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Abstract: Wing rock is a highly nonlinear phenomenon when the aircraft suffers undesired
roll-dominated oscillatory at high angle of attack (AOA). Considering the strong nonlinear and
unsteady aerodynamic characteristics, an uncertain multi-input and multi-output (MIMO) nonlinear
wing rock model is studied, and system uncertainties, unsteady aerodynamic disturbances and
external disturbances are considered in the design of wing rock control law. To handle the problem of
multiple disturbances, a robust control scheme is proposed based on the extended state observer (ESO)
and the radial basis function neural network (RBFNN) technique. Considering that the effectiveness
of actuators are greatly decreased at high AOA, the input saturation problem is also handled by
constructing a corresponding auxiliary system. Based on the improved ESO and the auxiliary system,
a robust backstepping control law is proposed for the wing rock control. In addition, the dynamic
surface control (DSC) technique is introduced to avoid the tedious computations of time derivatives
for the virtual control laws in the backstepping method. The stability of the closed-loop system is
guaranteed via rigorously Lyapunov analysis. Finally, simulation results are presented to illustrate
the effectiveness of the ESO and the proposed wing rock control approach.

Keywords: wing rock; RBFNN; unsteady aerodynamics; extended state observer; robust attitude
control; backstepping control

1. Introduction

Wing rock motion is an undesired roll-dominated oscillatory coupled with yaw oscillation for the
aircraft flying at subsonic speed and high angle of attack (AOA). When an aircraft suffers the wing
rock motion, the large amplitude and high frequency oscillatory of the rolling and yawing angle will
severely limit the maneuverability, tracking accuracy, and operational safety of the aircraft. Hence,
the wing rock phenomenon should be paid more attention, and the corresponding wing rock controller
should be further studied.

In past decades, many researches have been done to analyze the mechanism of the wing
rock. Mathematically, three possible nonlinear factors were considered as the inducements of
the wing rock phenomenon, which are the variation of damping in roll with angle of sideslip,
cubic variation of lateral derivatives with roll rate and sideslip, and the aerodynamic hysteresis
in steady-state rolling moment [1,2]. Meanwhile, different wing-rock models have been developed
[3–6]. Based on these simplified models, many control schemes were developed to suppress the
influence of wing rock. Adaptive feedback linearization technique was employed for the wing
rock in [7,8]. An L1 adaptive controller was designed for the wing-body rock motion [9]. Fuzzy
adaptive approaches have been employed in the wing rock during the last decade [10–12]. The neural
network technique and backstepping approach have been also extensively studied [13–15]. In [16–18],
simplified single degree-of-freedom wing-rock models were studied, and the disturbance observer
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or traditional extended state observer (ESO) was adopted in the design of robust wing rock control
law. However, the yaw oscillation was often ignored in the design of wing rock controller for the
convenience of research. Considering the serious coupling effect between the roll and yaw motion,
multi-degree-of-freedom wing rock models should be further studied.

In this paper, an uncertain multi-input and multi-output (MIMO) nonlinear wing rock model is
studied, and the coupling effect between the roll oscillation and yaw oscillation will be fully considered
in the design of the wing rock controller. Meanwhile, to enhance the system robustness, the ESO
and radial basis function neural network (RBFNN) techniques are combined to tackle the external
disturbances and system uncertainties, respectively. Up to now, more and more researchers have paid
attention to the study of the ESO or RBFNN based control techniques[19–21]. In [22], an adaptive
neural network based control law was developed for an uncertain MIMO system with unknown
control coefficient matrices and input nonlinearities. In [23], the observer and adaptive neural network
(NN) techniques were combined to tackle the uncertainties. To tackle the state constraint problem,
the adaptive neural network technique was employed for an uncertain robot system [24]. And the
ESO technique was firstly proposed in the active disturbance rejection control (ADRC) [25]. It has
been successfully used in many challenging engineering problems [26,27]. The main advantage of the
traditional ESO is that it can handle various disturbances with little model information, and it takes
both structured and unstructured uncertainties as generalized disturbances. Hence, considering the
satisfactory uncertainty estimation performance, the ESO and RBFNN are fully combined in the design
of the robust wing-rock control law. Meanwhile, except for uncertainties, the input saturation problem
will also cause adverse effects on the performance of the wing rock control.

Input saturation is a challenging problem in the wing rock control. With the increase of AOA,
the aircraft will lose the control efficiency gradually, which severely degrades the closed-loop system
performance. During the past decades, there exist extensive researches on the control of mechanical
systems with input saturation [28–30]. In [31], an adaptive neural tracking control was considered for
a class of stochastic nonlinear systems with input saturation, and a smooth nonaffine function of the
control input signal was designed to approximate the input saturation function. In [32], a modified
fault tolerant control law was designed to handle the input saturation problem. Constrained adaptive
backstepping control was proposed based on the command filters in [33]. Inspired by [34], the auxiliary
system is designed to weaken the influence of the input saturation based on the backstepping technique
in this paper.

The backstepping design method has been widely employed in the control of nonlinear systems.
In recent years, many robust control methods have been introduced to combine with backstepping
technique for the uncertain MIMO nonlinear systems [35–39]. However, the ESO-based robust
backstepping technique should be further developed for the wing-rock motion due to the relatively
easy realization. Inspired by the above discussions, a robust attitude tracking control law is proposed
for the wing-rock motion in the presence of unsteady aerodynamic disturbances, external disturbances,
system uncertainties and input saturation.

In this paper, considering the characters of different disturbances, efficient processing methods are
adopted. The system uncertainty is estimated online by adaptive RBFNN. By taking full advantage of
the output of the RBFNN and the known model information of the unsteady aerodynamic disturbance,
the ESO is employed to estimate the compounded disturbance, which consists of the unsteady
aerodynamic disturbance, external disturbance, and the unknown neural network approximation error.
By making full use of the known information of the system, the disturbance estimation performance
will be greatly improved. In addition, it is meaningful in the wing rock control at high AOA.

The paper is organized as follows. Problem formulation and preliminaries are described in Section
2. Section 3 presents the detailed design process of the disturbance observers. In Section 4, the robust
backstepping wing rock control law is developed considering the input saturation. In Section 5,
simulation results are given to demonstrate the effectiveness of the proposed robust tracking control
scheme, followed by concluding remarks in Section 6.



