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Abstract: In order to detect both bright and dark small moving targets effectively in infrared (IR)
video sequences, a saliency histogram and geometrical invariability based method is presented in
this paper. First, a saliency map that roughly highlights the salient regions of the original image is
obtained by tuning its amplitude spectrum in the frequency domain. Then, a saliency histogram is
constructed by means of averaging the accumulated saliency value of each gray level in the map,
through which bins corresponding to bright target and dark target are assigned with large values
in the histogram. Next, single-frame detection of candidate targets is accomplished by a binarized
segmentation using an adaptive threshold, and their centroid coordinates with sub-pixel accuracy are
calculated through a connected components labeling method as well as a gray-weighted criterion.
Finally, considering the motion characteristics in consecutive frames, an inter-frame false alarm
suppression method based on geometrical invariability is developed to improve the precision rate
further. Quantitative analyses demonstrate the detecting precision of this proposed approach can be
up to 97% and Receiver Operating Characteristic (ROC) curves further verify our method outperforms
other state-of-the-arts methods in both detection rate and false alarm rate.

Keywords: IR small moving target; saliency map; saliency histogram; geometrical invariability

1. Introduction

IR imaging based small moving target detection is one of the most significant techniques for
military, astronautics and aeronautics applications [1]. The performance of an infrared search and
track (IRST) system highly relies on the precision of small target detection. A high-performance IR
small target detection algorithm should remove the background clutters effectively and examine the
real targets not only in a single frame, but also in consecutive frames. Moreover, motion trajectories
need to be delineated, which makes it easier to monitor and capture the targets of interest. Although
modern IR detectors possess the advantages of fast detection, cheap equipment and simple setup [2],
the specific imaging mechanism and detection condition still result in the following inherent properties
of IR images which cause much inconvenience for target detection [3–5]. On the one hand, IR imaging
is based on IR radiation, so the target/background contrast may be weak if their radiometric quantities
are similar. Furthermore, it is an inevitable fact that pixel size of the existing IR cameras cannot be
small enough to generate high-resolution images, which means the images to be processed are always
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blurred. In addition, the target size becomes comparatively small (fewer than 20 × 20 pixels) on
account of the long military observation distance.

To efficiently examine small moving targets and remove various sorts of background clutters in
IR images simultaneously, numerous algorithms have been developed so far, including filter based
methods, mathematical morphology based methods, wavelet based methods, and so on. Filter based
methods, the representatives of which are max-mean/max-median filter [6], high-pass filter [7] as well
as two-dimensional least mean square (TDLMS) filter [8], utilize fixed templates to suppress clutters
according to intensity difference. Although they can meet the requirement of real-time processing,
the results are always inaccurate [9,10]. Mathematical morphology theory, like Hat transformation
(including top-hat and bottom-hat transformation) [11], is another embranchment in the field of small
target detection. These kinds of methods are aimed at enhancing regions of interest via morphological
operations, but usually fails when the target is dim or the clutter is heavy [12,13]. Wavelet based
algorithms [14] design a group of filters which are matched to a point spread function (PSF) at different
scales by choosing a mother wavelet similar to PSF. Unfortunately, they are quite time-consuming and
the false alarm rates are always high [15].

Although much progress has been achieved in the past decades, there are some significant problems
that remain to be worthy of further investigation: on the one hand, dark target whose IR radiation is lower
than the surroundings is seldom covered in previous algorithms; furthermore, using motion features to
eliminate false alarms created in the single frame and forming complete trajectories are still tough tasks.

