANET to the application server which forwards all the information
to the Cluster.

SQL Server is used to store a traffic event log from the information contained in Cassandra, as
well as a catalog of coverage points. Figure 6 shows how the model is implemented:

(a) (b)

Figure 6. (a) Data model to store catalog coverage points; (b) data model to store the detected alerts.

The OnRoad_Cluster_Data model is a catalog containing the following fields: road_id to provide
the street on which the vehicles are traveling; cluster_id to define the coverage points; road_sequence
to identify a number of consecutive coverage points on the street, applicable in settings where the
streets are linear or curved; latitude_point and longitude_point to determine the decimal format GPS
coordinates of the center point of the coverage; diameter_point to determine the coverage diameter
in meters from the point of coverage and average_speed to provide the average speed in km/h for
cars with the diameter of the coverage point.

The Traffic_Congestion_Alerts model is a set of traffic alerts which contain a primary key called
congestion_id, a unique alert identifier, the timestamp of the alert, latitude_congestion and
longitude_congestion which keeps the approximate traffic congestion epicenter. Congestion_length
shows the approximate traffic congestion length in meters and the average_speed field represents the
average speed of cars within the traffic congestion.

Figure 6. (a) Data model to store catalog coverage points; (b) data model to store the detected alerts.

The OnRoad_Cluster_Data model is a catalog containing the following fields: road_id to provide
the street on which the vehicles are traveling; cluster_id to define the coverage points; road_sequence
to identify a number of consecutive coverage points on the street, applicable in settings where the
streets are linear or curved; latitude_point and longitude_point to determine the decimal format GPS
coordinates of the center point of the coverage; diameter_point to determine the coverage diameter in
meters from the point of coverage and average_speed to provide the average speed in km/h for cars
with the diameter of the coverage point.

The Traffic_Congestion_Alerts model is a set of traffic alerts which contain a primary key
called congestion_id, a unique alert identifier, the timestamp of the alert, latitude_congestion and
longitude_congestion which keeps the approximate traffic congestion epicenter. Congestion_length
shows the approximate traffic congestion length in meters and the average_speed field represents the
average speed of cars within the traffic congestion.

Sensors 2016, 16, 599 8 of 26

The application server runs a RESTful API using the Spring framework. This application has
two primary jobs: (1) to receive information from the cars in the VANET; (2) to send the alerts to
the cars that consult it. The RESTful API receives information and forwards alerts by means of the
following functions:

The Insert function receives a series of parameters in JSON format and saves them in the
Cassandra cluster. The parameters received include the following:

‚ Acknowledgement: a 0 (false) or 1 (true) condition that states whether or not a vehicle has been
previously recognized.

‚ Latitude: the latitude in a decimal format.
‚ Longitude: the longitude in decimal format.
‚ Temperature: a floating number that indicates temperature.
‚ Vehicleid: a text chain that identifies the vehicle.
‚ VehicleIp: an IP address that identifies a vehicle in the network.
‚ packageCounter: a whole number that indicates the number of the received package.
‚ Speed: a floating number that indicates the speed of the vehicle.
‚ Timestamp: the time and date in which the registry was sent.

The Request function sends alerts of existing traffic, according to the positional time and radius
parameters. These parameters are sent in JSON format with the following structure:

‚ Latitude: the latitude in decimal format.
‚ Longitude: the longitude in decimal format.
‚ Vehicleid: a text chain that identifies the vehicle.
‚ VehicleIp: an IP address that identifies a vehicle in the network.
‚ Timestamp: the time and date in which the consult was sent.
‚ congestionSearchRadius: the radius in meters in which the registered traffic will be searched.
‚ congestionDetecionTimeframe: the time in seconds to consider previous alerts.

After sending set of data, the API responds by providing a list of traffic events within the specified
time and radius. Each traffic event contains the following data:

‚ vehicleId: a text chain that identifies the vehicle that filed the request.
‚ vehicleIp: an IP address that identifies the vehicle that filed the request.
‚ congestionAlertId: a unique identifier of the alert.
‚ timestamp: the time and date in which the traffic event was detected.
‚ Latitude: the approximate latitude from the central point of traffic in decimal format.
‚ Longitude: the approximate longitude from the central point of traffic in a decimal format.
‚ congestionLength: the longitude of traffic in meters.
‚ congestionAvgSpeed: the average speed of circulation in km/h.

Cassandra tables are consulted by the Spring Hadoop job to generate a traffic alert every 5 minutes,
employing data received during the previous 5-minute period. All records are processed according
to the algorithm shown in Figure 7, which identifies traffic events and stores them in the table
Traffic_congestion_Alerts SQL Server.

The traffic event detection algorithm shown in Figure 7 is based on the BTO algorithm proposed
by [74]. The algorithm begins by loading the initial configuration settings which include the time
between iterations, speed thresholds, length thresholds and filter time. After this, the process timer
employs the preset configuration parameter values as its input, initiates the values to be used and
waits for the specified standby time before continuing. Following this, a query is made to the

Sensors 2016, 16, 599 9 of 26

OnRoad_Vehicle_Data model, whose motor filters the records created during the previously assigned
period of time. The query’s results are subsequently used to obtain individual records.Sensors 2016, 16, 599 9 of 26

Begin

Timer

Search records

Any records?

Get next record

Order monitoring points by
Road_ID, Sequence

Any monitoring
Point?

Median speed < threshold?

Yes
Yes

Find record’s monitoring
point

Get next monitoring
point

Mark monitoring point
Sspeed congestion

No

Yes

No

1

2

Is a new car’s record in
the monitoring point?

Yes

Add car to the
monitoring point

No

Add speed to the
monitoring point

car’s register

Increase monitoring
point car’s counter

Calculate speed average for each
car

No

Find medians by monitoring
point

(a)

Any monitoring
point?

Monitoring point marked
as speed congestion?

Yes

Get next monitoring
point

Yes

Queuing?No No

Queue >
threshold?

Yes

Yes Create traffic
alert

Queuing?

NoStart
queuing

Yes

Monitoring point is
adjacent to queue?

Add monitoring
point length to

queue
Yes Queue >

threshold?

No

Create traffic
alert YesStart

queuing

2

No

2

Queuing?

1

No

Queue >
threshold?

Yes

Create traffic
alert

Yes No

(b)

Figure 7. (a) Traffic event detection algorithm part 1; (b) Traffic event detection algorithm part 2. Figure 7. (a) Traffic event detection algorithm part 1; (b) Traffic event detection algorithm part 2.

Sensors 2016, 16, 599 10 of 26

The algorithm then consults the database to discover the coverage point each record belongs to.
This process consists of calculating the distance, using Equation (1), between the point contained in
each vehicle’s record and the entire group of the monitoring points. A vehicle’s record corresponds to
a monitoring point when the distance between the points is equal to or less to than the radius of the
monitoring point.

d “ 2r arcsin

˜

d

sin2
ˆ

Φ1 ´Φ2

2

˙

` cos pΦ1q cos pΦ2q sin2
ˆ

λ2 ´ λ1

2

˙

¸

(1)

Equation (1) shows the haversine formula used to calculate the distance between two points,
where Φ1, Φ2 are the latitudes of the two given points and λ1, λ2 are their corresponding longitudes.