Appl. Sci. 2017, 7, 219 3 of 29

2. Problem Formulation and Preliminaries

2.1. Problem Statement

According to the typical characteristics of wing rock motion, the following nonlinear MIMO
lateral attitude motion model is considered [40]:

ẋ1 = f1(x1) + g1(x1)x2 + ∆ f (x1) + d1 (t)

ẋ2 = f2(x1, x2) + g2(x1, x2)u(v) + ∆ f2(x1, x2) + G
′
2h2 + d2 (t)

y = x1 (1)

where x1 = [β, µ]T ∈ R2 is an attitude angle vector which includes sideslip angle and flight-path roll
angle, respectively; x2 = [p, r]T ∈ R2 is the body-axis angular rate vector; y is the output; f1(x1) ∈ R2,
f2(x1, x2) ∈ R2 are known nonlinear function vectors; g1(x1) ∈ R2×2, g2(x1, x2) ∈ R2×2, G′2 ∈ R2×2 are
known invertible function matrices; ∆ f1(x1) and ∆ f2(x1, x2) are the system uncertainties which include
the modeling errors and the perturbation of aerodynamic coefficients; d1(t), d2(t) are the unknown
external disturbance vectors; v = [v1, v2]

T is the designed control input; u (v) = [u1 (v1) , u2 (v2)]
T =[

δa, δy
]T denotes the practical control input; δa is the aileron deflection angle and δy is the lateral thrust

vectoring angle; h2 = [hl , hn]
T ∈ R2 is the unsteady moment aerodynamic coefficient vector, and hl , hn

are unsteady rolling moment aerodynamic coefficient and unsteady yawing moment aerodynamic
coefficient, respectively.

On the basis of work in [41], the unsteady aerodynamic coefficient can be modeled by first-order
linear differential equation which is given by

ḣ2 = −B2 (β) h2 − A2 (β) ẋ1 (2)

where B2 (β) = diag {b21 (β) , b22 (β)}, A2 (β) =

[
a21 (β) 0
a22 (β) 0

]
, and b21 (β) > 0, b22 (β) > 0, a21 (β) ,

a22 (β) are known bounded function variables of β.
At high AOA, the lateral attitude motion of (1) becomes unstable. When system (1) suffers no

disturbances, simulation results for an angle of attack of 55◦ with initial conditions of [β (0) , µ (0)]T =

[5◦, 0◦]T , [p (0) , r (0)]T = [0◦/s, 0◦/s]
T are given in Figures 1 and 2. From Figures 1 and 2, it can be

observed that the roll angle exhibits large amplitude oscillatory motion, and the sideslip angle motion
also exhibits considerable oscillation. Meanwhile, the maximum amplitude of the sideslip motion is
closed to 20◦, which is very dangerous for aircrafts at high AOA.
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Figure 1. Roll angle oscillation without disturbances.
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Figure 2. Sideslip angle oscillation without disturbances.

When system (1) suffers the disturbances, simulation results for an angle of attack of 55◦ with
initial conditions of [β (0) , µ (0)]T = [5◦, 0◦]T , [p (0) , r (0)]T = [0◦/s, 0◦/s]

T are given in Figures 3
and 4. And the equations of the system uncertainty, unsteady aerodynamic disturbance and external
disturbance will be given in details in the simulation section. In Figure 3 and 4, the states of the aircraft
diverge quickly, then stable wing rock appears after 50 s. Comparing Figures 3 and 4 with Figures 1
and 2, it can be concluded that the disturbances will further aggravate the oscillation. Thus, it is very
important to design a robust controller to suppress the wing-rock motion, and render the roll angle
and sideslip angle converge to zero quickly.

Considering that the wing rock motion is characterized by uncommanded roll-dominated
oscillatory coupled with yaw oscillation, the aileron deflection angle δa and the lateral thrust
vectoring angle δy are chosen as the practical control input. However, with the increase of AOA,
the aileron control efficiency is reduced drastically [40]. Hence, the input saturation must be taken into
consideration in the wing rock control. And the input saturation model can be written as

ui (vi) = sat (vi) =

{
sign (vi) uMi , |vi| ≥ uMi

vi, |vi| < uMi

(3)

where uMi is the bounds of ui(t), i = 1, 2.
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Figure 3. Roll angle oscillation with disturbances.
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Figure 4. Sideslip angle oscillation with disturbances.

2.2. Neural Networks

The RBFNN has been widely employed to tackle unknown nonlinear functions due to its
satisfactory approximation ability. Considering an unknown function f (x) : Rm → R, the RBFNN
approximation output over a compact set Ωm ⊆ Rm can be written as [22]

f (x) = W∗
T

S(x) + ι∗ (4)

where W∗ ∈ Rp is the optimal weight value and ι∗ is the smallest approximation error; S(x) =

[s1(x), s2(x), · · · , sp(x)]T ∈ Rp is a basis function vector, which can be written in the form of

si(x) = exp[−(x− ci)
T(x− ci)/(2b2

i )] i = 1, 2, · · · , p (5)

where ci and bi are the center and width of the neural cell of the ith hidden layer.
The optimal weight value of the RBFNN is given by [42]

W∗ = arg min
Ŵ∈Ω f

[
sup

x∈Ωm

∣∣∣ f (x)− ŴTS (x)
∣∣∣ ] (6)

where Ŵ is the estimation of the optimal weight value W∗; Ω f =
{

Ŵ :
∥∥Ŵ
∥∥ ≤ M

}
is a valid field

of the parameter and M is a design parameter; Ωm is an allowable set of the state vector. Using the
optimal weight value yields ∣∣∣ f (x)−W∗

T
S(x)

∣∣∣ = |ι∗(x) | ≤ ῑ (7)

where ῑ > 0.

2.3. Review of the Extended State Observer

An uncertain nonlinear single-input and single-output dynamic system is given by [43]

y′(n) (t) = f
(

y′(n−1)
(t) , · · · , y′ (t) , d (t)

)
+ bu (t) (8)

where d(t) is the external disturbance; b 6= 0 is the control gain; f
(

y′(n−1) (t) , · · · , y′ (t) , d (t)
)

is the
unknown nonlinear function.
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Treat f as an extended system state and define χn+1 = f . Then, the system (8) can be written in
the following augmented state space form [44]:

χ̇1 = χ2

...

χ̇n = χn+1 + bu (9)

χ̇n+1 = h̄

y′ = χ1

where h̄ represents the time derivative of f , χ = [χ1, χ2, · · · , χn, χn+1]
T =

[
y′, ẏ′, · · · , y′(n−1), f

]T
∈

Rn+1, u ∈ R and y′ ∈ R are the state, input and output of the system, respectively.
Hence, an ESO can be constructed as [44]

ż1 = z2 − l1φ1
(
z1 − y′

)
...

żn−1 = zn − ln−1φn−1
(
z1 − y′

)
(10)

żn = zn+1 − lnφn
(
z1 − y′

)
+ bu

żn+1 = −ln+1φn+1
(
z1 − y′

)
where z = [z1, z2, · · · , zn+1]

T ∈ Rn+1 is the state vector of the ESO; li, i = 1, 2, · · · , n + 1, are the
observer gain parameters, and φi, i = 1, 2, · · · , n + 1 are the linear functions or nonlinear functions of
(z1 − y′) to be chosen.

