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Abstract: Pulsed-field gradient (PFG) diffusion experiments can be used to measure anomalous
diffusion in many polymer or biological systems. However, it is still complicated to analyze
PFG anomalous diffusion, particularly the finite gradient pulse width (FGPW) effect. In practical
applications, the FGPW effect may not be neglected, such as in clinical diffusion magnetic resonance
imaging (MRI). Here, two significantly different methods are proposed to analyze PFG anomalous
diffusion: the effective phase-shift diffusion equation (EPSDE) method and a method based on
observing the signal intensity at the origin. The EPSDE method describes the phase evolution
in virtual phase space, while the method to observe the signal intensity at the origin describes
the magnetization evolution in real space. However, these two approaches give the same general
PFG signal attenuation including the FGPW effect, which can be numerically evaluated by a direct
integration method. The direct integration method is fast and without overflow. It is a convenient
numerical evaluation method for Mittag-Leffler function-type PFG signal attenuation. The methods
here provide a clear view of spin evolution under a field gradient, and their results will help the
analysis of PFG anomalous diffusion.

Keywords: pulsed-field gradient (PFG) anomalous diffusion; fractional derivative; nuclear magnetic
resonance (NMR); magnetic resonance imaging (MRI)

1. Introduction

Anomalous dynamic behavior exists in many polymer or biological systems [1–6]. These systems
often consist of various molecules such as macromolecules and small penetrant molecules like water.
These molecules often demonstrate anomalous dynamics behavior: their rotational motion time
constants usually obey a stretched exponential distribution, namely, the Kohlrausch–Williams–Watts
(KWW) function distribution [7,8], and their translational diffusion jump time and jump length could
follow power law distributions [2]. Nuclear magnetic resonance (NMR) is one of the important
techniques used to detect these anomalous dynamic behaviors. For instance, anomalous diffusion can
be detected by pulsed-field gradient (PFG) NMR experiments.

PFG diffusion NMR [9–15] has been a powerful tool for measuring normal diffusion. The history
of using a field gradient to measure diffusion can be tracked back to Hahn, who first observed the
influence of the molecule diffusion under a gradient magnetic field upon echo amplitudes in 1950 [9].
PFG diffusion measurements have broad applications in NMR and magnetic resonance imaging
(MRI) [13–16]. For instance, the water diffusion difference in different parts of the brain can be used
as an important contrast factor to build imaging of acute strokes [16]. The PFG technique, being
an ultra-valuable tool for normal disunion, could play an increasingly important role in monitoring
anomalous diffusion occurring in many polymer and biological systems.

PFG anomalous diffusion [17–23] is different from PFG normal diffusion. Unlike normal
diffusion, anomalous diffusion has a non-Gaussian probability distribution [2,24], and its mean square
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displacement is not linearly proportional to diffusion time [2]. These non-Gaussian characteristics
make it complicated to analyze PFG anomalous diffusion. Although PFG anomalous diffusion can
be approximately analyzed by traditional methods such as the apparent diffusion coefficient method,
PFG theories based on the fractional derivative could not only improve the analysis accuracy on the
diffusion domain size, diffusion constant, and other variables [17,18,25–28], but also yield additional
information such as the time derivative order α and space derivative order β that are related with
diffusion jump time and jump length distributions determined by material properties.

Much effort has been devoted to studying PFG anomalous diffusion based on fractional calculus,
which includes the propagator method [29], the modified Bloch equation method [17,25,30,31],
the effective phase-shift diffusion equation (EPSDE)method [18], the instantaneous signal attenuation
method [26], the modified-Gaussian or non-Gaussian distribution method [27], etc. Additionally,
PFG anomalous diffusions in restricted geometries such as plate, sphere, and cylinder have been
investigated [28]. These theoretical methods analyze PFG anomalous diffusion from different angles.
Therefore, each of them can have its own advantages in handling certain types of PFG anomalous
diffusion. To better apply the PFG technique to studying anomalous diffusion, it is still valuable to
develop new theoretical treatments for PFG anomalous diffusion.

In this paper, two methods based on the fractional derivative [1,2,6,32–34] are proposed to give
general analytical PFG signal attenuation expressions for anomalous diffusion. The first method
is the recently developed EPSDE method [18]. This method describes the spin phase evolution by
an effective phase diffusion process in virtual phase space [18]. Solving the EPSDE gives valuable
information about the phase evolution process such as the phase probability distribution function and
the moment of mean phase displacement. Meanwhile, other conventional methods render it difficult
to get this phase information, and usually assume an approximate phase distribution such as Gaussian
phase distribution [13]. In this paper, it will be shown that a solvable PFG signal attenuation equation
can be derived by applying a Fourier transform to the effective phase-shift equation. The second
method is to observe the signal intensity at the origin, and is an ultra-simple new method. For a
homogeneous diffusion spin system, although the magnetization amplitude attenuates because of the
gradient magnetic field effect, the phase of magnetization keeps constant at the origin of the gradient
field. Such a specific phase property is employed to derive a PFG signal attenuation equation in this
paper. The above two methods give the same signal attenuation equation, from which the general PFG
signal attenuation expression can be derived by the Adomian decomposition method [35–39]. Besides
the Adomian decomposition method, a direct integration method was proposed for the numerical
evaluation of the PFG signal attenuation, which is a fast and simple method. The results include the
finite gradient pulse width (FGPW) effect [13–15], namely, the signal attenuation during each gradient
pulse application period. Theoretically, during a short gradient pulse, the PFG signal attenuation can be
neglected; nevertheless, the gradient pulse used in a clinical MRI is usually long [16,40]. Additionally,
a longer gradient pulse allows the measuring of slower diffusion under the same gradient maximum
intensity, which matters in the study of polymer and biological systems where the molecule diffusion
is often slow. Therefore, we need to consider the FGPW effect in many real applications. The two
methods here give the same results in terms of the FGPW effect. These results agree with reported
results from some other methods [18,26,27] and the continuous time random walk simulation [26,29].
Furthermore, PFG anomalous diffusion of intramolecular multiple quantum coherence (MQC) is
also discussed [27]. The MQC effect has the benefit of enhancing the gradient effect on PFG signal
attenuation [41]. The two methods provide complementary views of PFG anomalous diffusion from
both the real space and phase space.
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2. Theory