After discovering the monitoring point for the record, the algorithm summarizes its speed with
the rest of the record’s speeds belonging to the same vehicle. Once all of the registers are processed,
the average speed of each vehicle is calculated at each monitoring point. Following this, the algorithm
searches for the median speed of each monitoring point, which requires the average speed of a
minimum of three vehicles to provide reliable alerts for a real-time scenario. Next, the algorithm orders
the monitoring points using the Road_ID and Sequence numbers to produce a list that is used as the
cycle input, in which the monitoring points are marked as “Speed congested” only when the median
speed is slower than the minimum speed threshold. Once all of the monitoring points are processed,
they pass to a second cycle where each is evaluated to find the sequences of monitoring points that are
marked as speed congested, which are considered queues. The queue length is given by the sum of the
diameters of the monitoring points that comprise the queue. If the queue length is longer than the
given threshold for the road where the queue is in, a traffic congestion alert is created, including the
traffic line length and the central point of the traffic congestion. The algorithm then saves the traffic
congestion alerts into the Traffic_congestion_Alerts model. Finally, the algorithm returns to the timer.

3.3. On-Board Unit

The OBU device installed in the vehicles possess a System on Module (SoM) that includes a Cortex
A9 quad core processor at 1 GHz with 1 GB DDR3 of RAM memory on a 64 bit architecture. Also, the
OBU possesses a touch-screen and an 802.11 b radio which supports ad-hoc communication with a
transmission capacity of 12 dBm and an omnidirectional antenna with a 5 dBi gain. The OBU performs
the LORA-CBF communication protocol and a monitoring algorithm to propose alternate routes.

3.3.1. Route Monitoring Algorithm

The route monitoring algorithm is responsible for observing the path where the car should be
free from traffic at one-minute intervals. If there is a traffic congestion alert near the car or if any alert
is on the current vehicle route, the algorithm seeks and assigns a new path which contains no traffic
congestion alerts. If the process of finding a new alert-free route does not succeed, or the search time
expires, the same route is maintained. The route monitoring algorithm shown in Figure 8.

Sensors 2016, 16, 599 11 of 26
Sensors 2016, 16, 599 11 of 26

Figure 8. Route Monitoring Algorithm.

3.3.2. Algorithm LORA-CBF

The LORA-CBF communication algorithm works hierarchically. It is formed by a cluster head,
zero or more members in each group and one of more link portals to communicate with the other
cluster heads. Each cluster head contains a “Cluster Table”. A “Cluster Table” is defined as a table
that contains the address and geographical location of the members and Gateway nodes. The
cluster-forming mechanism is the first to be executed and is maintained at all times as shown in
Figure 9.

When a source tries to send data to a destination, it first checks the routing table to determine if
the destination’s location is known. If it is, it sends the packet to the neighbor closest to the
destination. Otherwise, the sources stores the data in its intermediate memory, starts a timer and
Location Request (LREQ) packet transmissions. Only Gateway nodes and cluster heads can transmit
a LREQ packet.

Gateway nodes only transmit gateway packets to one another in order to minimize unnecessary
transmissions and only if the gateways belongs to different cluster groups. By receiving a request of
location, each cluster confirms that the destination is a member of its cluster. If successful, it generates
a Location Reply (LREP) packet that returns to the sender using geographical routing since each node
knows the location of the source and the closest neighboring node, based on the information of the
received LREQ packet.

Figure 8. Route Monitoring Algorithm.

3.3.2. Algorithm LORA-CBF

The LORA-CBF communication algorithm works hierarchically. It is formed by a cluster head,
zero or more members in each group and one of more link portals to communicate with the other cluster
heads. Each cluster head contains a “Cluster Table”. A “Cluster Table” is defined as a table that contains
the address and geographical location of the members and Gateway nodes. The cluster-forming
mechanism is the first to be executed and is maintained at all times as shown in Figure 9.

When a source tries to send data to a destination, it first checks the routing table to determine if
the destination’s location is known. If it is, it sends the packet to the neighbor closest to the destination.
Otherwise, the sources stores the data in its intermediate memory, starts a timer and Location Request
(LREQ) packet transmissions. Only Gateway nodes and cluster heads can transmit a LREQ packet.

Gateway nodes only transmit gateway packets to one another in order to minimize unnecessary
transmissions and only if the gateways belongs to different cluster groups. By receiving a request of
location, each cluster confirms that the destination is a member of its cluster. If successful, it generates
a Location Reply (LREP) packet that returns to the sender using geographical routing since each node
knows the location of the source and the closest neighboring node, based on the information of the
received LREQ packet.

Sensors 2016, 16, 599 12 of 26

Once the source receives the destination’s location, it recovers the data packet from its memory
and sends it to the neighbor closest to the destination.

Sensors 2016, 16, 599 12 of 26

Once the source receives the destination’s location, it recovers the data packet from its memory
and sends it to the neighbor closest to the destination.

Begin

Cluster formation
mechanism for

LORA-CBF

Transmit Data?

Knowledge of the
destination`s position

Predict position of
the destination

Destination in range?

Transmit Data

Broadcast Location
Request Packet

(LREQ)

Destination?

Send Location Reply
Packet (LREP) to the

source)

1

Transmit Data to
the neighbour
closest to the
destination

Destination?

Send
Acknowledgement

packet to the source

Yes

Yes

No
Yes

No

Yes Yes

No

No

No

1

1

Figure 9. LORA-CBF communication algorithm.

The location and speed data of each node are inserted in the big data cluster every second as this
type of data is the most abundant in the network. For this reason, it is necessary to implement a data
aggregation strategy to not affect network performance as the network grows. Data aggregation is
performed using a syntactic technique which is applied by the cluster head to all of the data received
from its members each second. Figure 10 illustrates the data aggregation process performed by the
cluster head.

If a node functions as the gateway role, it will choose only one cluster head to which to send its
data, based on the distance and will notify other cluster heads that it will not send its data to them.
In order to archive better network performance with a significantly greater number of vehicle nodes,
location and speed data inserts of each node do not have to receive a driver acknowledgement.

Figure 9. LORA-CBF communication algorithm.

The location and speed data of each node are inserted in the big data cluster every second as this
type of data is the most abundant in the network. For this reason, it is necessary to implement a data
aggregation strategy to not affect network performance as the network grows. Data aggregation is
performed using a syntactic technique which is applied by the cluster head to all of the data received
from its members each second. Figure 10 illustrates the data aggregation process performed by the
cluster head.

If a node functions as the gateway role, it will choose only one cluster head to which to send its
data, based on the distance and will notify other cluster heads that it will not send its data to them.
In order to archive better network performance with a significantly greater number of vehicle nodes,
location and speed data inserts of each node do not have to receive a driver acknowledgement.

Sensors 2016, 16, 599 13 of 26
Sensors 2016, 16, 599 13 of 26

Figure 10. Construction of the syntactically aggregated data.

3.4. Road-Side Unit

The RSU device is responsible for communicating vehicles with the fixed infrastructure and
forwards the information to a Gateway before resending the data compiled from the vehicular
network to the big data Cluster. The RSU can function as a gateway when it connects to another
infrastructure. It is comprised of a System on Module (SoM) that contains a Quad Core Cortex A9
processor at 1 GHz and a 1 GB DDR3 64 bit RAM memory. Additionally, the RSU has an 802.11 b
radio that supports ad-hoc communication with 12 dBm transmission power and an omnidirectional
antenna with 9 dBi gain for V2I and I2I communication. When the RSU functions as a Gateway, it
will connect either via Ethernet to the same network segment as the big data Cluster, or directly to
the internet to communicate to the big data Cluster.

3.5. Design of the Packet Structure

The design of the packet structure used in both the OBU and the RSU to insure the proper flow
of LORA-CBF, as well as the message capsule used by the big data Cluster to detect traffic, are
described in the following tables.

Table 1 shows the header and structure of protocol packets, which are encapsulated in a UDP
datagram. This type of packet forms the basic structure for all the packets handled by the protocol.

Table 1. LORA-CBF Packet Structure.