If the functions φi, i = 1, 2, · · · , n + 1 and the observer gain parameters li, i = 1, 2, · · · , n + 1 are
chosen properly [45,46], we can obtain

lim
t→∞

zi = χi, i = 1, 2, · · · , n + 1 (11)

In this paper, the RBFNN and ESO technique are combined to improve the robustness of the wing
rock controller. Based on the output of the RBFNN and ESO, a robust backsteping attitude control
law will be developed. To promote the control law design, the following lemma and assumptions
are required.

Lemma 1. [22]: For bounded initial conditions, if there exists a C1 continuous and positive-definite Lyapunov
function V(x) satisfying π1 (‖x‖) ≤ V (x) ≤ π2 (‖x‖), such that V̇ (x) ≤ −κV (x) + c, where π1, π2 :
Rn → R are class K functions, κ and c are positive constants, then the solution x(t) is uniformly bounded.

Assumption 1. All the states of the uncertain nonlinear MIMO lateral model (1) are measurable.

Assumption 2. For the uncertain nonlinear MIMO lateral model (1), the time derivatives of di, i = 1, 2
are bounded.

Assumption 3. For the uncertain nonlinear MIMO system (1), the desired system output yd and the derivatives
ẏd, ÿd are bounded. Namely, the set Π0 =

{
(yd, ẏd, ÿd) : ‖yd‖2 + ‖ẏd‖2 + ‖ÿd‖2 ≤ M0

}
exists, where

M0 > 0 is an unknown positive constant.

Assumption 4. For the uncertain nonlinear MIMO lateral model (1), there exist unknown positive constants
λ̄i such that λmax(gigT

i ) ≤ λ̄i(i = 1, 2) where λmax(•) denotes the maximum eigenvalue.



Appl. Sci. 2017, 7, 219 7 of 29

Remark 1. Considering that the wing rock motion is a typical lateral attitude motion, the flight speed can be
assumed to be constant. In practice, the wing rock motion is a limit-cycle oscillation, and the aerodynamic angle
β is bounded in the wing rock motion. Hence, invoking the expression of the gain matrices g1(x1), and g2(x1, x2)

in [40], Assumption 4 is reasonable.

Remark 2. The unsteady aerodynamic effect denoted by h2 is induced by the periodical separation and
attachment of the vortical flow. Meanwhile, the unsteady aerodynamic effect is also limited by the breakdown of
the vortical flow. Hence, h2 is bounded in practice.

3. Design of Disturbance Observer

3.1. Design of Disturbance Observer for the First Subsystem

According to (1), the first subsystem can be written as

ẋ1 = f1(x1) + g1(x1)x2 + ∆ f1 (x1) + d1 (t) (12)

In (12), the system uncertainty ∆ f1 (x1) and external disturbance d1(t) are considered
simultaneously. In traditional ESO method, ∆ f1 (x1) and d1(t) are merged into a single equivalent
uncertainty. To improve the disturbance estimation performance, it is necessary to introduce different
mechanisms to handle the system uncertainty and the external disturbance separately.

To efficiently tackle the unknown function vector ∆ f1 (x1), the RBFNN is employed to
approximate it. The approximation output of the RBFNN can be written as

∆ f1 (x1) = W∗T1 S1 (J1) + ι∗1 (13)

where J1 = x1, W∗T1 =
[
W∗11, W∗12

]T ∈ R2×p1 , S1 (J1) ∈ Rp1 , ι∗1 ∈ R2×1.
Substituting (13) into (12), we obtain

ẋ1 = f1(x1) + g1(x1)x2 + W∗T1 S1 (J1) + D1 (14)

where D1 = d1 (t) + ι∗1.
Extending D1 as an additional state variable, i.e., defining x3 = D1, (14) can be rewritten as

ẋ1 = f1(x1) + g1(x1)x2 + W∗T1 S1 (J1) + x3

ẋ3 = h̄1 (t) (15)

where x3 = [x31, x32]
T ; h̄1 = [h̄11, h̄12]

T is an unknown bounded time derivative function vector of D1.
According to the structure of extended system (15), a linear ESO combined with the RBFNN can

be constructed as

˙̂x1 = f1(x1) + g1(x1)x2 + ŴT
1 S1 (J1) + x̂3 − l1s x̃1

˙̂x3 = −l2s x̃1 (16)

where x̂1, x̂3 are the states of the observer (16); x̂1 is the estimation of x1; ŴT
1 =

[
Ŵ11, Ŵ12

]T ∈ R2×p1

is the estimation of W∗1 ; x̂3 is the estimation of x3; x̃1 = x̂1 − x1; And l1s = diag{l1s1, l1s2} > 0,
l2s = diag{l2s1, l2s2} > 0 are design matrixes.

Invoking (15) and (16), we obtain

˙̃x1 = W̃T
1 S1 (J1) + x̃3 − l1s x̃1

˙̃x3 = −l2s x̃1 − h̄1 (17)
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Define [ε11, ε12]
T = [x̃11, x̃12]

T , [ε31, ε32]
T =

[
x̃31
ω11

, x̃32
ω12

]T
. Then (17) can be written as

[
ε̇1i
ε̇3i

]
= ω1i Asi

[
ε1i
ε3i

]
+ BsiW̃T

1iS1 (J1)− Csi
h̄1i
ω1i

i = 1, 2 (18)

where Asi =

 −l1si
ω1i

1
−l2si
ω2

1i
0

, Bsi =

[
1
0

]
, Csi =

[
0
1

]
; And ω1i > 0, i = 1, 2 is a design constant.

Hence, it can be easily proved that Asi is Hurwitz, if l1si = 2ksiω1i, l2si = k2
siω

2
1i, i = 1, 2, and ksi is

a positive constant. Thus, there exists a positive definite matrix Psi, i = 1, 2 satisfying the following
Lyapunov equation:

AT
siPsi + Psi Asi = −2I (19)

In this subsection, the disturbance observer (16) for the first subsystem (12) has been proposed.
Selecting the parameters of (16) by the given method, Asi has been proved to be Hurwitz. And the
positive definite matrix Psi, i = 1, 2 will be used in the design of the Lyapunov function (38), which is
very important in the stability analysis of the proposed observer (16) and the closed-loop system.

3.2. Design of Disturbance Observer for the Second Subsystem

According to (1), the second subsystem can be written as

ẋ2 = f2(x1, x2) + g2(x1, x2)u(v) + ∆ f2(x1, x2) + G
′
2h2 + d2 (t) (20)

It is more complicated that multiple disturbances are considered in (20). ∆ f2(x1, x2) is the
unmodeled system uncertainty, which is an unknown function of the system states. h2 is the
unmeasurable unsteady moment aerodynamic coefficient vector whose model can be achieved by wind
tunnel experiments. And d2(t) represents the external disturbance. Similarly, different mechanisms are
adopted to handle these different disturbances in this section. Meanwhile, to improve the disturbance
estimation performance, the model information of the unmeasurable unsteady moment aerodynamic
coefficient vector h2 is fully utilized.