In this paper, we first present a new saliency histogram on the basis of a saliency map to distinguish
visually salient regions from the background. Based on the fact that both bright and dark IR small
targets have relatively different grayness with the background, proving IR small targets can be seen as
salient regions in IR images, the gray levels correspond to targets would be assigned with large bin
values in the saliency histogram. Then, an adaptive threshold is calculated via Otsu’s method [16–18]
to roughly extract IR targets according to the above-constructed histogram, and sub-pixel-accuracy
centroid coordinates of all of the candidate target regions are obtained through a connected components
labeling algorithm and an intensity-weighted criterion. For consecutive frames, we apply a uniformly
accelerated motion model to make track correlations [19] and form completed motion trails for each
candidate point. Then, the real small moving targets can be picked out from all the correlated points
by use of the potential geometrical invariability existing in the sequences. Figure 1 gives an illustration
of the framework of our method.
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In conclusion, we argue that the main contribution of our work is to come up with an IR small
moving target detection method that is suitable for both bright and dark targets and has a high
detection accuracy under different conditions.

2. In-Frame Detection Based on Saliency Histogram

2.1. Saliency Map

Saliency detection is a popular and efficient tool that roughly presents the saliency distribution
and locates the visually salient regions [20,21]. An IR small target, regardless of whether it is bright or
dark, is able to attract much more attention from human eyes because of the distinct differences of
brightness and shape when compared to its surrounding background. That is to say, IR small targets
can be seen as salient regions [22].

In this section, a saliency map is constructed based on the amplitude spectrum in the frequency
domain. Let us suppose that I(x,y) is the input IR image and its Fourier frequency spectrum F(u,v) is
obtained by two-dimensional discrete Fourier transform (DFT) as Equation (1):

F(u, v) =
W

∑
x=1

H

∑
y=1

I(x, y)· exp
(
−j·2π

(ux
W

+
vy
H

))
= Re(u, v) + j·Im(u, v) (1)

where W and H are the width and height of I(x,y), respectively; Re(u,v) and Im(u,v) are the real part
and imaginary part of F(u,v), respectively; j is an imaginary unit. Then, we can extract the amplitude
spectrum A(u,v) and phase spectrum P(u,v) as Equations (2) and (3):

A(u, v) = |F(u, v)| =
√

Re2(u, v) + Im2(u, v) (2)

P(u, v) = Θ(F(u, v)) = arctg(
Im(u, v)
Re(u, v)

) (3)

where |·| and Θ|·| denote calculating the norm and phase angle of an arbitrary complex number, and
arctg(·) is an arctan function.

From the perspective of frequency domain, high-frequency components correspond to the salient
target while low-frequency components represent the smooth background. However, the proportion of
high-frequency components is much larger than that of low-frequency components, which is reflected
by the fact that amplitude values of high frequencies are much smaller.

Based on the above-mentioned analysis, an exponential function is designed to make an reversal
of the amplitude distribution, but the phase spectrum P(u,v) remains unchanged. Equation (4) shows
the way of amplitude adjustment:

A′(u, v) =
(

1
γ

)A(u,v)
, γ > 1 (4)

where A′(u, v) is the adjusted amplitude spectrum and γ is a fixed parameter (γ is set as 100 uniformly).
As the illustration given by Figure 2, Equation (4) is a decreasing function, which ensures that a small
A(u,v) becomes larger while a large one turns to be smaller. That is to say, high frequencies (IR target)
are enhanced in the spatial domain meanwhile low frequencies (background) are suppressed. Finally,
the saliency map S(x,y) can be calculated by inverse discrete Fourier transform (IDFT) and smoothed
by Gaussian filtering as follows:

S(x, y) = Ga(x, y) ∗
∣∣∣F−1(A′(u, v)· exp(j·P(u, v))

)∣∣∣2 (5)



Appl. Sci. 2017, 7, 569 4 of 18

where Ga(x, y) is a two-dimensional Gaussian filter; * is a convolution operator; and F−1(·) is an
IDFT operator.Appl. Sci. 2017, 7, 569  4 of 18 
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2.2. Saliency Histogram

Considering the saliency map S and the input IR image I share the same size, it is obvious that
there is a pixel-wise correspondence between S and I in the spatial domain. Based on this, a normalized
saliency histogram χ is developed via averaging the accumulating saliency value of each gray level,
which is illustrated by Equation (6):