Begin Lenght Type Send RSSI Reserved
Source

Address
Destination

Address
Payload Checksum Forcer

7E 00 08 01 1 Byte 1 Byte 4 Bytes 4 Bytes 0–1488 Bytes 9D 7D

 Begin: a special character to indicate the beginning of the packet.
 Length: the number of bytes contained between the size data and the verification sum.
 Transmission method: the manner in which the packet is sent (Multicast, Broadcast, Unicast).
 Source Address: the address of the sending node (changes with each jump).
 Destination Address: the address of the receiving code (changes with each jump).
 RSSI: the received signal intensity (dBm).
 Payload: the content of the packet with a maximum size of 1488 bytes.
 Checksum: a number for checking the packet’s integrity.

Figure 10. Construction of the syntactically aggregated data.

3.4. Road-Side Unit

The RSU device is responsible for communicating vehicles with the fixed infrastructure and
forwards the information to a Gateway before resending the data compiled from the vehicular network
to the big data Cluster. The RSU can function as a gateway when it connects to another infrastructure.
It is comprised of a System on Module (SoM) that contains a Quad Core Cortex A9 processor at
1 GHz and a 1 GB DDR3 64 bit RAM memory. Additionally, the RSU has an 802.11 b radio that
supports ad-hoc communication with 12 dBm transmission power and an omnidirectional antenna
with 9 dBi gain for V2I and I2I communication. When the RSU functions as a Gateway, it will connect
either via Ethernet to the same network segment as the big data Cluster, or directly to the internet to
communicate to the big data Cluster.

3.5. Design of the Packet Structure

The design of the packet structure used in both the OBU and the RSU to insure the proper flow of
LORA-CBF, as well as the message capsule used by the big data Cluster to detect traffic, are described
in the following tables.

Table 1 shows the header and structure of protocol packets, which are encapsulated in a UDP
datagram. This type of packet forms the basic structure for all the packets handled by the protocol.

Table 1. LORA-CBF Packet Structure.

Begin Lenght Type Send RSSI Reserved Source
Address

Destination
Address Payload Checksum Forcer

7E 00 08 01 1 Byte 1 Byte 4 Bytes 4 Bytes 0–1488 Bytes 9D 7D

‚ Begin: a special character to indicate the beginning of the packet.
‚ Length: the number of bytes contained between the size data and the verification sum.
‚ Transmission method: the manner in which the packet is sent (Multicast, Broadcast, Unicast).
‚ Source Address: the address of the sending node (changes with each jump).
‚ Destination Address: the address of the receiving code (changes with each jump).
‚ RSSI: the received signal intensity (dBm).
‚ Payload: the content of the packet with a maximum size of 1488 bytes.
‚ Checksum: a number for checking the packet’s integrity.

Sensors 2016, 16, 599 14 of 26

‚ Forcer: a byte to force the 802.11 transceptor to send the datagram and it doesn’t wait to fill its
maximum capacity.

3.5.1. Types of Packet Payload Content

The following tables provide the different packet structures within payload, depending on their
types. A brief explanation of each field is also shown.

Table 2 shows the structure of a HELLO packet used to discover new neighbors and to create or
change clusters according to the cluster forming mechanism shown in Figure 9.

Table 2. LORA-CBF HELLO Packet Structure.

Packet Type Node Type Latitude Longitude Speed

48 01 12 Bytes 12 Bytes 1F

The fields for the HELLO packet include:

‚ Packet type: a code corresponding to the packet type.
‚ Node type: a code corresponding to the node type (cluster head, member, gateway).
‚ Latitude: the 12-byte latitude given by the GPS.
‚ Longitude: the 12-byte longitude given by the GPS.
‚ Speed: the vehicle speed.

Table 3 shows the structure of a LREQ packet used when the origin of a DATA packet is transmitted
to a destination that is not included in its routing table, or when the route has expired. The identification
field of an LREQ packet allows it to determine whether or not an LREQ packet has been seen previously.
If an LREQ packet has been previously seen, subsequent LREQ packets will be discarded.

Table 3. LORA-CBF LREQ packet structure.

Packet
Type

Identification
Field

Node
Type

Applicant
Address

Address
to Search Latitude Longitude Speed

68 01 01 4 Bytes 4 Bytes 12 Bytes 12 Bytes 1F

The fields for the LREQ package include:

‚ Packet type: a code corresponding to the packet type.
‚ Identification field: the field that records if a packet has been previously seen.
‚ Node type: a code corresponding to the node type (Cluster Head, Member, Gateway)
‚ Applicant address: the address of the node that initiates the search.
‚ Address to search: the node address to be discovered.
‚ Latitude: the 12-byte latitude given by the GPS.
‚ Longitude: the 12-byte longitude given by the GPS.
‚ Speed: the vehicle speed.

Table 4 shows the structure of a LREP packet used by the cluster head to respond to the source
node if the destination node is a member of the cluster. It is sent using a unicast transmission method.

Table 4. LORA-CBF LREP packet structure.

Packet Type Node Type Applicant
Address

Address to
Search Latitude Longitude Speed

78 01 4 Bytes 4 Bytes 12 Bytes 12 Bytes 1F

Sensors 2016, 16, 599 15 of 26

The fields for the LREP package include:

‚ Packet type: a code corresponding to the packet type.
‚ Node type: a code corresponding to the node type (Cluster Head, Member, Gateway).
‚ Applicant address: the address of the node initiating the search.
‚ Address to search: the node address to be searched.
‚ Latitude: the 12-byte latitude given by the GPS.
‚ Longitude: the 12-byte longitude given by the GPS.
‚ Speed: the vehicle speed.

DATA, DATA REQUEST and DATA RESPONSE packets contain all the information obtained
from the different devices within the network. Table 5 shows the structure of a DATA packet used to
transmit any information to the vehicular network and the server.

Table 5. LORA-CBF DATA packet structure.

Packet
Type

Initial Source
Address

Final Destination
Address Hops Packet

Counter Data Latitude Longitude

44 4 Bytes 4 Bytes 02 3 Bytes 0–1455 bytes 12 bytes 12 bytes

Table 6 shows a REQUEST packet used to send a petition to the server. This type of packet waits
for a response from the server.

Table 6. LORA-CBF DATA REQUEST packet structure.

Packet
Type

Initial Source
Address

Final Destination
Address Hops Packet

Counter Data Latitude Longitude

45 4 Bytes 4 Bytes 02 3 Bytes 0–1455 Bytes 12 Bytes 12 Bytes

Table 7 shows the structure of a DATA RESPONSE packet used to respond to the network device
that requests data from the server through the Gateway.

Table 7. LORA-CBF DATA RESPONSE packet structure.

Packet
Type

Initial Source
Address

Final Destination
Address Hops Packet

Counter Data Latitude Longitude

46 4 Bytes 4 Bytes 02 3 Bytes 0–1455 Bytes 12 Bytes 12 Bytes

The fields for the DATA, DATA REQUEST and DATA RESPONSE packages are explained below:

‚ Packet type: a code corresponding to the type of DATA.
‚ Initial source address: the origin address of the maintained data.
‚ Final destination address: the destination direction of the maintained data.
‚ Hops: the number of jumps from the data’s origin.
‚ Packet counter: an incremental packet counter of the data source.
‚ Data: the information that will be sent through the network.
‚ Latitude: the 12-byte latitude given by the GPS.
‚ Longitude: the 12-byte longitude given by the GPS.

3.5.2. DATA Packet De-Encapsulation and Encapsulation

DATA, DATA REQUEST and DATA RESPONSE packets received by a RSU with a Gateway
functionality will be de-encapsulated to obtain the data, which is then sent by means of an HTTP

Sensors 2016, 16, 599 16 of 26

protocol to the API of the cluster in a JSON format. The vehicle data and the big data Cluster that uses
the vehicular data are then encapsulated in packets as shown in Table 8.