Invoking (2) and (20), the augmented second subsystem state equations can be written as

ẋ2 = f2(x1, x2) + g2(x1, x2)u(v) + ∆ f2(x1, x2) + G
′
2h2 + d2 (t)

ḣ2 = −B2 (β) h2 − A2 (β) ẋ1 (21)

where G′2 = diag {G21, G22}, and G21 > 0, G22 > 0 are constants.
Similar to (13), considering the neural network approximation of ∆ f2(x1, x2), (21) can be written as

ẋ2 = f2(x1, x2) + g2(x1, x2)u(v) + W∗T2 S2 (J2) + G
′
2h2 + D2

ḣ2 = −B2 (β) h2 − A2 (β) ẋ1 (22)

where D2 = d2 (t) + ι∗2, ∆ f2 (x1, x2) = W∗T2 S2 (J2) + ι∗2. J2 = [xT
1 , xT

2 ]
T , W∗T2 =

[
W∗21, W∗22

]T ∈ R2×p2 ,
S2 (J2) ∈ Rp2 , ι∗2 ∈ R2×1.

Defining x4 = G
′
2h2 + D2 and invoking (14), the time derivative of x4 is given by

ẋ4 = G′2ḣ2 + Ḋ2

= G′2
(
−B2 (β) h2 − A2 (β)

(
f1(x1) + g1(x1)x2 + W∗T1 S1 (J1) + D1

))
+ Ḋ2

= −B2 (β) x4 − G′2 A2 (β) ( f1(x1) + g1(x1)x2)− G′2 A2 (β)W∗T1 S1 (J1) (23)

−G′2 A2 (β) D1 + B2 (β) D2 + Ḋ2

= −B2 (β) x4 − G′2 A2 (β) ( f1(x1) + g1(x1)x2)− G′2 A2 (β)W∗T1 S1 (J1) + x5
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where x5 = −G
′
2 A2 (β) D1 + B2 (β) D2 + Ḋ2 .

Then, invoking (23), the extended system of (22) can be written as

ẋ2 = f2(x1, x2) + g2(x1, x2)u(v) + W∗T2 S2 (J2) + x4

ẋ4 = −B2 (β) x4 − G
′
2 A2 (β) ( f1(x1) + g1(x1)x2)− G

′
2 A2 (β)W∗T1 S1 (J1) + x5 (24)

ẋ5 = h̄2 (t)

where h̄2 = [h̄21, h̄22]
T is an unknown bounded time derivative function vector of x5.

Then, a linear type of the ESO can be constructed as

˙̂x2 = f2(x1, x2) + g2(x1, x2)v + ŴT
2 S2 (J2) + x̂4 − l3 f x̃2

˙̂x4 = −B2 (β) x̂4 − G
′
2 A2 (β) ( f1(x1) + g1(x1)x2)− G

′
2 A2 (β) ŴT

1 S1 (J1) + x̂5 − l4 f x̃2 (25)
˙̂x5 = −l5 f x̃2

where x̂2 is the estimation of x2; x̂4 is the estimation of x4; x̂5 is the estimation of x5; ŴT
2 =[

Ŵ21, Ŵ22
]T ∈ R2×p2 is the estimation of W∗T2 ; x̃2 = x̂2 − x2; And l3 f = diag

{
l3 f 1, l3 f 2

}
> 0,

l4 f = diag
{

l4 f 1, l4 f 2

}
> 0, l5 f = diag

{
l5 f 1, l5 f 2

}
> 0 are design matrixes.

Invoking (24) and (25), we have

˙̃x2 = W̃T
2 S2 (J2) + x̃4 − l3 f x̃2

˙̃x4 = −B2 (β) x̃4 − G
′
2 A2 (β) W̃T

1 S1 (J1) + x̃5 − l4 f x̃2 (26)
˙̃x5 = −l5 f x̃2 − h̄2 (t)

Defining [ε21, ε22]
T = [x̃21, x̃22]

T , [ε41, ε42]
T =

[
x̃41
ω21

, x̃42
ω22

]T
, [ε51, ε52]

T =

[
x̃51
ω2

21
, x̃52

ω2
22

]T
, we have

 ε̇2i
ε̇4i
ε̇5i

 = ω2i A f i

 ε2i
ε4i
ε5i

+ B1 f iW̃T
2iS2 (J2)− B2 f i

1
ω2i

G2ia2i (β) W̃T
11S1 (J1)− B3 f i

1
ω2

2i
h̄2i (t) (27)

where A f i =


−l3 f i
ω2i

1 0
−l4 f i

ω2
2i

−b2i
ω2i

1
−l5 f i

ω3
2i

0 0

, B1 f i =

 1
0
0

, B2 f i =

 0
1
0

, B3 f i =

 0
0
1

 , i = 1, 2; ω2i > 0 is

a design constant.
According to the Routh-Hurwitz criterion, it can be easily proved that if the parameters of

(25) can be chosen as
[
l3 f 1, l3 f 2

]
=
[
3k f 1ω21, 3k f 2ω22

]
,
[
l4 f 1, l4 f 2

]
=
[
3k2

f 1ω2
21

, 3k2
f 2

ω2
22

]
,
[
l5 f 1, l5 f 2

]
=[

k3
f 1ω3

21
, k3

f 2
ω3

22

]
, and k f 1 > 0, k f 2 > 0 are design constants, A f i will be Hurwitz. Thus, there exists

a positive definite matrix Pf i, i = 1, 2 satisfying the following Lyapunov equation:

AT
f iPf i + Pf i A f i = −2I (28)

In this subsection, the disturbance observer (25) for the second subsystem (20) has been proposed.
Selecting the parameters of (25) by the given method, A f i has been proved to be Hurwitz. And the
positive definite matrix Pf i, i = 1, 2 will be used in the design of the Lyapunov function (44), which is
very important in the stability analysis of the proposed observer (25) and the closed-loop system.

Now, we have illustrated the design process of disturbance observers (16) and (25). However,
according to (18) and (27), we still can’t prove their stability due to the coupling between the observers
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and the RBFNN which will be design later. Hence, the stability of the disturbance observers will be
proved in the stability analysis of the closed-loop system.

4. Design of Robust Backstepping Attitude Control Based on Disturbance Observer

At high AOA, the aerodynamic characteristics of the flow field around an aircraft is quite
complicated. Any small changes of the attitude of an aircraft may cause drastic changes of
the aerodynamic force and aerodynamic moment, which will severely degrade the aircraft flight
performance. Hence, the robust backstepping attitude tracking control law should be further developed
for the aircraft at high AOA. To compensate for the matched and unmatched disturbances, the ESOs
proposed in Section 3 are employed to estimate them. And the disturbance estimations will be
introduced into the design of the virtual control law and the practical control law.