χ(k) =

{
Sa(k)/N(k)

sum(χ)
if Sa(k) 6= 0

0 others
(6)

where χ(k) ∈ [0,1] is the bin value for an arbitrary gray level k (k = 1, 2, 3, . . . , L and L is the maximum
gray level value) in the saliency histogram; sum(χ) means the sum of all the bin values which is used
to make a normalization; N(k) = NUM{(x, y)|I(x, y) = k} refers to the total number of the pixels
whose gray levels are k in I, where NUM{·}means counting the number of elements in a set; Sa(k) is
defined as the cumulative sum of a set of saliency values in S, and

Sa(k) = ∑
x

∑
y

S(x, y), (x, y) ∈ {(x, y)|I(x, y) = k} (7)

Now, let us have a further discussion for the design of our saliency histogram. First of all, the
ideal result of saliency histogram should meet the request that only those bins whose gray levels
correspond to IR target are assigned with large saliency values. Enlightened by this idea, we calculate
the saliency map S, which provides a quantitative measurement of saliency for each pixel and develop
Equation (7) to measure the degree of saliency for each gray level. However, Sa(k) is not a rigorous
metric because there is a special case where the gray level k′ in the background area has a low saliency
value but quite a large quantity of pixels, and the Sa

(
k′
)

is still large. To address this problem, we take
the number of pixels with different gray levels into consideration and use the averaging procedure to
propose the final saliency histogram as Equation (6).

2.3. Adaptive Segmentation and Centroid Localization

The above-introduced saliency histogram χ reveals that the gray levels with large bin values
correspond to the salient regions. For the purpose of extracting the target regions in a single frame as
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correctly as possible, we need to remove those bins with remarkably small values through a simple
threshold and generate a modified saliency histogram χ′ as follows:

χ′(k) =

{
χ(k) if χ(k) > χ∗

0 others
(8)

where χ∗ is an adaptive threshold calculated by Otsu’s method.
According to this modification, these removed bins stand for the smooth background and parts of

the clutters. As a result, we can make a binarization for the input IR image on the basis of χ′ directly,
and a binarized image BI can be obtained from Equation (9):

BI(x, y) =

{
0 if χ′(I(x, y)) = 0
1 others

(9)

After binarization, it is highly possible that some of the extracted regions are incomplete due to
the inhomogeneity of intensity. For BI(x, y), close operation [23] is utilized to smooth the contours and
fill in the holes existing in target regions as

BIc = BI�M =
(

BI
⊕

M
)
	M (10)

where BIc is the resulting image after close operation; M is a 5 × 5 sized structuring element; � is
a close operator;

⊕
is a dilation operator, and 	 is an erosion operator.

Intended to avoid forming repeated trajectories of the same target, every region only needs to be
represented by a single centroid precisely. A typical fast connected components labeling algorithm [24]
is applied to label all of the candidate regions. For all of the connected regions with the same label,
we use a gray-weighted criterion to calculate its centroid position as follows:

P =
∑N

i=1 pi · I(pi)

∑N
i=1 I(pi)

(11)

where P denotes the space coordinate of the centroid; pi denotes the i-th pixel in each connected region;
and N is the total pixel number of the region. By this procedure, every candidate target region is
represented by an isolated point, which is called candidate point in the following contents.

3. Inter-Frame Detection Based on Geometrical Invariability

3.1. Track Correlation

Within a short time, the motion of a small moving target can be described with a uniformly
accelerated motion model [25], which is applied to implement track correlation and form completed
trajectories in our inter-frame detection.

Assume the space coordinates of all the candidate points in an arbitrary frame compose a set
Pξ= {Pξ

1 , Pξ
2 , Pξ

3 , . . . , Pξ
n

}
, where ξ represents the frame number and n is the total number of candidate

points in that frame. Here, we just take the m-th candidate point Pξ
m as an example to explain the

process of track correlation.
First, the velocity vξ

m and acceleration aξm of Pξ
m are written as

vξ
m= (Pξ

m−Pξ−1
m

)
/∆t (12)

aξm= (vξ
m−vξ−1

m

)
/∆t (13)

where ∆t means the time interval. For two adjacent frames, ∆t = 1.
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Next, based on the uniformly accelerated motion model, the estimated position Pξ̃+1
m of Pξ

m in the
(ξ + 1)-th frame is predicted as

Pξ̃+1
m = Pξ

m + vξ
m·∆t +

1
2

aξm∆t2 + ∆Pξ+1 (14)

where ∆Pξ+1 denotes the displacement of background in the two adjacent frames. In this paper,
we only consider the rotation and translation displacement caused by camera motion, and ∆Pξ+1 is
calculated by an automatic registration method introduced in Ref. [26].