Table 8. Example of an encapsulated DATA packet.

Field Content

Beginning 7E

Size 01 03

Transmission method 01

RSSI 40

Reserved 01

Origin address C0 A8 05 02

Destination address C0 A8 04 01

Useful charge

Type 44

Initial Origin Address 00 56 45 52

Final Destination Address 00 62 67 62

Jumps 02

Source Packet counter 00 00 0A

Data

“On-Road_Vehicle_Data_Message”:[
{
“acknowledgement” : “1”,
“latitude” : “19.2651047871”,
“temperature” : “26.5”,
“vehicleId”:
“642c5dd1163518942a44440a145fb1ba5f96787c”,
“packageCounter”:”322”
“speed” : “0.037”,
“timestamp”:“2016-03-28 20:13:42”,
“longitude” : “´103.713618619”,
},
{
“acknowledgement” : “1”,
“latitude” : “19.2651047549”,
“temperature” : “26.6”,
“vehicleId”:
“645864b8e49bb0ac130d26de690231f9a9a9069a”,
“packageCounter”:”452”
“speed” : “0.018”,
“timestamp” : “2016-03-28 20:13:42”,
“longitude” : “´103.713618561”,
},
{
“acknowledgement” : “1”,
“latitude” : “19.2651047388”,
“temperature” : “26.9”,
“vehicleId”:
“649164b8e49cc0ac130d26de690231f9a9a9879b”,
“packageCounter”:”452”
“speed” : “0.020”,
“timestamp” : “2016-03-28 20:13:42”,
“longitude” : “´103.713618532”,
}]

Latitude 19.2651047871

Longitude ´103.713618619

Verification sum 9D

Forcer 7D

The data delivered by the server is encapsulated by the link port RSU and then sent to the OBU
that requested it.

Sensors 2016, 16, 599 17 of 26

4. Evaluation

4.1. Evaluation Scenario

The scenario for the evaluation of the traffic detection system is shown in Figure 11, which
includes important streets in the city of Colima, Mexico that presents significant traffic congestion
during peak hours, mainly at street intersections.

Sensors 2016, 16, 599 17 of 26

4. Evaluation

4.1. Evaluation Scenario

The scenario for the evaluation of the traffic detection system is shown in Figure 11, which
includes important streets in the city of Colima, Mexico that presents significant traffic congestion
during peak hours, mainly at street intersections.

Figure 11. Evaluation scenario with the coverage points in place.

Figure 12. Detailed evaluation scenario.

The scenario shown in Figure 11 was previously studied in order to establish monitoring points
along the avenues and at the main intersections of the study area. Each monitoring point was

Figure 11. Evaluation scenario with the coverage points in place.

Sensors 2016, 16, 599 17 of 26

4. Evaluation

4.1. Evaluation Scenario

The scenario for the evaluation of the traffic detection system is shown in Figure 11, which
includes important streets in the city of Colima, Mexico that presents significant traffic congestion
during peak hours, mainly at street intersections.

Figure 11. Evaluation scenario with the coverage points in place.

Figure 12. Detailed evaluation scenario.

The scenario shown in Figure 11 was previously studied in order to establish monitoring points
along the avenues and at the main intersections of the study area. Each monitoring point was

Figure 12. Detailed evaluation scenario.

The scenario shown in Figure 11 was previously studied in order to establish monitoring points
along the avenues and at the main intersections of the study area. Each monitoring point was
geographically referenced with its specific monitoring diameter and information concerning the
average speed of its area of coverage, data which was required by the traffic detection algorithm. It is

Sensors 2016, 16, 599 18 of 26

important to note that it was necessary to add more monitoring points at the main street intersections
in order to avoid false alerts in areas where stoplights exist, as shown in Figure 12.

4.2. Simulation Model

To validate the traffic detection algorithm, the vehicular flow was simulated in the proposed
evaluation scenario using SUMO, in which the corresponding vehicular flows during peak times were
programmed. Additionally, the traffic light intervals were also programmed in the SUMO simulation.
The programmed scenario is shown in Figures 13 and 14.

Sensors 2016, 16, 599 18 of 26

geographically referenced with its specific monitoring diameter and information concerning the
average speed of its area of coverage, data which was required by the traffic detection algorithm. It
is important to note that it was necessary to add more monitoring points at the main street
intersections in order to avoid false alerts in areas where stoplights exist, as shown in Figure 12.

4.2. Simulation Model

To validate the traffic detection algorithm, the vehicular flow was simulated in the proposed
evaluation scenario using SUMO, in which the corresponding vehicular flows during peak times
were programmed. Additionally, the traffic light intervals were also programmed in the SUMO
simulation. The programmed scenario is shown in Figures 13 and 14.

Figure 13. Complete scenario programmed in SUMO.

Figure 14. Amplification of the intersection scenario programmed in SUMO.

Because of the large number of vehicles in circulation during peak hours, congestion is often
generated at traffic lights. Consequently, multiple traffic congestion was generated to better validate

Figure 13. Complete scenario programmed in SUMO.

Sensors 2016, 16, 599 18 of 26

geographically referenced with its specific monitoring diameter and information concerning the
average speed of its area of coverage, data which was required by the traffic detection algorithm. It
is important to note that it was necessary to add more monitoring points at the main street
intersections in order to avoid false alerts in areas where stoplights exist, as shown in Figure 12.

4.2. Simulation Model

To validate the traffic detection algorithm, the vehicular flow was simulated in the proposed
evaluation scenario using SUMO, in which the corresponding vehicular flows during peak times
were programmed. Additionally, the traffic light intervals were also programmed in the SUMO
simulation. The programmed scenario is shown in Figures 13 and 14.

Figure 13. Complete scenario programmed in SUMO.

Figure 14. Amplification of the intersection scenario programmed in SUMO.

Because of the large number of vehicles in circulation during peak hours, congestion is often
generated at traffic lights. Consequently, multiple traffic congestion was generated to better validate

Figure 14. Amplification of the intersection scenario programmed in SUMO.

Because of the large number of vehicles in circulation during peak hours, congestion is often
generated at traffic lights. Consequently, multiple traffic congestion was generated to better validate

Sensors 2016, 16, 599 19 of 26

the traffic detecting algorithm using the OMNET++ simulator, coupled with the SUMO mobility
simulator and the Veins framework. The generated traffic congestion was programmed using a range
of different vehicles at different points of the scenario. In this way, we could observe the behavior of
the algorithm and count the number of traffic alerts generated in relation to the number that were
programmed, as well as false alerts attributable to the number of vehicle with an OBU. A total of
236 vehicles were used in the simulation because in situ observations established this was on average,
the number of cars causing traffic congestion in the real-world study area. In the first test, 118 of
the vehicles had an OBU, represent 50% of the total of vehicles. In the second test, only 24 vehicles
possessed an OBU, representing 10.1% of the vehicle total.

Vehicle connectivity was programmed using the Veins Framework, the OMNET ++ discrete event
simulator and the LORA-CBF algorithm, as shown in Figure 9. The above-mentioned framework was
used to simulate the route monitoring algorithm proposed in Figure 8. Each vehicle was assigned a
pre-established route assessed by the route monitoring algorithm to define route changes, depending
on the results of the traffic congestion detection algorithm proposed in Figure 7. If congestion was
present along the route, the route monitor algorithm using the Veins Framework informed the SUMO
mobility simulator it needed to change the route, allowing vehicles to avoid congestion detected by
the traffic detection algorithm.