Invoking (15) and (24), the system (1) can be written as

ẋ1 = f1(x1) + g1(x1)x2 + W∗T1 S1 (J1) + x3

ẋ2 = f2(x1, x2) + g2(x1, x2)u(v) + W∗T2 S2 (J2) + x4 (29)

Considering the input saturation problem, the following auxiliary system is constructed:

ξ̇1 = g1 (x1) ξ2 − kaux1ξ1

ξ̇2 = −kaux2ξ2 + g2 (x1, x2)∆u (30)

where ξ1, ξ2 ∈ R2×1; ∆u = u(v)− v; kaux1 = kT
aux1 > 0, kaux2 = kT

aux2 > 0 are design matrixes.
Considering the backstepping control law design method, we define

e1 = x1 − yd − ξ1

e2 = x2 − x2c − ξ2 (31)

where x2c is the virtual control law which will be designed later.
In the following, we consider the robust backstepping attitude control design for the wing-rock

motion. In the attitude control design, the adaptive RBFNN and the ESO are combined, and the
detailed design process is appended as follows.

Step 1: Considering the first equation in (29) and differentiating e1 with respect to time yields

ė1 = ẋ1 − ẏd − ξ̇1

= f1(x1) + g1(x1)x2 + W∗T1 S1 (J1) + x3 − ẏd − g1 (x1) ξ2 + kaux1ξ1

= f1(x1) + g1(x1) (e2 + x2c + ξ2) + W∗T1 S1 (J1) + x3 − ẏd − g1 (x1) ξ2 + kaux1ξ1 (32)

= f1(x1) + g1(x1) (e2 + x2c) + W∗T1 S1 (J1) + x3 − ẏd + kaux1ξ1

The ideal virtual control law x̄2c for x2 is designed as

x̄2c = −g−1
1 (x1)

[
f1(x1) + ŴT

1 S1 (J1) + x̂3 − ẏd + c1e1 + kaux1ξ1

]
(33)

where c1 = cT
1 > 0 is a matrix to be designed.

And the weight value of RBFNN is updated by

˙̂W1 = Λ1

(
S1 (J1) eT

1 − ρ1Ŵ1

)
(34)

where Λ1 = ΛT
1 > 0, ρ1 > 0 are the design parameters.
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The dynamic surface control (DSC) technique technique is adopted to obtain the approximation
of the time derivative of x2c. Introducing a first-order filter with time constant Γ1 = diag {τ11, τ12},
and passing x̄2c through it yields

Γ1 ẋ2c + x2c = x̄2c x2c(0) = x̄2c(0) (35)

Defining ε f 1 = x2c − x̄2c and invoking Equation (35), we have

ε̇ f 1 = ẋ2c − ˙̄x2c

= −Γ−1
1 ε f 1 +

[
−∂x̄2c

∂x1
ẋ1 −

∂x̄2c

∂Ŵ1

˙̂W1 −
∂x̄2c

∂x̂3
˙̂x3 −

∂x̄2c

∂yd
ẏd −

∂x̄2c

∂ẏd
ÿd −

∂x̄2c

∂ξ1
ξ̇1

]
(36)

= −Γ−1
1 ε f 1 + M1(x1, Ŵ1, x̂3, ξ1, ξ2, yd, ẏd, ÿd)

= −Γ−1
1 ε f 1 + M1 (•)

where M1(•) is the sufficiently smooth function vector about Π0 and Π1 : (x1, Ŵ1, x̂3, ξ1, ξ2). Since the
set Π0 and Π1 are compacts, Π0 × Π1 is also compact. Therefore, M1(•) has a maximum M̄1 on
Π0 ×Π1.

Then, we have
ε̇ f 1 ≤ −Γ−1

1 ε f 1+M̄1 (37)

Choose the Lyapunov function candidate as

V1 =
1
2

eT
1 e1 +

1
2

εT
f 1ε f 1 +

1
2

2

∑
i=1

[ε1i, ε3i] Psi[ε1i, ε3i]
T +

1
2

tr
(

W̃T
1 Λ−1

1 W̃1

)
+

1
2

ξT
1 ξ1 (38)

Define ε13i = [ε1i, ε3i]
T , then the time derivative of V1 can be written as

V̇1 ≤ eT
1 g1(x1)e2 −

(
c1 −

1
2

λ̄1 −max{ω1i}
)

eT
1 e1 −

(
λmax

(
Γ−1

1

)
− 1
)

εT
f 1ε f 1

−
(

ρ1

2
− 1

τ

)∥∥W̃1
∥∥2

+
2

∑
i=1

−
(

3
4 ω1i − τ

2 M2
PBS1 −

MPCsi
4τ

)
λmax (Psi)

εT
13iPsiε13i

 (39)

−ξT
1 kaux1ξ1 +

1
2

λ̄1ξT
1 ξ1 +

1
2

ξT
2 ξ2 +

2

∑
i=1

(
MPCsi τ

ω2
1i

M2
h̄1i

)
+

1
2

M̄2
1 +

ρ1

2
‖W∗1 ‖

2

where ‖PsiCsi‖ = MPCsi , ‖h̄1i‖ ≤ Mh̄1i
, ‖PsiBsi‖ ‖S1 (J1)‖ ≤ MPBS1, and τ > 0 is a design constant.

The detailed analysis of the time derivative of V1 is shown in Appendix A.

Step 2: Invoking (29), differentiating e2 yields

ė2 = ẋ2 − ẋ2c − ξ̇2

= f2(x1, x2) + g2(x1, x2)u (v) + W∗T2 S2 (J2) + x4 − ẋ2c + kaux2ξ2 − g2 (x1, x2)∆u (40)

= f2(x1, x2) + g2(x1, x2)v + W∗T2 S2 (J2) + x4 − ẋ2c + kaux2ξ2

The control law v is designed as

v = −g−1
2 (x1, x2)

(
f2(x1, x2) + ŴT

2 S2 (J2) + x̂4 − ẋ2c + c2e2 + gT
1 (x1) e1 + kaux2ξ2

)
(41)

where c2 = cT
2 > 0 is a design matrix, and Ŵ2 is updated by

˙̂W2 = Λ2

(
S2 (J2) eT

2 − ρ2Ŵ2

)
(42)
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where ρ2 > 0, Λ2 = ΛT
2 > 0 are design parameters.