2.1. The Phase-Space Method: The Effective Phase-Shift Diffusion Method

For the sake of simplicity, only one-dimensional anomalous diffusion is considered in this paper.
In PFG experiments, the field gradient pulse results in a time- and space-dependent magnetic field
B(z, t) = B0 + g(t) · z, where B0 is the exterior magnetic field, z is the position, and g(t) is the
time-dependent gradient [13–15]. The magnetic field exerts a torque on each spin moment. The torque
changes the spin angular momentum direction, which leads the spin to precess about the magnetic field
with Larmor frequency ω(z, t) = −γB(z, t). In a rotating frame with angular frequency ω0 = −γB0,
a diffusing spin at position z(t′) has a time-dependent angular frequency γg(t′) · z(t′), and its phase
accumulated along the diffusion path is [13–15,19]

φ(t) = −
∫ t

0
γg(t′) · z(t′)dt′, (1)

where φ(t) is the net-accumulating phase. The range of φ(t) is −∞ < φ(t) < ∞ rather than
−π ≤ φ(t) ≤ π, and cos(φ(t)) is the projection factor of the spin magnetization to the observing
coordinate axis. The PFG signal comes from the ensemble contribution from all spins by averaging
over all possible phases [13–15]:

S(t) = S(0)
∫ ∞

−∞
P(φ, t) exp(+iφ)dφ, (2)

where S(0) is the signal intensity at the beginning of the first gradient pulse, S(t) is the signal intensity
at time t, and P(φ, t) is the accumulating phase probability distribution function. In a symmetric
diffusion system, Equation (2) can be further written as

S(t) = S(0)
∫ ∞

−∞
P(φ, t) cos(φ)dφ. (3)

Because the NMR signal comes from numerous spins, the percentage of spins with potentially
infinite φ(t) is very small, and can therefore be neglected. Additionally, −1 ≤ cos(φ(t)) ≤ 1; therefore,
0 ≤ |S(t)| ≤ S(0), and S(t) is a finite quantity that can be measured in NMR experiments. A possibly
infinite “mean square phase displacement”

〈
|φ(t)|β

〉
is not necessarily an obstacle in PFG NMR

measurement, although it may have a significant effect in other academic fields. The PFG signal
attenuation can be obtained based on Equation (2) or (3), but the phase evolution process based on
the phase path integral Equation (1) is complicated. Nevertheless, the recently developed EPSDE
method provides a simple way to describe the phase evolution based on an effective phase diffusion
process [18]. In the following, the effective phase diffusion equation method [18] will be briefly
reintroduced. Additionally, a general solution including the FGPW effect will be given that has not
been reported in [18].

For simplicity, only diffusion with a symmetric probability distribution is studied here.
The self-diffusion process can be described by a random walk, which consists of a sequence of
independent random jumps with waiting times ∆t1, ∆t2, ∆t3, . . . , ∆tn, and corresponding displacement
lengths ∆z1, ∆z2, ∆z3, . . . , ∆zn. Based on the random walk, Equation (1) can be rewritten as [18]

φ(ttot) = −
n
∑

i=1
γ∆tig(ti) ·

(
i

∑
m=1

∆zm + z0

)
= −γ

n
∑

m=1

[
n
∑
i

∆tig(ti)−
m−1
∑
i

∆tig(ti)

]
· ∆zm − γ

n
∑

i=1
∆tig(ti) · z0

= −
n
∑

m=1
[K(t)− K(tm−1)] · ∆zm − K(t) · z0

= −
n
∑

m=1
[K(t)− K(tm)] · ∆zm − K(t) · z0

(4)
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where

K(t) =
∫ t

0
γg(t′)dt′ (5)

is the wavenumber [13–15]. In Equation (4), K(tm) ≈ K(tm−1) is used because [K(tm)− K(tm−1)] · ∆zm

is negligible, and the temporal and spatial summation orders are interchanged because ∆tig(ti) and
∆zm are often noncorrelated. In most PFG experiments, K(ttot) = 0 where ttot is the time at the end of
the rephasing gradient pulse, so Equation (4) can be further simplified to [18]