Furthermore, as is shown in Figure 3, a circular gate whose radius is < (we take < = 5 empirically)

is set at Pξ̃+1
m . In the (ξ + 1)-th frame, all of the candidate points (represented by the light green dots)

located inside the gate make up of another set Qm = {Q1, Q2, Q3, . . . , Qt} where t is the quantity of
candidate points inside the gate and the point Q∗ is the maximum bin value in the saliency histogram
is selected as the correlated one for Pξ

m (if there is more than one point located inside the gate). Thus,
a complete trajectory of Pξ

m can be established if the above-discussed track correlation is repeated in
every frame.
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3.2. False Alarm Suppression

The procedure of track correlation presented above is implemented for each candidate point
detected in the first frame and lasts for L frames. However, a formed trajectory would be eliminated on
the condition that we cannot find the next correlated point for it in the following ε frames continuously.
In this paper, we uniformly set L = 20 and ε = 3.

For each candidate point in the L-th frame, two maps can be constructed: points in the L′-th
frame, where this candidate point is correlated successfully for the first time, being seen as dots, and
the Euclidean distances between each other, being seen as edges, compose the first map; those of the
L-th frame (these points should also exist in the L′-th frame) compose the second map.

Here, we demonstrate a fact that the distance between two background points remains constant
regardless of the rotation and translation of background. An assumption is made that the rotation
angle and the translation distance for the two maps defined above are ∆Φ and ∆ρ, and the rotation
center is P∗. As a result, for the n-th point Pf

n in the first map and Ps
n in the second map, there is

an equation existing obviously:

Ps
n−P∗ = ℵ(∆Φ)·(Pf

n−P∗ + ∆ρ) (15)

where ℵ(∆Φ) means the rotation matrix and
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ℵ(∆Φ) =

(
cos ∆Φ − sin ∆Φ
sin ∆Φ cos ∆Φ

)
(16)

Based on Equations (15) and (16), the Euclidean distance between two background points,
Ps

m and Ps
n in the second map, can be expressed as

‖Ps
n − Ps

m‖2 = ‖ℵ(∆Φ)·
(

Pf
n − P∗ + ∆ρ

)
− ℵ(∆Φ)·

(
Pf

m − P∗ + ∆ρ
)
‖

2
(17)

where ‖·‖2 stands for 2-norm. Under the circumstance that Ps
m and Ps

n are two background points,
there are no other displacements for them except for the translation of background ∆ρ. It is absolutely
true that rotation cannot change the length of a vector, so Equation (17) can be further written as

‖Ps
n − Ps

m‖2 = ‖ℵ(∆Φ)·
(

Pf
n − Pf

m

)
‖

2
= ‖Pf

n − Pf
m‖2 (18)

In contrast, if Ps
m is a moving target point while Ps

n is a background point, Ps
m may have an extra

displacement ∆ρm caused by self-motion, which means Equation (18) needs to be modified as

‖Ps
n − Ps

m‖2= ‖ℵ(∆Φ)·
(

Pf
n − P∗ + ∆ρ

)
− ℵ(∆Φ)·

(
Pf

m − P∗ + ∆ρ+ ∆ρm

)
‖

2
= ‖ℵ(∆Φ)·

(
Pf

n − Pf
m − ∆ρm

)
‖

2
= ‖Pf

n − Pf
m + ∆ρm‖2

> ‖Pf
n − Pf

m‖2

(19)