Substituting the controller v into Equation (40), we obtain

ė2 = −gT
1 (x1) e1 − W̃T

2 S2 (J2)− x̃4 − c2e2 (43)

where W̃2 = Ŵ2 −W∗2 , x̃4 = x̂4 − x4 are the estimation errors.
Define ε245i = [ε2i, ε4i, ε5i]

T , i = 1, 2, and consider the Lyapunov function candidate as

V2 =
1
2

eT
2 e2 +

1
2

2

∑
i=1

εT
245iPf iε245i +

1
2

tr
(

W̃T
2 Λ−1

2 W̃2

)
+

1
2

ξT
2 ξ2 (44)

The time derivative of V2 is given by

V̇2 ≤ −eT
2 gT

1 (x1) e1 − (c2 −max {ω2i}) eT
2 e2 −

(
ρ2

2
− 1

τ

)∥∥W̃2
∥∥2

+
2

∑
i=1

−
(

ω2i − ω2i
4 −

τ
2 M2

PBS2 −
τ

2ω2
2i

M2
PBASi −

MPB f i
4τ

)
λmax

(
Pf i

) εT
245iPf iε245i

 (45)

+
1
τ

∥∥W̃1
∥∥2 − ξT

2 kaux2ξ2 +
1
2

λ̄2ξT
2 ξ2 +

1
2

∆uT∆u

+
2

∑
i=1

(
MPB f i τ

ω4
2i

M2
h̄2i

)
+

ρ2

2
‖W∗2 ‖

2

where
∥∥∥Pf iB1 f i

∥∥∥ ‖S2 (J2)‖ ≤ MPBS2,
∥∥∥Pf iB2 f iG2ia2i (β)

∥∥∥ ‖S1 (J1)‖ ≤ MPBASi,
∥∥∥Pf iB3 f i

∥∥∥ ≤ MPB f i ,
‖h̄2i‖ ≤ Mh̄2i

.
The detailed analysis of the time derivative of V2 is shown in Appendix B.
Then, the above robust backstepping wing rock control design procedure can be summarized in

the following theorem.

Theorem 1. Considering the nonlinear MIMO lateral model (1) in the presence of unsteady aerodynamics
disturbances, external disturbances, system uncertainties, and input saturation, the disturbance observers are
designed as (16), (25), the auxiliary system is designed as (30), the filter is designed as (35), and the robust
backstepping attitude control law is proposed as (41). Then, the attitude tracking error is convergent and bounded
under the proposed adaptive robust backstepping control scheme.

Proof. To analyze the stability of the closed-loop system, the following Lyapunov function candidate
is chosen as

V = V1 + V2 (46)

Then, differentiating V and invoking Equations (39), (45), we have
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V̇ = V̇1 + V̇2

= −
(

c1 −
1
2

λ̄1 −max{ω1i}
)

eT
1 e1 −

(
λmax

(
Γ−1

1

)
− 1
)

εT
f 1ε f 1

−
(

ρ1

2
− 2

τ

)∥∥W̃1
∥∥2

+
2

∑
i=1

−
(

3
4 ω1i − τ

2 M2
PBS1 −

MPCsi
4τ

)
λmax (Psi)

εT
13iPsiε13i


− (c2 −max {ω2i}) eT

2 e2 −
(

ρ2

2
− 1

τ

)∥∥W̃2
∥∥2 (47)

+
2

∑
i=1

−
(

3
4 ω2i − τ

2 M2
PBS2 −

τ
2ω2

2i
M2

PBASi −
MPB f i

4τ

)
λmax

(
Pf i

) εT
245iPf iε245i


−
(

λmin (kaux1)−
1
2

λ̄1

)
ξT

1 ξ1 −
(

λmin (kaux2)−
1
2

λ̄2 −
1
2

)
ξT

2 ξ2

+
2

∑
i=1

(
MPCsi τ

ω2
1i

M2
h̄1i

)
+

2

∑
i=1

(
MPB f i τ

ω4
2i

M2
h̄2i

)
+

1
2

M̄2
1 +

ρ1

2
‖W∗1 ‖

2 +
ρ2

2
‖W∗2 ‖

2 +
1
2

∆uT∆u

≤ −κV + C

where

κ = max



2
(

c1 − 1
2 λ̄1 −max{ω1i}

)
, 2
(

λmax

(
Γ−1

1

)
− 1
)

, 2
( ρ1

2 −
2
τ

)
2
(

3
4 ω1i− τ

2 M2
PBS1−

MPCsi
4τ

)
λmax(Psi)

, 2 (c2 −max {ω2i}) , 2
(

ρ2
2 −

1
τ

)
2

(
3
4 ω2i− τ

2 M2
PBS2−

τ

2ω2
2i

M2
PBASi−

MPB f i
4τ

)
λmax(Pf i)

, 2
(

λmin (kaux1)− 1
2 λ̄1

)
2
(

λmin (kaux2)− 1
2 λ̄2 − 1

2

)


(48)

C =
2

∑
i=1

(
MPCsi τ

ω2
1i

M2
h̄1i

)
+

2

∑
i=1

(
MPB f i τ

ω4
2i

M2
h̄2i

)
+

1
2

M̄2
1 +

ρ1

2
‖W∗1 ‖

2 +
ρ2

2
‖W∗2 ‖

2 +
1
2

∆uT∆u

According to Equation (47) and Lemma 1, we obtain

0 ≤ V ≤ C
κ
+

[
V (0)− C

κ

]
e−κt (49)

Considering Equations (31), (46), (49), we obtain{
‖e1‖ ≤

√
2V

‖ξ1‖ ≤
√

2V
(50)

Then, we obtain

lim
t→+∞

‖x1 − yd‖ ≤ lim
t→+∞

(‖x1 − yd − ξ1‖+ ‖ξ1‖) = 2

√
2C
κ

(51)

Hence, it is obvious that the attitude tracking error is convergent and bounded under the
proposed adaptive robust backstepping control scheme. Similarly, we can conclude that the disturbance
estimation errors ε13i, ε245i, i = 1, 2 of the disturbance observers (16) and (25) are also convergent
and bounded.

This concludes the proof.
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5. Simulation Study

In this section, the simulation results are given to verify the effectiveness of the proposed robust
control scheme in suppression of wing rock motion at high AOA. In this section, the aircraft model
in [40] and the unsteady model in [41] are adopted to demonstrate the attitude control performance
and the disturbance rejection performance of the above designed controller.

In simulations, initial conditions for the aircraft are take as α = 55◦, x1 (0) = [5◦, 0◦]T , x2 (0) =
[0◦/s, 0◦/s]

T , whereas initial conditions for the proposed ESO are taken as
[
x̂T

1 (0) , x̂T
3 (0)

]
= [5.7, 0, 0, 0],[

x̂T
2 (0) , x̂T

4 (0) , x̂T
5 (0)

]
= [0, 0, 0, 0, 0, 0]. And the initial condition for the auxiliary system is chosen as[

ξT
1 , ξT

2
]
= [0, 0, 0, 0]. The time constant for (35) is designed as Γ1 = diag {0.08, 0.08}.

It is very important to choose suitable parameters for the ESO. And the observer gains of the error
dynamics (18) and (27)are designed by placing the observer error dynamics poles around [−15,−15]
and [−15,−15,−15], respectively. Hence, [ks1, ks2] = [15, 15],

[
k f 1, k f 2

]
= [15, 15], [ω11, ω12] = [6, 6],

[ω21, ω22] = [6, 6]. Large ksi, k f i, ω1i, ω2i, i = 1, 2 will improve the disturbance performance, and
make the disturbance estimation errors arbitrarily small. Meanwhile, large ksi and k f i will reduce the
conservatism of the controller proposed in this paper.