φ(ttot) = −∑
m

K(tm) · ∆zm. (6)

The −∑
m

K(tm) · ∆zm term in Equation (6) is an effective phase random walk with a jump length

−K(tm) ·∆zm and a jump waiting time ∆tm The phase random walk can be treated as an effective phase
diffusion, and can be obtained from the corresponding spin diffusion in the real space by scaling the
jump length ∆z(t) by a factor−K(t). Because

〈
|∆z|β

〉
/〈∆tα〉 ∝ D f and

〈
|K(t)∆z|β

〉
/〈∆tα〉 ∝ Dφe f f (t),

the effective phase diffusion constant is Dφe f f (t) = Kβ(t)D f (oftentimes K(t) ≥ 0) [18], where D f and
Dφe f f (t) are the fractional diffusion coefficients for the real-space diffusion and the effective phase
diffusion, respectively, and their units are mβ/sα and radβ/sα. As both the effective phase diffusion
and the real spin particle diffusion belong to the same type of diffusion, they should obey the same
type of diffusion equation. The one-dimensional real-space diffusion equation based on the fractional
derivative is [6,31–34]

tDα
∗Mxy(z, t) = D f

∂β

∂|z|β
Mxy(z, t), (7)

where Mxy(z, t) is the spin magnetization in PFG experiments, and tDα
∗ is the Caputo fractional

derivative defined as [6,31–34]

tDα
∗ f (t) :=

{
1

Γ(m−α)

∫ t
0

f m(τ)dτ

(t−τ)α+1−m , m− 1 < α < m
dm

dtm f (t), α = m
(8)

and ∂β

∂|z|β
is the space fractional derivative [6,31–34] defined in Appendix A. By replacing coordinate z

with φ, and D f with Dφe f f (t), respectively, from real-space diffusion Equation (9), the effective phase
diffusion equations can be obtained [18] as

tDα
∗P(φ, t) = Kβ(t)D f

∂β

∂|φ|β
P(φ, t). (9)

As F̂{ f (x, t)} = f (q, t) and F̂
{

∂β

∂|x|β
f (x, t); q

}
= −qβ f (q) [31–34] where q is the wavenumber,

applying a Fourier transform F̂{ f (x)} =
∫ ∞
−∞ f (x) exp(+iqx)dx to both sides of Equation (9) gives

tDα
∗P(q, t) = −Kβ(t)qβD f P(q, t), (10)

which is a q-space phase diffusion equation. Here, q is the wavenumber dedicated to the above
Fourier transform, which differs from the field gradient pulse-induced wavenumber K(t) defined by
Equation (5). When q = 1, P(q, t) in Equation (10) equals the attenuated signal amplitude because,
in PFG experiments, the signal attenuation can be calculated based on Equation (2) as [18]

S(t) = S(0)
∫ ∞

−∞
P(φ, t) exp(+iφ)dφ = P(1, t). (11)
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The normalized value of S(0) equaling 1 will be used and dropped out throughout this paper.
Substituting Equation (11) and q = 1 into Equation (10), we get

tDα
∗S(t) = −D f Kβ(t)S(t), (12)

which is the PFG signal attenuation equation.
The solution of Equation (12) will be given in Section 2.3 as the same equation will be obtained by

observing the signal intensity at the origin in the subsequent section.

2.2. Observing the Signal Intensity at the Origin in Real Space

For a nondiffusing spin in a rotating frame with angular frequency ω0 = −γB0, its precession
phase can be described as [13–15]

ψ(z, t) = (ω−ω0)t = −K(t) · z, (13)

where ψ(z, t) is the precession phase, which is different from the accumulated phase φ(t) described
by (1). The nondiffusing spin system has a time- and space-modulated magnetization, which can be
described as

Mxy(z, t) = S(t) exp(−iK(t) · z), (14)

where S(t) is the magnetization amplitude, which can be referred to as signal intensity,
and exp(−iK(t) · z) is the phase term. For a pulsed gradient spin echo (PGSE) or pulsed gradient
stimulated echo (PGSTE) experiment with a constant gradient, as shown in Figure 1, the wavenumber is

K(t) =


γgt, 0 < t ≤ δ, dephasing gradient

γgδ, δ < t ≤ ∆
γg(∆ + δ− t), ∆ < t ≤ ∆ + δ, rephasing gradient

(15)

where δ is the gradient pulse length, and ∆ is the diffusion delay starting from the beginning of the
first dephasing gradient pulse to the beginning of the last rephrasing gradient pulse. Because of the
two counteracting gradient pulses—a dephasing pulse and a rephasing pulse—K(t) returns to 0 at the
end of the rephasing pulse, and the phase of nondiffusing spins will be refocused. Therefore, the signal
of the nondiffusing spin system does not attenuate when the T2 relaxation is neglected.