Therefore, a conclusion can be summarized that the distance between two background points
is constant, i.e., there is a geometrical invariability between background points. However, if there is
at least a moving target point among them, the distance is changed. Motivated by this regulation,
we propose a geometrical invariability based false alarm suppression method below. For the n-th
candidate point in the second map, an index ψ denoting the difference of relative position is developed
to judge whether Ps

n is a real moving target or a false alarm:

ψ(Ps
n) =

N

∑
m=1

∣∣∣‖Ps
n − Ps

m‖2 − ‖Pf
n − Pf

m‖2

∣∣∣ (20)

where N is the number of trajectories in the second map.
Lastly, the judge criterion is defined as follows:

Ps
n =

{
target if ψ(Ps

n) > thr
false alarm others

(21)

where thr is a threshold and it is set as thr = η·max(ψ). We take η = 0.7 uniformly in our method.

4. Experiments and Analyses

We briefly introduce the test sequences used in our simulations, and then make comparisons of
the results of both in-frame detection and inter-frame detection with several state-of-the-art algorithms
to prove the robustness and precision of our algorithm under different natural backgrounds.

4.1. Introduction of Datasets

Four IR video sequences, captured by mid-wave infrared (MWIR) refrigerant imagers at a frame
rate of 25 fps, are selected as our datasets for analysis. Table 1 shows the detailed information of these
sequences and the corresponding first frames are displayed in Figure 4, where real moving targets that



Appl. Sci. 2017, 7, 569 8 of 18

need to be detected are marked with red circles, and the fake targets, as well as the regions that may
possibly generate false alarms, are marked with yellow circles.

Table 1. Detailed information of our datasets.

Dataset Background Image Size Frame Number Number of
Bright Targets

Number of
Dark Targets

Seq.1 sky-cloud 512 × 512 100 192 0
Seq.2 ground 493 × 309 50 0 47
Seq.3 sea 313 × 236 150 150 145
Seq.4 cloud 320 × 256 200 192 0
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Figure 4. First frames of the tested infrared (IR) sequences: (a) Seq.1; (b) Seq.2; (c) Seq.3; (d) Seq.4.

The sky background of Seq.1 is clear, but the cloud regions are of great inhomogeneity of intensity,
which means interference of cloud edge is the main source of false alarms. Among these four groups,
Seq.2 and Seq.3 contain dark IR small targets, improving the difficulty and complexity of detection
to some extent. Those bright but still points existing around the hills and houses in Seq.2 are fake
targets, and it is quite hard to distinguish these kinds of points in a single frame. The sea waves are also
very challenging for small target detection because the edges of waves are difficult to be suppressed
by filtering based algorithms, and the motion of waves also cause much difficulty for the inter-frame
detection. In addition, a dead point caused by the detector itself always exists during the whole sequence,
which is a tough task for us to address. Seq.4 has a moving background and the cloud layer is quite
dense. In addition, there are a certain number of dead pixels due to the poor quality of imaging.

4.2. Experimental Results of In-Frame Detection

First of all, this section is organized to show the processing results by our algorithm and the four
other conventional algorithms. Then, several metrics are applied to make a quantitative comparison.
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We choose the four groups of IR images shown in Figure 4 as the tested samples to perform
the experiment. Meanwhile, four state-of-the-art algorithms: Max-Mean, Butterworth high-pass
(BHP), Hat transformation (including Top-hat and Bottom-hat transformations) and two-dimensional
least mean square (TDLMS) are selected to compare with our method. For Max-Mean, the raw IR
image is filtered by a max-mean filter, and the filtered output is subtracted from the original image
to enhance the IR small target. Furthermore, specific frequency components belonging to IR targets
are extracted by setting a specific cut-off frequency of the Butterworth high-pass filter in the BHP
method. Hat transformation denotes the pixel-wise difference between the raw image and the resulting
image processed by morphological opening or closing operation. It should be noted that Top-hat
transformation is designed for detecting bright targets while Bottom-hat transformation is designed
for dark targets. As a result, Bottom-hat transformation is implemented in Seq.2 while Top-hat
transformation is implemented in other sequences. Lastly, TDLMS detects small targets in the way of
calculating the difference between the original image and the background estimation.