To validate the traffic detection algorithm sent to the big data cluster, it must first communicate
vehicle data provided by the simulation in real time. This program was generated in C++ and emulates
part of the operation of the RSU, which is responsible for communicating the big data cluster and RSU
simulator and functions as a gateway between the simulators and the big data cluster. To achieve RSU
transmission of data sent to the big data cluster, we developed a communication channel between
the simulation and the big data cluster through UNIX pipes. The communication channel sends
and receives bi-directional information from both the vehicles and the big data cluster, sending and
receiving information from the RSU emulator through web services. Following this, the RSU inputs
the data received from the vehicles and consults the traffic alert information every 4 minutes. Figure 15
shows the conceptual operation of the RSU emulator.

Sensors 2016, 16, 599 19 of 26

the traffic detecting algorithm using the OMNET++ simulator, coupled with the SUMO mobility
simulator and the Veins framework. The generated traffic congestion was programmed using a range
of different vehicles at different points of the scenario. In this way, we could observe the behavior of
the algorithm and count the number of traffic alerts generated in relation to the number that were
programmed, as well as false alerts attributable to the number of vehicle with an OBU. A total of 236
vehicles were used in the simulation because in situ observations established this was on average, the
number of cars causing traffic congestion in the real-world study area. In the first test, 118 of the
vehicles had an OBU, represent 50% of the total of vehicles. In the second test, only 24 vehicles
possessed an OBU, representing 10.1% of the vehicle total.

Vehicle connectivity was programmed using the Veins Framework, the OMNET ++ discrete
event simulator and the LORA-CBF algorithm, as shown in Figure 9. The above-mentioned
framework was used to simulate the route monitoring algorithm proposed in Figure 8. Each vehicle
was assigned a pre-established route assessed by the route monitoring algorithm to define route
changes, depending on the results of the traffic congestion detection algorithm proposed in Figure 7.
If congestion was present along the route, the route monitor algorithm using the Veins Framework
informed the SUMO mobility simulator it needed to change the route, allowing vehicles to avoid
congestion detected by the traffic detection algorithm.

To validate the traffic detection algorithm sent to the big data cluster, it must first communicate
vehicle data provided by the simulation in real time. This program was generated in C++ and
emulates part of the operation of the RSU, which is responsible for communicating the big data
cluster and RSU simulator and functions as a gateway between the simulators and the big data
cluster. To achieve RSU transmission of data sent to the big data cluster, we developed a
communication channel between the simulation and the big data cluster through UNIX pipes. The
communication channel sends and receives bi-directional information from both the vehicles and the
big data cluster, sending and receiving information from the RSU emulator through web services.
Following this, the RSU inputs the data received from the vehicles and consults the traffic alert
information every 4 minutes. Figure 15 shows the conceptual operation of the RSU emulator.

Big data cluster Emulator of
RSU

Simulator of VANET
(RSUs)

Pipelines
Web

services

Figure 15. Operation diagram of the RSU emulator.

4.3. Cluster Configuration

The cluster was configured to evaluate the scenario provided in Figure 11. Ninety-eight coverage
points were input into the OnRoad_Cluster_Data model. Of these, 98 corresponded to the evaluation
scenario and a single registry corresponded to an undefined cluster, to which new registers unrelated
to the already existing clusters will attach. Figure 16 provides an example of some of the registries
corresponding to coverage points.

The iteration time for the big data cluster to analyze the data stored was set at 5 min. This 5-minute
interval was determined after simulations using different time intervals, concluding 5 min is sufficient
time to obtain representative data of traffic events.

Figure 15. Operation diagram of the RSU emulator.

4.3. Cluster Configuration

The cluster was configured to evaluate the scenario provided in Figure 11. Ninety-eight coverage
points were input into the OnRoad_Cluster_Data model. Of these, 98 corresponded to the evaluation
scenario and a single registry corresponded to an undefined cluster, to which new registers unrelated
to the already existing clusters will attach. Figure 16 provides an example of some of the registries
corresponding to coverage points.

The iteration time for the big data cluster to analyze the data stored was set at 5 min. This 5-minute
interval was determined after simulations using different time intervals, concluding 5 min is sufficient
time to obtain representative data of traffic events.

Sensors 2016, 16, 599 20 of 26

Figure 16. Records contained in the OnRoad_Cluster_Data model.

5. Results

5.1. Performance of the Traffic Congestion Detection System

The results were obtained by simulating 64 traffic congestions in different avenues and streets
and at different times. Table 9 shows the results of two tests where the top row contains the first test’s
results and the lower row contains the second test’s results. The first test results indicate that 63 alerts
were generated by the big data cluster, with one false alerts and two alerts which were not generated.
The first test presented a traffic detection accuracy of 93.7% in a scenario with a total of 236 vehicles, of
which 24 (10.1%) had OBUs.

The second test results indicated that the big data cluster generated 63 alerts, with zero false alert
and one traffic congestion alert which was not generated. The second test presented a 98.4% accuracy
in detecting traffic congestion in a scenario in which 118 vehicles, or 50% of all vehicles, had an OBU.

The results of both tests show that the accuracy increases when more vehicles use OBU, although
the accuracy percentage remains acceptable when a smaller number of vehicles use OBU.

Table 9. Results of precision of the traffic detecting algorithm.

Qty. Vehicles
with OBU.

Scheduled Traffic
Congestions

Traffic Alerts
Generated

False Traffic
Alerts Generated

Traffic Alerts
not Generated

Percentage
of Precision

24 (10.1%) 64 63 1 2 93.7%
118 (50%) 64 63 0 1 98.4%

5.2. Time and CO2 Reductions Achieved by the System

The results obtained are shown in Figures 17 and 18 show a reduction in the time required to
reach a destination in vehicles using the OBU module (Nodes 4, 5 and 7). Data also shows a significant
reduction in carbon dioxide emissions of vehicles receiving traffic congestion alerts by changing
their route. By increasing the average vehicle speed and reducing congestion, CO2 emissions are
significantly reduced when compared to the emissions of congested cars idling that do not use the
OBU module (nodes 1–3). The formula used to calculate the CO2 generated by vehicles is provided
by [75].

Sensors 2016, 16, 599 21 of 26
Sensors 2016, 16, 599 21 of 26

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

200

0

400

600

800

1000

1200

1400

CO
2

Gr
am

s

(a)

Nodes with OBUs

Nodes without OBUs

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
0

500

1000

1500

2000

2500

3000

Di
st

an
ce

 in
 m

et
er

s

(b)
Figure 17. Comparison of the simulation results: (a) Comparison of CO2 emissions; (b) Comparison
the distance traveled.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
0

200

400

600

800

1000

Se
co

nd
s

(a)

Nodes with OBUs

Nodes without OBUs

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
0

5

10

15

20

25

Km
/h

(b)

30

35

Figure 18. Comparison of the simulation results: (a) Comparison of the time traveled; (b) Comparison
of the average speed of vehicles.

Figure 17. Comparison of the simulation results: (a) Comparison of CO2 emissions; (b) Comparison
the distance traveled.

Sensors 2016, 16, 599 21 of 26

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

200

0

400

600

800

1000

1200

1400

CO
2

Gr
am

s

(a)

Nodes with OBUs

Nodes without OBUs

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
0

500

1000

1500

2000

2500

3000

Di
st

an
ce

 in
 m

et
er

s

(b)
Figure 17. Comparison of the simulation results: (a) Comparison of CO2 emissions; (b) Comparison
the distance traveled.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
0

200

400

600

800

1000

Se
co

nd
s

(a)

Nodes with OBUs

Nodes without OBUs

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
0

5

10

15

20

25

Km
/h

(b)

30

35

Figure 18. Comparison of the simulation results: (a) Comparison of the time traveled; (b) Comparison
of the average speed of vehicles.