For the spin diffusion in a homogeneous sample, its magnetization still can be described
by Equation (14), Mxy(z, t) = S(t) exp(−iK(t) · z). At a random position z, the possibilities
of spins diffusing to opposite directions z ± ∆z are equal [26]. The opposite movements yield
exp(−iK(t) · (z + ∆z)) + exp(−iK(t) · (z− ∆z)) = cos(K(t) · ∆z) exp(−iK(t) · z), and have no effect
on the phase, exp(−iK(t) · z), but do make the signal intensity decay by a factor of cos(K(t) · ∆z) for
these spins. By substituting Mxy(z, t) = S(t) exp(−iK(t) · z) into diffusion Equation (7), and applying

∂β

∂|z|β
exp(−iK(t) · z) = −Kβ(t) exp(−iK(t) · z), we have

tDα
∗ [S(t) exp(−iK(t) · z)] = −D f Kβ(t)[S(t) exp(−iK(t) · z)]. (16)

At the origin, z = 0, iγgz = 0, exp(−iK(t) · z) = 1, and S(t) exp(−iK(t) · z) = S(t); we thus have

tDα
∗S(t) = −D f Kβ(t)S(t). (17)

Equation (17) is identical to Equation (12) obtained previously by the EPSDE method in Section 2.1.
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Figure 1. (a) Pulsed gradient stimulated echo (PGSTE) pulse sequences; (b) pulsed gradient spin echo
(PGSE) pulse sequence. The gradient pulse width is δ, and the diffusion delay is ∆. The time-dependent
behavior of wavenumber K(t), diffusion constant D f , and the effective phase diffusion constant
Dφe f f (t) = Kβ(t)D f are also demonstrated below the PGSE pulse sequence.

This method of observing the signal intensity at the origin could be understood in another way:
if only the signal intensity or amplitude is observed from a selected position at different diffusion times
ti, i = 1, 2, 3 · · · in a PFG anomalous diffusion experiment, the observed signal intensity or amplitude
shall still obey Equation (17) regardless of whether the phase is observed or not. It is reasonable
that both ways can give the same signal attenuation expression, because the signal amplitude is
homogeneous throughout the sample at each instant, and selecting the origin at a random position in
the sample does not affect the result.

2.3. Analytical Solution by the Adomian Decomposition Method

The same equation as Equation (12) or (17) has been obtained by the fractional integral modified
Bloch equation method. The three different methods get the same PFG signal attenuation equation.
Reference [30] employed the Adomian decomposition method to give a general analytical solution to
Equation (12). In the following, the general solution from the Adomian decomposition will be given in
more detail for the cases of normal diffusion and general anomalous diffusion.

2.3.1. Normal Diffusion

First, the signal attenuation equation—Equation (12) or (17)—can be used to obtain the PFG signal
attenuation expression for normal diffusion, which is a specific case of anomalous diffusion with α = 1
and β = 2. When α = 1 and β = 2, Equation (17) reduces to

d
dt

S(t) = −K2(t)DS(t), (18)

where D is the diffusion constant of normal diffusion. The solution of Equation (18) is

S(t) = exp
(
−
∫ t

0
DK2(t′)dt′

)
, (19)

which is the PFG signal attenuation expression for normal diffusion. The same result as expression (19)
was obtained in [42]. For PGSE or PGSTE experiments, the PFG signal attenuation calculated based
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on Equation (19) is exp
(
−D f γ2g2δ2(∆− δ/3)

)
, which is a routinely used expression for PFG normal

diffusion [13–15].

2.3.2. General Anomalous Diffusion

Second, the PFG signal attenuation for general anomalous diffusion can be obtained. The same
equation as Equation (17) and its solution have been obtained by the modified Bloch equation method
in [30]. According to [30], Equations (12) or (17) can be written equivalently as

S(t) =
m−1

∑
k=0

S(k)(0+)
tk

k!
+ Jα(a(t)S(t)), m− 1 < α < m (20)

where

a(t) = −Kβ(t)D f =


−(γgt)βD f , 0 < t ≤ δ

−(γgδ)βD f , δ < t ≤ ∆
−(γg)β(∆ + δ− t)βD f , ∆ < t ≤ ∆ + δ.

(21)

Based on the Adomian decomposition method [35–39], the solution of Equation (20) is [30,31]

S(t) =
∞

∑
n=0

Sn(t) , (22a)

where

S0(t) =
m−1

∑
k=0

S(k)(0+)
tk

k!
, m− 1 < α < m (22b)

and
Sn(t) = Jα(a(t)Sn−1(t))

= −
t∫

0

(t−τ)α−1

Γ(α) D f Kβ(τ)Sn−1(τ)dτ

= −
t∫

0

D f Kβ(τ)Sn−1(τ)d(t−τ)α

αΓ(α) .

(22c)

In PGSE or PGSTE experiments, the time t can be separated into three periods: 0 < t ≤ δ,
δ < t ≤ ∆, and ∆ < t ≤ ∆ + δ. If the initial condition, S(1)(0+) = 0, is used [31–34] for free diffusion
in a homogeneous sample, we can get the following:

(a) PFG signal attenuation under short gradient pulse (SGP) approximation: δ is short enough and the
diffusion inside each gradient pulse can be neglected. We get

S(∆) =
∞

∑
n=0

Sn(∆) = Eα,1

(
−D f KSGP

β∆α
)

, KSGP = γgδ, (23)

where S0(∆) = 1, and Sn(∆) =
(−D f KSGP

β∆α)
n

Γ(1+nα)
. Equation (23) replicates the SGP approximation

result obtained in references [18,26,27].
(b) Single pulse attenuation: This is an ideal situation—the first gradient pulse is regular, but the

second gradient pulse is infinitely narrow and has the purpose of counteracting the first gradient
pulse. We get

