Supplementary Materials

Article

Study on Photoluminescent and Thermal Properties of Zinc Complexes with a N6O4 Macrocyclic Ligand

Xingyong Xue1,2, Qijun Wang1, Fusen Mai1, Xing Liang1, Yichen Huang1, Jiahe Li1,
Yanling Zhou1, Dengfeng Yang3,*, Zhen Ma1,4,*

1 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China, E-mail: mzms2009@sohu.com
2 Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development
3 Guangxi Academy of Sciences, Guangxi beibu gulf marine research center, Guangxi key laboratory of marine natural products and combinatorial biosynthesis chemistry, Nanning, Guangxi, P. R. China, E-mail: yangdengfeng@gxas.cn
4 Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal

* Correspondence: mzms2009@sohu.com; Tel.: +86-0771-323-3718

Figure S1. The TG-DTA curves of compound 3
Figure S2. The TG-DTA curves of compound 4

Figure S3. The TG-DTA curves of compound 5
Figure S4. The TG-DTA curves of compound 6

Figure S5. The TG-DTA curves of compound 7
Figure S6. Photoluminescent properties of the L₁ and complexes 1-7 in DMF. The peak of emission is 356 nm for L₁, 411 (1), 412 (2), 390 (3), 399 (4), 416(5), 446(6), 425(7), respectively.

Figure S7. Photoluminescent properties of the L₁ and complexes 1-7 in DMSO. The peak of emission is 380 nm for L₁, 440 (1), 4440 (2), 395 (3), 396 (4), 408(5), 379(6), 402(7), respectively.
Figure S8. The UV-vis absorbance spectrum of the L1 and complexes 1-7 in DMF.

Figure S9. The UV-vis absorbance spectrum of the L1 and complexes 1-7 in DMSO.