Figure 18. Comparison of the simulation results: (a) Comparison of the time traveled; (b) Comparison
of the average speed of vehicles.

Sensors 2016, 16, 599 22 of 26

6. Conclusions

This paper has presented a traffic congestion detection system that communicates connected
vehicles and big data, to improve traffic flow and reduce CO2 emissions in the city, representing
a potentially valuable tool to help drivers detect and avoid vehicular congestion.

The evaluation of the presented system allows us to conclude:

‚ The algorithm’s accuracy in detecting traffic congestion with 10.1% of the vehicles equipped with
an OBU is of 93.7% in 64 programmed traffic congestions.

‚ The algorithm’s accuracy in the detection of traffic congestion of 50% of the vehicles with an OBU
in place, increases to 98.4% in 64 programmed traffic congestions.

‚ CO2 greenhouse gas emissions are reduced by 50% on average, by detecting and conveniently
modifying the route.

‚ The average arrival time to the destination is 70% shorter, by detecting traffic congestion and
changing the routes.

Future work includes other simulation scenarios to improve the system and implement the
OBU and RSU devices on-the-fly in real-world scenarios, to detect traffic congestion and reduce
contaminant emissions. In the future, the RSU device will include the detection of ozone (O3), sulphur
dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), nitrogen dioxide (NO2), 2.5 (PM2.5)
and 10 (PM10) particles, which are more harmful to persons living in urban settings. Additionally, for
real-world implementation, the system will include a novel mechanism for vehicular localization in
urban canyons, search for situation aware routes and a new approach to implement data security and
privacy. Additionally, the RSU wireless trunk will be used to support other applications or services for
smart cities.

Acknowledgments: The authors wish to thank all the partners involved with the development of the system,
especially to Siteldi Solutions (www.siteldisolutions.mx), Corporativo STR (www.corporativostr.com) and financial
support from CONACYT, projects numbers 220858, 230020 and 230295.

Author Contributions: Néstor Cárdenas-Benítez simulated the system. Raúl Aquino-Santos and
Arthur Edwards-Block provided useful suggestions and edited the draft. Pedro Magaña-Espinoza designed the
experiments and drafted the manuscript. José Aguilar-Velazco developed the big data cluster. Aldo Medina Cass
provided English grammar suggestions.

Conflicts of Interest: The authors declare no conflicts of interest

References

1. WHO. Urban Population Growth. Available online: http://www.who.int/gho/urban_health/situation_
trends/urban_population_growth_text/en/# (accessed on 25 April 2016).

2. World Bank Tasa de Crecimiento de la Población. Available online: http://www.worldbank.org/depweb/
spanish/modules/social/pgr/print.html (accessed on 25 April 2016). (In Spanish)

3. WHO. WHO Website. Climate Change and Health. Available online: http://www.who.int/mediacentre/
factsheets/fs266/en/ (accessed on 25 April 2016).

4. WHO. WHO Website. Ambient (Outdoor) Air Quality and Health. Available online: http://www.who.int/
mediacentre/factsheets/fs313/en/ (accessed on 25 April 2016).

5. WHO. WHO Website. 7 Million Premature Deaths Annually Linked to Air Pollution. Available online:
http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/ (accessed on 25 April 2016).

6. UN. Air Pollution from Ground Transportation. Available online: http://www.un.org/esa/gite/
csd/gorham.pdf (accessed on 25 April 2016).

7. Enrique Kogan Cuántos Vehículos Hay en el Mundo, quienes los Fabrican y Que se Espera Para el
Futuro. Available online: http://voces.huffingtonpost.Com/enrique-kogan/numero-de-vehiculos-en-el-
mundo_b_6237052.html (accessed on 25 April 2016). (In Spanish)

8. Climatewire, J.L. Can Local “Domes” of Carbon Dioxide Affect Human Health? Available online: http://
www.scientificamerican.com/article/can-carbon-dioxide-domes-affect-health/ (accessed on 25 April 2016).

Sensors 2016, 16, 599 23 of 26

9. TOM. TOM TOM Website. Traffic Index. Available online: http://www.tomtom.com/en_gb/trafficindex/
#/press (accessed on 25 April 2016).

10. CNN Expansion ¿Se te va la vida en el tráfico? ¡Cuidado! Available online: http://www.cnnexpansion.
com/mi-carrera/2011/07/15/se-te-va-la-vida-en-el-trafico-cuidado (accessed on 25 April 2016). (In Spanish)

11. CNN México. CNN Mexico Website. Los Traslados en el DF son Cinco Veces Más Lentos que Hace 25
Años: ONG. Available online: http://mexico.cnn.com/nacional/2015/06/10/los-traslados-en-el-df-son-
cinco-veces-mas-lentos-que-hace-25-anos-ong (accessed on 25 April 2016).

12. OMNeT++ Discrete Event Simulator—Home. Available online: https://omnetpp.org/ (accessed on 25 April 2016).
13. DLR—Institute of Transportation Systems. SUMO—Simulation of Urban MObility. Available online:

http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/ (accessed on 25 April 2016).
14. Veins. Available online: http://veins.car2x.org/ (accessed on 25 April 2016).
15. Kopetz, H. Internet of Things. In Real-Time Systems; Real-Time Systems Series; Springer US: Boston, MA,

USA, 2011; pp. 307–323.
16. Tan, L.; Wang, N. Future internet: The Internet of Things. In Proceedings of the 2010 3rd International

Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 20–22 August 2010.
17. Ma, H.-D. Internet of Things: Objectives and Scientific Challenges. J. Comput. Sci. Technol. 2011, 26, 919–924.

[CrossRef]
18. Perry, Y. En 2020 habrá 20 mil Millones de Dispositivos Conectados al Internet de las Cosas. Available online:

https://www.fayerwayer.com/2015/11/en-2020-habra-20-mil-millones-de-dispositivos-conectados-al-
internet-de-las-cosas/ (accessed on 25 April 2016).

19. Hu, H.; Wen, Y.; Chua, T.-S.; Li, X. Toward Scalable Systems for Big Data Analytics: A Technology Tutorial.
IEEE Access 2014, 2, 652–687.

20. Gartner Gartner’s 2014 Hype Cycle for Emerging Technologies Maps the Journey to Digital Business.
Available online: http://www.gartner.com/newsroom/id/2819918 (accessed on 25 April 2016).

21. Tariq RS, N.T. Big Data Challenges. Comput. Eng. Inf. Technol. 2015, 4, 1–10. [CrossRef]
22. Ostrowski, D.; Rychtyckyj, N.; MacNeille, P.; Kim, M. Integration of Big Data Using Semantic Web

Technologies. In Proceedings of the 2016 IEEE Tenth International Conference on Semantic Computing
(ICSC), Laguna Hills, CA, USA, 4–6 February 2016; pp. 382–385.

23. Nimmagadda, S.L.; Dreher, H.V. Big-data integration methodologies for effective management and data
mining of petroleum digital ecosystems. In Proceedings of the 2013 7th IEEE International Conference on
Digital Ecosystems and Technologies (DEST), Menlo Park, CA, USA, 24–26 July 2013; pp. 148–153.

24. Bansal, S.K. Towards a Semantic Extract-Transform-Load (ETL) Framework for Big Data Integration.
In Proceedings of the 2014 IEEE International Congress on Big Data, Anchorage, AK, USA, 27 June–2
July 2014; pp. 522–529.