The parameters for the controller (41) are chosen as
[
cT

1 , cT
2
]
= [6, 6, 10, 10]. Large control

parameters
[
cT

1 , cT
2
]

will improve the control performance and reduce steady-state tracking errors.
However, large control parameters will also induce serious input saturation. The parameters for
the auxiliary system (30) is designed as

[
kT

aux1
, kT

aux2

]
= [6, 6, 60, 60]. The parameters for the adaptive

RBFNNs (34) and (42) are chosen as Λ1 = 40, ρ1 = 0.5, Λ2 = 1, ρ2 = 0.8.
In the simulation study, the system uncertainties ∆ f1 (x1) and ∆ f2 (x1, x2) are assumed as +40%

variation of the force and moment aerodynamic coefficients. In addition, we assume that the unknown
time–varying disturbances imposed on the aircraft are[

ḣl
ḣn

]
= −

[
5 0
0 5

] [
hl
hn

]
−
[
−0.02
−0.05

]
β̇ (52)

d1 =

[
d11

d12

]
=

[
0.01 (sin (0.5πt) + sin (0.2πt) + 0.1)
0.02 (sin (0.5πt) + sin (0.2πt) + 0.1)

]
(53)

d2 =

[
d21

d22

]
=

[
0.01 (sin (5t) + sin (2t) + 0.3)
0.01 (sin (5t) + sin (2t) + 0.3)

]
(54)

According to Figures 1–4, the states of the aircraft diverge rapidly when the wing rock motion
appears. Hence, it is necessary to adopt appropriate control scheme immediately after the wing
rock phenomenon is detected. In the following simulations, we assume that the wing rock motion is
detected at 5 s, and then the controller (41) is executed immediately.

To facilitate the description, we define the compounded uncertainties Ψs, Ψ f as following

Ψs = [Ψs1, Ψs2]
T = ∆ f1 (x1) + d1 (t)

Ψ f =
[
Ψ f 1, Ψ f 2

]T
= ∆ f2 (x1, x2) + G′2h2 + d2 (t) (55)

Meanwhile, we define the two estimation errors eΨs = [eΨs1, eΨs2]
T , eΨ f =

[
eΨ f 1, eΨ f 2

]T
as

eΨs = Ψ̂s −Ψs = ŴT
1 S1 (J1) + x̂3 −Ψs

eΨ f = Ψ̂ f −Ψ f = ŴT
2 S2 (J2) + x̂4 −Ψ f (56)
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5.1. Wing Rock Control

In this subsection, the control objective is to track a desired attitude command while suppressing
the wing-rock motion. The simulations are given by considering a reference attitude angle trajectory as

βc = 0◦

µc = 20 sin (0.4πt)◦ (57)

The controller is executed at 5 s after the wing-rock motion appears, and the simulation results are
presented in Figures 5–14.

Figures 5 and 6 show that the wing rock motion appears, and the aircraft starts to oscillate at the
beginning. Then, after the controller (41) is executed in the fifth second, the states µ, β converge to
the desired attitude command (57) quickly, which means that the controller can achieve satisfactory
tracking performance while suppressing the wing rock motion. Figures 7–10 show that the ESO can
estimate the uncertainty quite accurately. In Figure 7, the compounded disturbance Ψs1 diverged
quickly in fifth seconds, and the proposed disturbance observer can still estimate the disturbance well.
The estimation errors are plotted in Figures 11 and 12, which show that the proposed disturbance
observer not only has good steady-state performance, but also has good transient performance.
Meanwhile, the corresponding control input histories are given in Figures 13 and 14, respectively.

From the simulation results, we know that the developed ESO based robust control law is valid
for the nonlinear MIMO lateral model of an aircraft with system uncertainty, unsteady aerodynamic
disturbance, and input saturation.

t(s)

0 5 10 15 20 25 30
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)
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-20

-10
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10
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30
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Figure 5. Roll angle tracking.
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Figure 6. Sideslip angle tracking.
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Figure 7. Estimation of Ψs1 in attitude tracking.
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Figure 8. Estimation of Ψs2 in attitude tracking.
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Figure 9. Estimation of Ψ f 1 in attitude tracking.
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Figure 10. Estimation of Ψ f 2 in attitude tracking.
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Figure 11. Estimation error of Ψs.
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Figure 12. Estimation error of Ψ f .
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Figure 13. The aileron deflection angle output in attitude tracking.

t(s)
0 5 10 15 20 25 30

δ
y
(°

)

-15

-10

-5

0

5

10

Figure 14. The lateral thrust vectoring angle output in attitude tracking.

One of the focuses of this paper is the robust control of wing rock motion suffering multiple
disturbances. To enhance the system robustness, an improved ESO is proposed combined with the
RBFNN. Next, the simulation will be carried out to compare the performance of the proposed ESO
with existing traditional ESOs.

5.2. Comparison with Traditional ESO

In the traditional ESO design method, all the uncertainties are merged into a single compounded
uncertainty. Hence, we rewrite (4) as follows

ẋ1 = f1(x1) + g1(x1)x2 + Ψs

ẋ2 = f2(x1, x2) + g2(x1, x2)u(v) + Ψ f (58)

Considering that a linear ESO is developed in this paper, the traditional linear ESO (LESO) is
considered for comparison instead of traditional nonlinear ESO. Meanwhile, the use of linear ESO
offers certain advantages. Firstly, the close loop stability for nonlinear ESO is hard to established
conclusively. Secondly, the LESO is easy from hardware implementation point of view.
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In [18], the authors have presented the wing rock control law based on the linear ESO. Hence,
according to [18], the LESO for (58) is designed as

˙̂xLs = f1(x1) + g1(x1)x2 + Ψ̂sL − l′Ls1e′Ls
˙̂ΨsL = −l′Ls2e′Ls (59)
˙̂xL f = f2(x1, x2) + g2(x1, x2)u(v) + Ψ̂ f L − l′L f 1e′L f

˙̂Ψ f L = −l′L f 2e′L f

where x̂Ls is the estimation of x1; Ψ̂sL =
[
Ψ̂sL1, Ψ̂sL2

]T is the estimation of Ψs; e′Ls = x̂Ls − x1; x̂L f is the

estimation of x2; Ψ̂ f L =
[
Ψ̂ f L1, Ψ̂ f L2

]T
is the estimation of Ψ f . l′Ls1, l′Ls2, l′L f 1, l′L f 2 are the positive

observer gains.
Similar to the developed disturbance observer in this paper, the observer gains are obtained by

following the pole placement technique by placing the observer error dynamics poles at [−15,−15].
Hence, l′Ls1 = 30, l′Ls2 = 225, l′L f 1 = 30, l′L f 2 = 225. And initial conditions for the traditional LESO

(59) are taken as
[
x̂T

Ls (0) , Ψ̂T
s (0)

]
= [5.7, 0, 0, 0],

[
x̂T

L f (0) , Ψ̂T
f (0)

]
= [0, 0, 0, 0]. The simulations are

carried out by tracking the trajectory (57), and the other design parameters are the same as stated
earlier. To facilitate the description, we define e′Ψs = Ψ̂sL −Ψs, e′Ψ f = Ψ̂ f L −Ψ f .