S(t) =
∞
∑

n=0
Sn(t) = 1 +

∞
∑

n=1

(
−D f (γg)βtα+β

)n n
∏

k=1

Γ(1+(k−1)α+nβ)
Γ(1+k(α+β))

= Eα,1+β/α,β/α

(
−D f (γg)βtα+β

)
,

(24)
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where S0(t) = 1, Sn(t) =
(
−D f (γg)βtα+β

)n n
∏

k=1

Γ(1+(k−1)α+nβ)
Γ(1+k(α+β))

, and Eα,η,γ(x) =
∞
∑

n=0
cnxn, c0 = 1,

cn =
n−1
∏

k=0

Γ((kη+γ)α+1)
Γ((kη+γ+1)α+1) is a Mittag-Leffler-type function [43]. Equation (24) is consistent with the

results obtained by the modified Bloch equation proposed in [25].
(c) General PFG signal attenuation: The PGSE or PGSTE experiment includes three periods: 0 < t1 ≤ δ,

δ < t2 ≤ ∆, and ∆ < t3 ≤ ∆ + δ. The integration in Equation (22c) during these three periods is
tedious, but can be calculated with computer assistance. Nevertheless, we can get the first and
second terms of Equation (22a) as the following:

S0(t) = 1 (25a)

S1(t) = Jα(a(t)S0(t)) = −
t∫

0

(t−τ)α−1

Γ(α) D f Kβ(τ)dτ = −D f (γg)β

Γ(1+α)
×

αtα+βB(β + 1, α), 0 < t ≤ δ

αtα+β
[

B(β + 1, α)− B( δ
t ; β + 1, α)

]
− δβ(t− δ)α, δ < t ≤ ∆{

αtα+β
[

B(β + 1, α)− B( δ
t ; β + 1, α)

]
− δβ

[
(t− δ)α − (t− ∆)α]}− , ∆ < t ≤ ∆ + δ∫ t

∆ α(t− τ)α−1(∆ + δ− t)βdτ

(25b)

where B(x,y) and B(a;x,y) are the Beta function and incomplete Beta function, respectively. When
t = ∆ + δ, Equation (25b) gives

S1(∆ + δ) = Jα(a(t)S0(t))

= −
∆+δ∫
0

(∆+δ−τ)α−1

Γ(α) D f Kβ(τ)dτ

= −D f (γg)β

Γ(1+α)

{
α(∆ + δ)α+β

[
B(β + 1, α)− B( δ

∆+δ ; β + 1, α)
]
+ δβ(∆α − δα) + αδα+β

α+β

}
.

(26)

Equation (26) agrees with the signal attenuation expression S(t) = Eα,1

(
−
∫ t

0 D f Kβ(t′)dt′α
)

obtained by the instantaneous signal attenuation method [26]. At small signal attenuation,
S(t) = Eα,1

(
−
∫ t

0 D f Kβ(t′)dt′α
)

can be approximately expanded as

S(t) = Eα,1

(
−
∫ t

0 D f Kβ(t′)dt′α
)

≈ 1− D f (γg)β

Γ(1+α)

{
α(∆ + δ)α+β

[
B(α, β + 1)− B( ∆

∆+δ ; α, β + 1)
]
+ δβ(∆α − δα) + αδα+β

α+β

}
.

(27)

Equation (27) is the same as that given by the combination of Equations (25a) and (26)
(note that B(x, y) = B(y, x) and B(a; x, y) = B(1 − a; y, x)); however, at large signal attenuation,
Eα,1

(
−
∫ t

0 D f Kβ(t′)dt′α
)

may deviate from the combination of Equations (25a) and (26) as the
higher-order terms in the expansion cannot be omitted. This agreement can be explained by the
following: in typical PGSE or PGSTE experiments, both the gradient intensity and pulse length
of the dephasing pulse and the rephrasing pulse are identical, |g1| = |g2| and δ1 = δ2; thus,
K(∆ + δ− τ) = K(τ), which results in

−
∆+δ∫
0

(∆+δ−τ)α−1

Γ(α) D f Kβ(τ)dτ
τ′=∆+δ−τ→ = −

∆+δ∫
0

τ′α−1

Γ(α) D f Kβ(∆ + δ− τ′)dτ′

K(∆+δ−τ′)=K(τ′)→ −
∆+δ∫
0

τ′α−1

Γ(α) D f Kβ(τ′)dτ′.
(28)



Mathematics 2018, 6, 17 9 of 16

When 0 < α ≤ 2, β = 2, the general anomalous diffusion reduces to time-fractional diffusion and
Equation (25b) can be further calculated as

S1(∆ + δ) = −D f (γg)2

Γ(1+α)
×{

αδα+2

α+2 + δ2(∆α − δα) + 2
(α+1)(α+2)

[
(∆ + δ)2+α − ∆2+α

]
− 2

α+1 ∆1+αδ− ∆αδ2
}

.
(29)

When α = 1, 0 < β ≤ 2, the general anomalous diffusion reduces to space-fractional
diffusion. Equation (22) reduces to S(t) = exp

(
−
∫ t

0 D f Kβ(t′)dt′
)

, which is the same as that obtained
by [18,26,30,31].