25. Baldominos, A.; Albacete, E.; Saez, Y.; Isasi, P. A scalable machine learning online service for big data
real-time analysis. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Big Data
(CIBD), Orlando, FL, USA, 9–12 December 2014; pp. 1–8.

26. Rathore, M.M.U.; Paul, A.; Ahmad, A.; Chen, B.-W.; Huang, B.; Ji, W. Real-Time Big Data Analytical
Architecture for Remote Sensing Application. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8,
4610–4621. [CrossRef]

27. Yang, W.; Liu, X.; Zhang, L.; Yang, L.T. Big Data Real-Time Processing Based on Storm. In Proceedings of
the 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications,
Melbourne, Australia, 16–18 July 2013; pp. 1784–1787.

28. Data Warehouse Augmentation, Part 1: Big Data and Data Warehouse Augmentation. Available online:
http://www.ibm.com/developerworks/library/ba-augment-data-warehouse1/index.html (accessed on
10 April 2016).

29. Xu, L.; Jiang, C.; Wang, J.; Yuan, J.; Ren, Y. Information Security in Big Data: Privacy and Data Mining.
IEEE Access 2014, 2, 1149–1176.

30. Adluru, P.; Datla, S.S.; Zhang, X. Hadoop eco system for big data security and privacy. In Proceedings of the
2015 IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA,
1 May 2015; pp. 1–6.

http://dx.doi.org/10.1007/s11390-011-1189-5
http://dx.doi.org/10.4172/2324-9307.1000133
http://dx.doi.org/10.1109/JSTARS.2015.2424683

Sensors 2016, 16, 599 24 of 26

31. Terzi, D.S.; Terzi, R.; Sagiroglu, S. A survey on security and privacy issues in big data. In Proceedings of the
2015 10th International Conference for Internet Technology and Secured Transactions (ICITST), London, UK,
14–16 December 2015; pp. 202–207.

32. Matturdi, B.; Zhou, X.; Li, S.; Lin, F. Big Data security and privacy: A review. China Commun. 2014, 11,
135–145. [CrossRef]

33. Liebig, T. Privacy Preserving Centralized Counting of Moving Objects. In AGILE 2015; Bacao, F., Santos, M.Y.,
Painho, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 91–103.

34. Refonaa, J.; Lakshmi, M.; Vivek, V. Analysis and prediction of natural disaster using spatial data mining
technique. In Proceedings of the 2015 International Conference on Circuit, Power and Computing
Technologies (ICCPCT), Nagercoil, India, 19–20 March 2015; pp. 1–6.

35. Fang, S.; Xu, L.; Zhu, Y.; Liu, Y.; Liu, Z.; Pei, H.; Yan, J.; Zhang, H. An integrated information system for
snowmelt flood early-warning based on internet of things. Inf. Syst. Front. 2013, 17, 321–335. [CrossRef]

36. Wei, W.; Kun, Z.; Yun, H. Research on the innovation system of IOT industry of Heilongjiang province based
on the LAFIS method. In Proceedings of the 2012 International Conference on Information Management,
Innovation Management and Industrial Engineering (ICIII), Sanya, China, 20–21 October 2012; Volume 1,
pp. 127–130.

37. Wei, W.; Liping, L. Research on the coupling relations between technology innovation and business
modes innovation of IOT industry based on SD. In Proceedings of the 2013 6th International Conference
on Information Management, Innovation Management and Industrial Engineering (ICIII), Xi’an, China,
23–24 November 2013; Volume 2, pp. 66–69.

38. Khaleel, H.; Conzon, D.; Kasinathan, P.; Brizzi, P.; Pastrone, C.; Pramudianto, F.; Eisenhauer, M.;
Cultrona, P.A.; Rusina, F.; Lukac, G.; et al. Heterogeneous Applications, Tools, and Methodologies in
the Car Manufacturing Industry Through an IoT Approach. IEEE Syst. J. 2015, 1, 1–12. [CrossRef]

39. Wu, C.-L.; Tseng, Y.-S.; Fu, L.-C. Spatio-temporal Feature Enhanced Semi-supervised Adaptation for Activity
Recognition in IoT-Based Context-Aware Smart Homes. In Proceedings of the IEEE International Conference
on and IEEE Cyber, Physical and Social Computing Green Computing and Communications (GreenCom),
2013 IEEE and Internet of Things (iThings/CPSCom), Beijing, China, 20–23 August 2013; pp. 460–467.

40. Amadeo, M.; Campolo, C.; Iera, A.; Molinaro, A. Information Centric Networking in IoT scenarios: The case
of a smart home. In Proceedings of the 2015 IEEE International Conference on Communications (ICC),
London, UK, 8–12 June 2015; pp. 648–653.

41. Santoso, F.K.; Vun, N.C.H. Securing IoT for smart home system. In Proceedings of the 2015 IEEE International
Symposium on Consumer Electronics (ISCE), Madrid, Spain, 24–26 June 2015; pp. 1–2.

42. Magaña-Espinoza, P.; Aquino-Santos, R.; Cárdenas-Benítez, N.; Aguilar-Velasco, J.; Buenrostro-Segura, C.;
Edwards-Block, A.; Medina-Cass, A. WiSPH: A Wireless Sensor Network-Based Home Care Monitoring
System. Sensors 2014, 14, 7096–7119. [CrossRef]

43. Swiatek, P.; Rucinski, A. IoT as a service system for eHealth. In Proceedings of the 2013 IEEE 15th
International Conference on e-Health Networking, Applications Services (Healthcom), Lisbon, Portugal,
9–12 October 2013; pp. 81–84.

44. Celentano, U.; Roning, J. Framework for dependable and pervasive eHealth services. In Proceedings of the
2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 634–639.

45. Liu, Y.; Wang, H.; Wang, J.; Qian, K.; Kong, N.; Wang, K.; Shi, Y.; Zheng, L. Enterprise-Oriented IoT Name
Service for Agriculture Product Supply Chain Management. In Proceedings of the 2014 International
Conference on Identification, Information and Knowledge in the Internet of Things (IIKI), Beijing, China,
17–18 October 2014; pp. 237–241.

46. Jayaraman, P.P.; Palmer, D.; Zaslavsky, A.; Georgakopoulos, D. Do-it-Yourself Digital Agriculture applications
with semantically enhanced IoT platform. In Proceedings of the 2015 IEEE Tenth International Conference
on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, 7–9 April 2015;
pp. 1–6.

47. Bing, F. Research on the agriculture intelligent system based on IOT. In Proceedings of the 2012 International
Conference on Image Analysis and Signal Processing, Hangzhou, China, 9–11 November 2012; pp. 1–4.

48. Ganchev, I.; Ji, Z.; O’Droma, M. A generic IoT architecture for smart cities. In Proceedings of the 25th IET
Irish Signals Systems Conference 2014 and 2014 China-Ireland International Conference on Information and
Communications Technologies (ISSC 2014/CIICT 2014), Limerick, UK, 26–27 June 2013; pp. 196–199.

http://dx.doi.org/10.1109/CC.2014.7085614
http://dx.doi.org/10.1007/s10796-013-9466-1
http://dx.doi.org/10.1109/JSYST.2015.2469681
http://dx.doi.org/10.3390/s140407096

Sensors 2016, 16, 599 25 of 26

49. Lea, R.; Blackstock, M. City Hub: A Cloud-Based IoT Platform for Smart Cities. In Proceedings of the 2014
IEEE 6th International Conference on Cloud Computing Technology and Science (CloudCom), Singapore,
15–18 December 2014; pp. 799–804.

50. Aly, H.H.; Soliman, A.H.; Mouniri, M. Towards a fully automated monitoring system for Manhole Cover:
Smart cities and IOT applications. In Proceedings of the 2015 IEEE First International Smart Cities Conference
(ISC2), Guadalajara, Mexico, 25–28 October 2015; pp. 1–7.