Figures 5–8 show the significant intermediate results and the output results of Seqs.(1–4) produced
by our method, respectively. Note that real targets are marked with red circles and false alarms are
marked with yellow ones. These figures demonstrate the following five points clearly:

(1) While intensity histogram only discloses the pixel number of each gray level, the peaks of the
proposed saliency histogram are only located in gray levels corresponding to salient regions, i.e.,
saliency histogram reveals the saliency distribution of each gray level;

(2) The thresholds calculated via Otsu’s method can suppress the bins with small bin values in the
raw saliency histogram well and only few bins are preserved in the modified saliency histograms;

(3) The saliency maps obtained by tuning amplitude spectra can roughly highlight the IR target no
matter whether it is bright or dark, but the edges of sea waves and clouds with large gradient
values are also preserved in the map;

(4) Each candidate region in the binarized image is represented by a single centroid point in the final
output, although few false alarms still exist;

(5) The main sources of our false alarms are edges, dead pixels and still bright points.
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Figure 8. In-frame detection results of Seq.4 generated by our method: (a) intensity histogram; (b)
original saliency histogram; (c) modified saliency histogram; (d) saliency map; (e) binarized image; (f)
in-frame detection result.

Figure 9 presents the original processing results using the state-of-the-art algorithms, and Figure 10
further shows their binarized results via thresholds calculated by Otsu’s method. For Max-Mean, it has
poor performances when dealing with the cloud and sea backgrounds, indicating that it cannot remove
the strong interferences caused by edges. BHP has the same drawbacks when addressing the edges,
which can be seen from Figure 10b, because this algorithm is sensitive to frequency characteristics and
large numbers of false alarms would appear, if the cutting-off frequency is chosen inappropriately.
In addition, according to Figure 10c, an obvious phenomenon of Hat transformation is found that if
there are both bright and dark targets in the image, it is inevitable that at least one kind of target would
be lost because we cannot use Top-hat transformation and Bottom-hat transformation simultaneously.
Finally, TDLMS has a stronger ability to suppress edges when compared to others, but it is easy to
generate large quantities of candidate points for the same target region and this would cause repeated
trajectories in inter-frame detections remarkably.

In order to discuss the performances more convincingly, two widely-accepted metrics called
precision rate P and recall rate R [27] are selected to measure the detection results quantitatively. As is
illustrated in Figure 11, an assumption is made that NT is the pixel number of true targets existing in the
current frame; ND is the pixel number of targets detected by the tested algorithm, and NC = NT ∩ND

is the pixel number of targets detected correctly. In this case, precision rate P and recall rate R can be
thus defined as

P =
NC

ND
×100% (22)

R =
NC

NT
×100% (23)

Furthermore, a comprehensive evaluation index η representing the detecting precision of each
algorithm [28] can be expressed as

η =
(1 + λ2)·P·R
λ2·P + R

×100% (24)
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where λ is harmonic coefficient, and we set this coefficient as λ = 1 in this paper. η = 1 indicates that
there are no false alarms and all of the real targets are discovered, while η = 0 means that none of the
real targets are found out. Hence, the larger η is, the more satisfactory the result is. Table 2 reveals
the statistical data of η for the in-frame detections at length. Clearly, the result presented by Table 2
matches the qualitative analyses made above. Our method achieves the largest η in all sequences, but
the accuracies are not at a high level as a whole.
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Table 2. Statistical results of η(%) for the in-frame detection.