2.4. Numerical Evaluation of Mittag-Leffler Function-Based PFG Signal Attenuation by the Direct
Integration Method

Although the Adomian decomposition method can be used to numerically evaluate the PFG
signal attenuation, its calculation speed is slow and it could cause overflow at large signal attenuation.
References [30,31,44] proposed an alternative method: a direct integration method that can give the
same numerical results, but with a much faster speed and without overflow. From Equation (20), if we

set
m−1
∑

k=0
S(k)(0+) tk

k! = 1, we have [44]

S(t) = 1−
t∫

0

(t− τ)α−1

Γ(α)
G(τ)S(τ)dτ, (30)

where G(t) = Kβ(t)D f . If we denote Eα,1,G(t)(−t) = S(t), Equation (30) can be further written as [44]

Eα,1,G(t)(−t) = 1−
t∫

0

(t− τ)α−1

Γ(α)
G(τ)Eα,1,G(t)(−τ)dτ. (31a)

When G(t) = 1, Eα,1,G(t)(−t) = Eα,1(−tα), which is a Mittag-Leffler function (MLF); when
G(t) = c, c > 0, Eα,1,G(t)(−t) = Eα,1(−ctα). Hence, we have [44]

Eα,1(−tα) = 1−
t∫

0

(t− τ)α−1

Γ(α)
Eα,1(−τα)dτ, (31b)

Eα,1(−ctα) = 1−
t∫

0

(t− τ)α−1

Γ(α)
cEα,1(−cτα)dτ. (31c)

Equation (30) can be rewritten in a discrete form as [44]

S(tj) = 1−
j

∑
k=1

a(tk)S(tk−1)
[
(tj − tk−1)

α − (tj − tk)
α]/Γ(1 + α), (32)

where tj =
j

∑
k=1

∆tk. Based on Equation (32), the PFG signal attenuations S(t1), S(t2), . . . , S(tn) can be

calculated step by step starting from S(t1) through to S(tn). Similarly, the Mittag-Leffler-type function
and its derivative can be numerically evaluated by [44]

Eα,1,G(t)(−tj) = 1−
j

∑
k=1

G(tk)Eα,1,G(t)(−tk−1)
[
(tj − tk−1)

α − (tj − tk)
α]/Γ(1 + α), (33)



Mathematics 2018, 6, 17 10 of 16

E′α,1,G(t)(−tj) =
Eα,1,G(t)(−tj)− Eα,1,G(t)(−tj−1)

∆tj
. (34)

This method is simple, and there is no overflow issue in the calculation.

3. Continuous-Time Random Walk (CTRW) in a Lattice Model

Random walk simulation is a powerful numerical method that employs a stochastic jump process
to model normal and anomalous diffusion in physics, chemistry, biology, and many other disciplines.
It can be used to simulate the PFG signal attenuation in mathematically tractable or intractable systems.
In this paper, the continuous-time random walk (CTRW) simulation method developed in [26] is
used to verify the theoretical results; it is based on two models: the CTRW model [45] and the
Lattice model [46,47]. In the simulation, a sequence of independent random waiting time and jump
length combinations (∆t1, ∆ξ1), (∆t2, ∆ξ2), (∆t3, ∆ξ3), . . . , (∆tn, ∆ξn) is produced by the computer
program. The individual waiting time ∆t and jump length ∆ξ are given according to [26] by the
following expressions:

∆t = −ηt log U
(

sin(απ)

tan(απV)
− cos(απ)

) 1
α

(35)

and

∆ξ = ηz

(
− log U cos(Φ)

cos((1− β)Φ)

)1− 1
β sin(βΦ)

cos(Φ)
(36)

where ηt and ηz are scale constants, Φ = π(V − 1/2), and U, V ∈ (0, 1) are two independent random
numbers. The CTRW simulation based on the above waiting time and jump length satisfies the
time–space fractional diffusion equation under the diffusive limit, providing a simple way to simulate
anomalous diffusion in various research areas, such as physics and economics [45].

Although continuous waiting time and jump length are used in the simulation, the accumulating
spin phase associated with the diffusion path is recorded in a discrete manner. Such a discrete phase
recording manner is convenient and reasonable. The simulation can be viewed as a numerical PFG
experiment, whose observables such as phase can be observed in a discrete time selected by an
experiment observer; the observing or recording manner will not affect the fundamental numerical
experiment process, namely the production of the continuous random walk sequence (∆t1, ∆ξ1),
(∆t2, ∆ξ2), (∆t3, ∆ξ3) , . . . , (∆tn, ∆ξn). The spin phase was recorded by the lattice model developed
in [46,47], which has been applied to simulate PFG diffusion in polymer systems [48]. The spin phase
in the simulation is