51. Deans, C. The design of an intelligent urban transportation system in Jamaica based on the Internet of Things.
In Proceedings of the SoutheastCon 2015, Fort Lauderdale, FL, USA, 9–12 April 2015; pp. 1–2.

52. Carignani, M.; Ferrini, S.; Petracca, M.; Falcitelli, M.; Pagano, P. A prototype bridge between automotive
and the IoT. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy,
14–16 December 2015; pp. 12–17.

53. Zambada, J.; Quintero, R.; Isijara, R.; Galeana, R.; Santillan, L. An IoT based scholar bus monitoring system.
In Proceedings of the 2015 IEEE First International Smart Cities Conference (ISC2), Guadalajara, Mexico,
25–28 October 2015; pp. 1–6.

54. Galaviz-Mosqueda, G.; Aquino-Santos, R.; Villarreal-Reyes, S.; Rivera-Rodríguez, R.; Villaseñor-González, L.;
Edwards, A. Reliable Freestanding Position-Based Routing in Highway Scenarios. Sensors 2012, 12,
14262–14291. [CrossRef]

55. Saleet, H.; Basir, O. Location-Based Message Aggregation in Vehicular Ad Hoc Networks. In Proceedings of
the 2007 IEEE Globecom Workshops, Washington, DC, USA, 26–30 November 2007; pp. 1–7.

56. Li, J.; Blake, C.; De Couto, D.S.J.; Lee, H.I.; Morris, R. Capacity of Ad Hoc wireless networks. In MobiCom
01 Proceedings of the 7th Annual International Conference on Mobile computing and Networking; ACM Press:
New York, NY, USA, 2001; pp. 61–69.

57. Przydatek, B.; Song, D.; Perrig, A. SIA: Secure information aggregation in sensor networks. In Journal
of Computer Securit-Special Issue on Security of Ad-hoc and Sensor Networks; ACM Press: Amsterdam,
The Netherlands, 2003.

58. Madden, S.; Franklin, M.J.; Hellerstein, J.M.; Hong, W. TAG: A Tiny AGgregation service for ad-hoc sensor
networks. ACM SIGOPS Oper. Syst. Rev. 2002, 36, 131–146. [CrossRef]

59. Yang, Y.; Wang, X.; Zhu, S. SDAP: A secure hop-by-Hop data aggregation protocol for sensor networks.
In MobiHoc 06 Proceedings of the 7th International Symposium on Mobile Ad-hoc Networking and Computing; ACM
Press: New York, NY, USA, 2006.

60. Ibrahim, K.; Weigle, M.C. CASCADE: Cluster-Based Accurate Syntactic Compression of Aggregated Data in
VANETs. In Proceedings of the 2008 IEEE Goblecom Workshops, New Orleans, LO, USA, 30 November–4
December 2008; pp. 1–10.

61. Picconi, F.; Ravi, N.; Gruteser, M.; Iftode, L. Probabilistic validation of aggregated data in vehicular ad-hoc
networks. In VANET 06 Proceedings of the 3rd International Workshop on Vehicular Ad-hoc Networks; ACM Press:
New York, NY, USA, 2006; p. 76.

62. Raya, M.; Aziz, A.; Hubaux, J.-P. Efficient secure aggregation in VANETs. In VANET 06 Proceedings of the 3rd
International Workshop on Vehicular Ad-hoc Networks; ACM Press: New York, NY, USA, 2006.

63. Milanes, V.; Villagra, J.; Godoy, J.; Simo, J.; Perez, J.; Onieva, E. An Intelligent V2I-Based Traffic Management
System. IEEE Trans. Intell. Transp. Syst. 2012, 13, 49–58. [CrossRef]

64. Misbahuddin, S.; Zubairi, J.A.; Saggaf, A.; Basuni, J.; A-Wadany, S.; Al-Sofi, A. IoT based dynamic road traffic
management for smart cities. In Proceedings of the 2015 12th International Conference on High-Capacity
Optical Networks and Enabling/Emerging Technologies (HONET), Islamabad, Pakistan, 21–23 December
2015; pp. 1–5.

65. Pandit, K.; Ghosal, D.; Zhang, H.M.; Chuah, C.-N. Adaptive Traffic Signal Control With Vehicular Ad hoc
Networks. IEEE Trans. Veh. Technol. 2013, 62, 1459–1471. [CrossRef]

66. Liu, Y.; Li, G.; Hu, S.; Ye, T. Real-time detection of traffic flow combining virtual detection-line and contour
feature. In Proceedings of the 2011 International Conference on Transportation, Mechanical, and Electrical
Engineering (TMEE), Changchun, China, 16–18 December 2011; pp. 408–413.

67. Tosi, D.; Marzorati, S.; Pulvirenti, C. Vehicular traffic predictions from cellular network data #x2014; A real
world case study. In Proceedings of the 2014 International Conference on Connected Vehicles and Expo
(ICCVE), Vienna, Austria, 3–7 November 2014; pp. 485–491.

http://dx.doi.org/10.3390/s121114262
http://dx.doi.org/10.1145/844128.844142
http://dx.doi.org/10.1109/TITS.2011.2178839
http://dx.doi.org/10.1109/TVT.2013.2241460

Sensors 2016, 16, 599 26 of 26

68. Xiao, L.; Wang, Z. Internet of Things: A New Application for Intelligent Traffic Monitoring System. J. Netw.
2011, 6, 887–894. [CrossRef]

69. D’Andrea, E.; Ducange, P.; Lazzerini, B.; Marcelloni, F. Real-Time Detection of Traffic from Twitter Stream
Analysis. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2269–2283. [CrossRef]

70. Jung, Y.; Kim, K. Movement Awareness Position-Based Routing Protocol for Intersection of Urban
Environment. In Proceedings of the 2008 International Symposium on Parallel and Distributed Processing
with Applications, Sydney, Australia, 10–12 December 2008; pp. 795–798.

71. Santos, R.; Edwards, A.; Alvarez, O. Towards an Inter-vehicle Communication Algorithm. In Proceedings
of the 2006 3rd International Conference on Electrical and Electronics Engineering, Veracruz, Mexico,
6–8 September 2006; pp. 1–4.

72. Naumov, V.; Gross, T.R. Connectivity-Aware Routing (CAR) in Vehicular Ad-hoc Networks. In Proceedings of
the IEEE INFOCOM 2007—26th IEEE International Conference on Computer Communications, Anchorage,
AK, USA, 6–12 May 2007; pp. 1919–1927.

73. Bauza, R.; Gozalvez, J. Traffic congestion detection in large-scale scenarios using vehicle-to-vehicle
communications. Int. J. Netw. Comput. Appl. 2013, 36, 1295–1307. [CrossRef]

74. Gupta, A.; Choudhary, S.; Paul, S. DTC: A framework to Detect Traffic Congestion by mining versatile
GPS data. In Proceedings of the 2013 1st International Cenference Emerging Trends and Applications in
Computer Science (ICETACS), Shillong, Meghalayav, 13–14 September 2013; pp. 97–103.

75. Cappiello, A.; Chabini, I.; Nam, E.K.; Lue, A.; Zeid, M.A. A statistical model of vehicle emissions and fuel
consumption. In Proceedings of the IEEE 5th International Conference Intelligent Transportation Systems,
Singapore, 6 September 2002; pp. 801–809.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4304/jnw.6.6.887-894
http://dx.doi.org/10.1109/TITS.2015.2404431
http://dx.doi.org/10.1016/j.jnca.2012.02.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	
	
	
	
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	

	

