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Abstract: The aim of this paper is to present a trade-off ranking method in a fuzzy multi-criteria
decision-making environment. The triangular fuzzy numbers are used to represent the imprecise
numerical quantities in the criteria values of each alternative and the weight of each criterion.
A fuzzy trade-off ranking method is developed to rank alternatives in the fuzzy multi-criteria
decision-making problem with conflicting criteria. The trade-off ranking method tackles this type of
multi-criteria problems by giving the least compromise solution as the best option. The proposed
method for the fuzzy decision-making problems is compared against two other fuzzy decision-making
approaches, fuzzy Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) and
fuzzy VlseKriterijuska Optimizacija I Komoromisno Resenje (VIKOR), used for ranking alternatives.

Keywords: fuzzy trade-off; fuzzy TOPSIS; fuzzy VIKOR; ranking; multi-criteria decision-making;
triangular fuzzy number; Pareto solution

1. Introduction

In a conflicting multi-criteria problem, there is no unique solution that could optimize all
the criteria simultaneously. The conflicting multi-criteria problem gives a set of Pareto solutions.
Each Pareto solution is defined as a trade-off solution between the conflicting criteria, where it is not
possible to achieve the best score of a criterion without downgrading the score of some other criteria.

The multi-criteria decision-making (MCDM) analysis contains a number of decision-making steps
including weighting of criteria and ranking of alternatives. The weighting of criteria can reflect the
individual preferences of the Decision-Maker. The weighted sum of the objectives leads to an aggregate
function to be optimized. Eckenrode [1] implemented this approach to optimize an air-defence system.
The selection of the alternatives was based on the individual preferences of 24 experts who considered
six criteria.

The Analytic Hierarchy Process (AHP) proposed by Saaty [2] also involves human judgement in
evaluations. According to AHP, the MCDM problem is split into a hierarchy with the goal, decision
criteria and alternatives. Then, it uses the expert judgement to be converted into a numerical evaluation.
The AHP is widely used in the decision-making process (e.g., [3–7]). Zaidan et al. [8] integrated the
AHP method with other MCDM techniques to select the right software for open-source electronic
medical record. The Analytic Network Process (ANP) also proposed by Saaty [9] represents some
modification of the AHP. The ANP interprets the AHP hierarchy as a network. In contrast to the AHP,
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the decision criteria in the AHP are supposed to be independent from each another. This technique
has been used in a number of publications (e.g., [10–13]).

The Multi-Attribute Utility Theory (MAUT) by Keeney and Raiffa [14] represents a classical
approach in MCDM analysis. This is a structured methodology based on the utility axioms introduced
by von Neumann and Morgenstern. In the algorithm, a utility value is assigned to each action whilst
quantifying all individual preferences. Some examples of the use of MAUT in the decision-making
can be found in [15]. In turn, the Elimination and Choice Expressing Reality (ELECTRE) by Roy
is an outranking approach that is used to discard unacceptable alternatives. This approach was
modified in PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations) by
Brans and Vincke [16]. PROMETHEE exists in three versions: the PROMETHEE I (partial ranking),
the PROMETHEE II (complete ranking) and the PROMETHEE-GAIA (geometrical analysis for
interactive aid). Several authors applied the outranking techniques in MCDM problems (e.g., [17–19]).

The genetic algorithm (GA) has also been used for MCDM problems (e.g., [20–24]). It is widely
used thanks to its universal nature. A problem with GA is that it generates a large number of solutions
that are mostly redundant. Wang and Yang [25] used the particle swarm optimization (PSO) to
determine a ranking for MCDM problems. Particle swarm is capable of improving the search ability of
GA thanks to its better convergence to the Pareto frontier. However, as noted in [25], PSO requires
significant computational time.

There is a number of techniques related to the ranking of available alternatives that are presented
by the Pareto solutions. In all these techniques, the ranking is based on a metric introduced in the
criteria space. The Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) was first
proposed by Hwang and Yoon [26]. The original TOPSIS method presumed priori weights for criteria
to be specified by the Decision-Maker. The TOPSIS approach is based on an individual evaluation
score that depends on the distances from the alternative to the ideal and anti-ideal solutions. This type
of evaluation is obviously the best for the non-conflicting multi-criteria problems, where the alternative
that is the closest to the ideal solution is also the farthest from the anti-ideal solution. However, in a
conflicting multi-criteria problem, such an assumption cannot always be realized. This drawback in
TOPSIS is addressed in a few papers [27–29]. It was Kao [29] who practically suggested to measure
the distance in L1 norm instead of L2-norm implemented in the conventional TOPSIS method to
overcome the inconsistency problem. TOPSIS has been widely used in MCDM due to its simplicity
(e.g., [30–33]). The VlseKriterijuska Optimizacija I Komoromisno Resenje (VIKOR) algorithm proposed
by Opricovic [27] is based on the compromise programming with weights to be prescribed to the
performances by the Decision-Maker. Such weights are subjective and depend on how adequately
such quantitative characteristics reflect the individual preferences of the Decision-Maker.