φ(t′j′) =
l

∑
j=1

γg(tj)ξ(tj)∆tj + γg(t′j′)ξ(tl+1)(t′j′ − tl), tl ≤ t′j′ ≤ tl+1 (37)

where tl =
l

∑
j=1

∆tj, ξ(tl) =
l

∑
j=1

∆ξ j, and t′j′ is the discrete record time, which takes place between the lth

and (l + 1)th steps of the random walk. The second term γg(t′j′)ξ(tl+1)(t′j′ − tl) on the right-hand side
of Equation (37) corresponds to the partial phase evolution of the (l + 1)th jump step that needs to be
recorded at the time t′j′ . The PFG signal attenuation in the simulation can be obtained by averaging
over all the walkers in the simulation [26,47,48]:

S(t) = 〈cos[φi(t)]〉 =
1

Nwalks

Nwalks

∑
i=1

cos[φi(t)], (38)

where Nwalks is the total number of walks. The total number of walks used in each simulation
is 1,000,000.
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Because the CTRW model proposed in [25] is only for subdiffusion, the simulation here is limited
to the subdiffusion. Please refer to references [26,30,45–48] for more detailed information.

4. Results and Discussion

This paper uses two different methods to describe PFG anomalous diffusion: the EPSDE
method [18] and the method of observing the signal intensity at the origin. The major results in
this paper are summarized in Table 1. The EPSDE method [18] uses an effective phase diffusion
process to describe the phase evolution, while observing the signal intensity at the origin only
monitors the real-space signal amplitude change at the origin where the phase of the magnetization
remains constant. Each of these two approaches has its unique advantages. The EPSDE method can
directly obtain the phase distribution, which greatly simplifies PFG diffusion analysis [18]; in contrast,
the traditional methods often need to get the real-space spin particle probability distribution first,
which is then used to obtain the phase distribution. The ultra-simple method of observing the signal
intensity at the origin obtains the signal attenuation equation by substituting the magnetization
Mxy(z, t) = S(t) exp(−iK(t) · z) directly into the diffusion equation and using the phase property
exp(−iK(t) · z) = 1 and iγgz = 0 at the origin. These two approaches view the spin evolution process
from two different spaces—the real space and the phase space—providing a clear picture of spin
dynamics in PFG diffusion experiments.

Table 1. Comparison of pulsed-field gradient (PFG) anomalous diffusion results by the effective
phase-shift diffusion method, the observing the signal intensity at the origin method and other methods.

Virtual Phase-Space Diffusion Real-Space Spin Diffusion

Effective phase-shift diffusion equation [18] Observing the signal intensity at the origin
Diffusion equations:

tDα
∗P(φ, t) = Kβ(t)D f

∂β

∂|φ|β
P(φ, t) [18] tDα

∗Mxy(z, t) = D f
∂β

∂|z|β
Mxy(z, t) [32]

Solving methods:
Fourier transform Substitute Mxy(z, t) = S(t) exp(−iK(t) · z) into equation
PFG signal attenuation equation*:
tDα
∗S(t) = −D f Kβ(t)S(t),

or equivalently S(t) =
m−1
∑

k=0
S(k)(0+) tk

k! + Jα(a(t)S(t)), m− 1 < α < m

PFG signal attenuation expression by the Adomian decomposition method [30,31]*:

S(t) =
∞
∑

n=0
Sn(t) ,

where S0(t) =
m−1
∑

k=0
S(k)(0+) tk

k! , m− 1 < α < m, and Sn(t) = −
t∫

0

(t−τ)α−1D f Kβ(τ)Sn−1(τ)dτ

Γ(α)

Under short gradient pulse (SGP) approximation: S(∆) = Eα,1

(
−D f KSGP

β∆α
)

, KSGP = γgδ

At small attenuation: S(t) ≈ Eα,1

(
−
∫ t

0 D f Kβ(t′)dt′α
)

Other methods:

(1) S(t) = Eα,1+β/α,β/α

(
−γβtα+β

∫
g
|g · y|βm(dy)

)
[25]

(2) Eα,1
[
−iγgτ(t/τ)α] exp

[
−B(t/τ)α], B =

2Γ(2−α)D f γ2g2τ3

3α2Γ(2−α)
[17]

(3) S(t) ≈ Eα,1

(
−
∫ t

0 D f Kβ(t′)dt′α
)

[26]

(4) S(∆) = Eα,1

(
−D f KSGP

β∆α
)

, KSGP = γgδ [18,26,27]

* The PFG signal attenuation equation and expression obtained in this paper are the same as that obtained by the
integral modified Bloch equation method [30].

These two methods agree with each other. They get the same PFG signal attenuation Equation (11)
or (16), which can be solved by the Adomian decomposition method. The solution gives PFG signal
attenuation expressions (21a)–(21c), which include the FGPW effect. Understanding the FGPW effect
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is important as clinical MRI applications often use a long gradient pulse. Additionally, using long
gradient pulses allows researchers to monitor slower diffusion in polymer or biological systems where
the molecules or ions often diffuse slowly. The consistent results from two different methods help us
better understand the FGPW effect.