Methods Seq.1 Seq.2 Seq.3 Seq.4

Max-Mean 1.05 5.00 12.90 2.23
BHP 4.24 3.39 9.52 10.00
Hat 13.33 0 26.67 0.31

TDLMS 4.44 3.08 14.29 0.30
Ours 57.14 40.00 50.00 40.00

BHP means Butterworth high-pass and TDLMS means two-dimensional least mean square.
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4.3. Results of Inter-Frame Detection

In this part, the binarized detection results of the consecutive frames are accumulated in the final
frame. Figure 12 presents the cumulative results for each sequence in detail. Overall, our algorithm
has the best performances in all sequences and nearly all of the false alarms remaining in the single
frame detection are removed by the subsequent inter-frame detection effectively. Moreover, complete
trajectories are drawn in the final resulting images, and the phenomenon of repeated trajectories for the
same target is successfully avoided. By comparison, other methods have less satisfactory performances
in this experiment. As is shown in the resulting images of Seq.1, Seq.3 and Seq.4, Max-Mean is easy to
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produce discontinuous trajectories, meaning that real targets are lost in certain frames. The trajectories
generated by BHP are relatively complete, but regions with clutter edges contain large numbers of false
alarms, which is especially outstanding in Seq.1 and Seq.3. Hat transformation suffers from missing
detection seriously, and the trail of the dark IR small target is completely missed in Seq.3. However,
this method can reduce the quantity of repeated trails to some extent when compared with the other
three algorithms. Furthermore, it has a good anti-inference ability to clutter edges. In contrast, TDLMS
tends to severely suffer from the repeated trails, and it is obvious that the trajectories produced by this
method are thicker than others.

Table 3 presents the η values of the five groups in detail. From the data provided by this table, we
can clearly find that η values of our method are higher than 97% and are at least two times larger than
other methods in all of the four sequences. Through further analyses for the source of false alarms
produced by contrastive algorithms, we argue that the major sources contain two aspects: (1) the
repeated trajectories increase the quantities of redundant and useless points to a great extent; (2) the
false detection results of edges have been accumulated.

The ROC (Receiving Operating Characteristic) curve [29] is an effective tool to describe the quality
of detection methods. For an ROC curve, the abscissa and ordinate stand for the probability of false
alarm rate (Pf) and detection rate (Pd), which are expressed as Equations (25) and (26), respectively:

Pf =
NF

N0
(25)

Pd =
NC

ND
(26)

where N0 denotes the total pixel number of the current frame. A good ROC means that the tested
method is able to highlight the target and suppress the clutters at the same time. The ROC curves of
the four experiments are drawn as Figure 13.
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In light of the four groups of ROC curves, it is apparent that the area under the ROC curve
belonging to our method is always far larger than the contrastive methods. However, the performance
of each contrastive method varies a lot under different backgrounds, further demonstrating that the
robustness of the four methods is weaker than our method.

Table 3. Statistical results of η(%) for the inter-frame detection.

Methods Seq.1 Seq.2 Seq.3 Seq.4

Max-Mean 18.49 28.99 35.54 17.33
BHP 19.26 29.59 30.60 20.09
Hat 29.37 26.11 16.12 17.94

TDLMS 27.04 27.10 34.66 28.12
Ours 97.32 98.62 98.04 97.47
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5. Conclusions

It is easy for conventional IR small target detection methods to generate large quantities of false
alarms due to the small size of target, the lack of color or texture information and the interference of
clutters. Furthermore, the existing algorithms scarcely have the ability to detect both bright and dark
IR small targets accurately at the same time, and the inter-frame motion information is also ignored by
most of the researchers.

In this paper, an IR small moving target detection method using saliency histogram and
geometrical invariability is proposed. For the in-frame detection part, a saliency histogram is
established by averaging the cumulative saliency value of each gray level so that a single-frame
segmentation can be made via an adaptive threshold of the histogram, and the centroid position of
candidate targets is calculated via a connected components labeling algorithm and a gray-weighted
criterion. For the inter-frame detection part, false alarms are further removed according to the
geometrical invariability existing between two relatively still points. Large numbers of experiments
convincingly prove that our method has robustness and satisfactory precision under various natural
backgrounds compared with other state-of-the-art methods.

In our future work, we plan to concentrate on investigating more well-performed features of the
IR small target in single-frame detection so as to reduce the computing quantity of the inter-frame
detection and further improve the final detection precision.
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