The estimation output of the LESO (59) is presented in Figures 15–18. In (58), all the uncertainties
are merged into a single compounded uncertainty, which leads to a larger value of the time derivative
of the compounded uncertainty. Hence, obvious estimation errors can be observed in the output
of LESO. Comparing Figures 11 and 12 with Figures 19 and 20, it is obvious that the disturbance
observer proposed in this paper can achieve better estimation performance under the same conditions.
Meanwhile, we can conclude that the developed disturbance observer not only has good steady-state
performance, but also has good transient performance.
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Figure 15. Estimation of Ψs1 using LESO.
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Figure 16. Estimation of Ψs2 using LESO.
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Figure 17. Estimation of Ψ f 1 using LESO.
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Figure 18. Estimation of Ψ f 2 using LESO.
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Figure 19. Estimation error e′Ψs.
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Figure 20. Estimation error e′Ψ f .

5.3. Wing Rock Control under Narrow-Band Disturbances

In many classes of applications like active vibration control and active noise control, the broadband
and band-limited disturbances have been considered, which can be of narrow band type (simple or
multiple) or of broad band type. To make the simulation more realistic, a narrow-band disturbance
(NBD) will be considered in the wing rock control. Usually, a common framework is the assumption
that the broadband and band-limited disturbances are the results of a white noise or a Dirac impulse
passing through the shaping filter. Similar to [47], the transfer function of the shaping filter is taken to
be s

s2+0.95409s+9103 . The mean, variance and sample time of the white noise are set as 0, 150, and 0.1 s.
And the output of the filter is the NBD which is indicated by dnb.

All the design parameters, the considered disturbances, and the reference attitude angle trajectory
are the same as stated in Section 5.1, except for the external disturbance d2 which is written as (60).
Comparing (54) and (60), it is obvious that the NBD dnb is considered in the external disturbance.

d2 =

[
d21

d22

]
=

[
0.01 (sin (5t) + sin (2t) + 0.3) + dnb
0.01 (sin (5t) + sin (2t) + 0.3) + dnb

]
(60)
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The simulation results are presented in Figures 21–28. From Figure 21 and 22, it can be observed
that the proposed controller can still achieve satisfactory tracking performance in the presence of the
NBD. The disturbance estimation results are presented in Figures 23–26. Especially Figures 25 and 26
indicate that the observer proposed in this paper can still achieve satisfactory disturbance estimation
performance in the presence of the NBD. And the corresponding control input histories are given in
Figures 27 and 28, respectively.
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Figure 21. µ under NBD.
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Figure 22. β under NBD.
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Figure 23. Estimation of Ψs1 under NBD.
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Figure 24. Estimation of Ψs2 under NBD.
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Figure 25. Estimation of Ψ f 1 under NBD.
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Figure 26. Estimation of Ψ f 2 under NBD.
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Figure 27. δa under NBD.
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6. Conclusions

In this paper, a robust attitude control scheme has been developed for wing-rock motion control
with the system uncertainties, unsteady aerodynamic disturbances, external disturbances, and input
saturation. To be more consistent with the practical wing rock phenomenon, a uncertain MIMO
nonlinear wing rock model was studied. To address the issues of multiple disturbances, an improved
ESO was developed combined with the RBFNN technique, which relaxed the known boundary
requirement of the uncertainties and disturbances. Furthermore, the input saturation problem was
considered, and a corresponding auxiliary system was designed to weaken the effect of the input
saturation. Finally, a robust backstepping control scheme has been designed. Exclusive simulations
have proven that the improved ESO can achieve satisfactory disturbance estimation performance,
and that the proposed control scheme is valid in the wing rock control.
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Appendix A

The detailed analysis of the time derivative of Lyapunov function V1 is given as following:
The Lyapunov function V1 is given by

V1 =
1
2

eT
1 e1 +

1
2

εT
f 1ε f 1 +

1
2

2

∑
i=1

[ε1i, ε3i] Psi[ε1i, ε3i]
T +

1
2

tr
(

W̃T
1 Λ−1

1 W̃1

)
+

1
2

ξT
1 ξ1 (A1)

Defining ε13i = [ε1i, ε3i]
T , and considering the following facts:

tr
(

W̃T
1 Λ−1

1
˙̂W1

)
= tr

(
W̃T

1 S1 (J1) eT
1 − ρ1W̃T

1 Ŵ1

)
≤ eT

1 W̃T
1 S1 (J1)−

ρ1

2

∥∥W̃1
∥∥2

+
ρ1

2
‖W∗1 ‖

2

−eT
1 x̃3 = −

2

∑
i=1

ω1ie1iε3i ≤
2

∑
i=1

(ω1i
4

εT
13iε13i

)
+ max {ω1i} eT

1 e1 (A2)

the time derivative of V1 is given by

V̇1 =eT
1

(
g1(x1)e2 + g1(x1)ε f 1 − W̃T

1 S1 (J1)− x̃3 − c1e1

)
− εT

f 1Γ−1
1 ε f 1 + εT

f 1M1 (•)

+
2

∑
i=1

(
−ω1iε

T
13iε13i + εT

13iPsiBsiW̃T
1iS1 (J1)−

1
ω1i

εT
13iPsiCsi h̄1i

)
+ tr

(
W̃T

2 Λ−1
1

˙̂W2

)
+ ξT

1 g1 (x1) ξ2 − ξT
1 kaux1ξ1

≤eT
1 g1(x1)e2 +

1
2

λ̄1eT
1 e1 +

1
2

εT
f 1ε f 1 − eT

1 W̃T
1 S1 (J1) +

2

∑
i=1
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ω1ieT

1 e1 +
ω1i
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εT
13iε13i
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1 e1 (A3)
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Furthermore, considering the following facts:

− 1
ω1i

εT
13iPsiCsi h̄1i ≤

1
ω1i

∥∥∥εT
13i
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2
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PBS1εT
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1
2τ
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the time derivative of V1 can be written as

V̇1 ≤−
(

c1 −
1
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where ‖PsiCsi‖ = MPCsi , ‖h̄1i‖ ≤ Mh̄1i
, ‖PsiBsi‖ ‖S1 (J1)‖ ≤ MPBS1, and τ > 0 is a design constant.

This concludes the analysis.

Appendix B

The detailed analysis of the time derivative of Lyapunov function V2 is given as following:
The Lyapunov function V2 is given by

V2 =
1
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Similar to (A2), considering the following facts:
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Then, the time derivative of V2 can be written as
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Furthermore, considering the following facts:
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Then, (A8) can be written as
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This concludes the analysis.
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