Additionally, the two methods agree with other methods. First, the PFG signal attenuation
Equation (17) obtained here is the same as that obtained by the integral modified Bloch equation
method [30,31]. Second, the results agree with the CTRW simulation as shown in Figure 2. In Figure 2a,
the fractional diffusion constant D f = 6.6 × 10−11 mβ/sα was obtained from fitting the curve of

mean square displacement versus t by equation
〈
|z|β

〉
= 2D f tα/Γ(1 + α). Figure 2b shows the

PFG signal attenuation of anomalous diffusion obtained by Equations (22a)–(22c) based on the
Adomian decomposition method, Equation (32) based on the direct integration method, and the
CTRW simulation. Other parameters used in Figure 2 are α = 0.5, β = 2, g = 0.1 T/m, ∆− δ equaling
0 ms, 20 ms. Interested readers can refer to [30] for additional comparisons between the theoretical
prediction and the CTRW simulation. Third, the PFG signal attenuation expressions (22a)–(22c) are
also consistent with those obtained by various approximation methods such as the non-Gaussian phase
distribution (nGPD) method [27] and the instantaneous signal attenuation method [26]. The same SGP
approximation results, Equation (23), can be obtained by all these five different methods: the EPSDE
method [18], the instantaneous signal attenuation method [26], the nGPD method [27], the method to
observe the signal intensity at the origin, and the modified Bloch equation method [30]. Moreover,
Equation (27), S(t) ≈ Eα,1

(
−
∫ t

0 D f Kβ(t′)dt′α
)

, can be approximately obtained in this paper; this agrees
with the result obtained from the instantaneous signal attenuation method [26].

The numerical evaluation of PFG signal attenuation by Equation (20) or (30) can be conveniently
performed by the direct integration method. Figure 2b shows that the results of the direct
integration method agree with those obtained from the Adomian decomposition method. Compared
to the Adomian decomposition method, the computing speed of the direct integration method
improves by orders of magnitudes. The speed improvement is because in the direct integration
method, each S(tj) in Equation (32) is only a single time integration, while in the Adomian

decomposition method, S(tj) =
∞
∑

n=0
Sn(tj) is a superposition of many terms of time integration.

Additionally, from Equations (33) and (34), the direct integration method can be used to calculate
Mittag-Leffler-type functions and their derivatives. Figure 3 shows that the MLF calculated from
the direct integration method agrees with that calculated by other methods in [49,50]. The Pade
approximation method in [50] is only for subdiffusion. Because the direct integration method does not
cause overflow, it can be a useful method for calculating Mittag-Leffler-type functions. The Fortran
code for MLF calculation by the direct integration method can be obtained from the following
link: https://github.com/GLin2017/Mittag-Leffler-function-calculated-by-Direct-Integration. Matlab
code for calculating the MLF function by other methods to a desired accuracy can be found at
www.mathworks.com/matlabcentral/fileexchange/8738-mittag-leffer-function, 2005. This direct
integration method will be a great help to the application of current theoretical results to PFG
anomalous diffusion in NMR and MRI.

In the current results, only PFG anomalous diffusion of single quantum coherence is considered.
The results here can be easily extended to handle PFG anomalous diffusion of intramolecular
MQC [27,40]. As the gradient field-induced phase evolution of an n-order intramolecular MQC
is n times faster than the corresponding single quantum coherence, the PFG signal attenuation of
intramolecular MQC is the same as that of single quantum coherence with an effective gradient
intensity ng [42]. Therefore, for intramolecular MQC in PGSE or PGSTE experiments, the PFG signal
attenuation equation is

S(t) =
m−1

∑
k=0

S(k)(0+)
tk

k!
+ Jα

(
aMQC(t)S(t)

)
, m− 1 < α < m, (39)

https://github.com/GLin2017/Mittag-Leffler-function-calculated-by-Direct-Integration
www.mathworks.com/matlabcentral/fileexchange/8738-mittag-leffer-function
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where

aMQC(t) = −KMQC
β(t)D f =


−nβ(γgt)βD f , 0 < t ≤ δ

−nβ(γgδ)βD f , δ < t ≤ ∆
−nβ(γg)β(∆ + δ− t)βD f , ∆ < t ≤ ∆ + δ.

(40)

From Equation (40), it is obvious that the aMQC(t) in the MQC equals nβa(t).
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This paper only considers the spin self-diffusion that can be described by the time–space fractional
diffusion equation based on the fractional derivative. In general, the two methods used in this paper
can be applied to other types of anomalous diffusions such as that described by the time–space diffusion
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equation based on the fractal derivative [51], etc. Additionally, only the symmetric anomalous diffusion
in homogeneous spin systems is studied here. In real applications, the anomalous diffusion can take
place in complicated systems such as inhomogeneous systems, restricted geometries [28], anisotropic
systems [44], nonsymmetric systems, etc. Additionally, the gradient field may be nonlinear [52].
The current methods may face challenges in these complicated situations, which reminds us that much
effort is required for the study of PFG anomalous diffusion.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A. Definition of the Fractional Derivative

The definition of the space fractional derivative [6,32–34] is given by

∂β

∂|z|β
= − 1

2 cos
(

πα
2
) [−∞Dβ

z + zDβ
∞

]
(A1)

where

−∞Dβ
z f (z) =

1
Γ(m− β)

dm

dzm

∫ z

−∞

f (y)dy

(z− y)β+1−m , β > 0, m− 1 < β < m (A2)

and

zDβ
∞ f (z) =

(−1)m

Γ(m− β)

dm

dzm

∫ ∞

z

f (y)dy

(z− y)β+1−m , β > 0, m− 1 < β < m. (A3)
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