The real-life design is usually related to the inevitable uncertainties in the input data, parameters,
etc. The uncertainty in the MCDM problem includes the imprecision of criteria values, vagueness in
the importance of criteria (weights) and dealing with qualitative, linguistic or incomplete information.

The concept of fuzziness, first introduced by Zadeh [34], is proved to be an efficient tool to
include the uncertainties in the MCDM problems. Numerous fuzzy MCDM methods have been
developed, including [35–42]. They utilize the fuzzy numbers in the formulation of their fuzzy MCDM
methods. There are two ways used in solving the fuzzy MCDM problems [43]. One way to solve
the fuzzy MCDM problem is based on utilizing the fuzzy MCDM method [44,45]. Another way is
reduced to the defuzzification of the fuzzy MCDM problem and solving it by a conventional MCDM
method [46]. The defuzzification process converts the fuzzy numbers into crisp values. In both
ways, the defuzzification process is essential, since the MCDM solution must provide a crisp result.
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Many defuzzification methods can be used including the center of sum and the center of gravity [47,48].
The fuzzy methodology was extended to the TOPSIS method [30,49–51] and VIKOR algorithm [52,53].
Several researchers used the fuzzy TOPSIS method for different applications including the selection
problem [37,54–56] and the performance evaluation [40,57–60]. Wang et al. [28] proposed merging the
fuzzy TOPSIS and the fuzzy AHP to surpass the problem. A few authors also explored the VIKOR
algorithm to solve the fuzzy MCDM problem [61,62]. The trade-off ranking method [63] suggested
by Jaini and Utyuzhnikov selects the least compromise solution as the best option. In contrast to the
TOPSIS and VIKOR methodologies, the trade-off ranking method is based on the overall evaluation
score of an alternative with respect to all other alternatives by taking into account the position of each
Pareto solution in the criteria space. This strategy is nonlocal and essentially different from the VIKOR
and TOPSIS methodologies.

The current paper is focused on the ranking of alternatives in the MCDM problems with conflicting
criteria. The trade-off ranking method has been modified for a conflicting fuzzy environment.
The approach is compared against the fuzzy TOPSIS and VIKOR methodologies. The paper is
organized as follows. The next section briefly describes the fuzzy MCDM problem and its ranking
application, the arithmetics of fuzzy numbers used throughout the paper, as well as the fuzzy VIKOR
and TOPSIS methods. The background of the proposed fuzzy trade-off ranking method and its
algorithms are discussed in Section 3. The approach is realized in both the fuzzy and defuzzification
ways. In Section 4, a numerical example is presented to illustrate the application of the fuzzy trade-off
ranking. The comparisons of the results are also given there. Lastly, the conclusions of the paper are
discussed in Section 5.

2. Ranking Alternatives in Fuzzy Multi-Criteria Decision-Making

2.1. Fuzzy Multi-Criteria Decision-Making

A conventional MCDM problem can be expressed in a matrix form as

Criterion
Alternative Y1 Y2 Y3 . . . Yn

A1 Y11 Y12 Y13 . . . Y1n

A2 Y21 Y22 Y23 . . . Y2n

A3 Y31 Y32 Y33 . . . Y3n
...

...
...

...
...

...
Aq Yq1 Yq2 Yq3 . . . Yqn

,

W = [w1, w2, . . . , wn] ,

where the performance of criterion j in alternative i is represented by Yij and the weight of each
criterion is denoted by wj, for i = 1, . . . , q, j = 1, . . . , n. Here, n is the number of criteria, and q is the
number of alternatives.

Traditionally, the MCDM solutions assume all Yij and wj values are crisp numbers. In reality, the
values can be crisp, fuzzy or linguistic. For example, two candidates are considered for an engineer
position. The criteria considered are creativity (Y1), communication skill (Y2) and years of experience
(Y3). The rating for the first two criteria, Y1 and Y2, are represented by linguistic terms such as
“very good”, “average”, “poor”, and so on. The rating for criteria Y3 can be some integer numbers.
Furthermore, for group decision-making that has K number of Decision-Makers (DMs), the preferences
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towards each criterion may be different for every DMs. In turn, each DM has his/her own uncertainty
on the importance of each criterion. Thus, this MCDM problem contains the mixture of fuzzy, linguistic
and crisp data set.

To tackle such a problem, the weights of the criteria, w̃j, j = 1, . . . , n, and the performance of the
alternative, Ỹij, i = 1, . . . , q, j = 1, . . . , n, for the fuzzy MCDM problems are considered as linguistic
variables, expressed in positive triangular fuzzy numbers, shown in Tables 1 and 2 [30]. In turn,
the membership function of linguistic variables in the alternative performance is presented in Figure 1.

Table 1. Fuzzy numbers for the importance weight of each criterion.

Meaning of Linguistic Scale Numerical Scale

Very low (VL) (0, 0, 0.1)
Low (L) (0, 0.1, 0.3)

Medium low (ML) (0.1, 0.3, 0.5)
Medium (M) (0.3, 0.5, 0.7)

Medium high (MH) (0.5, 0.7, 0.9)
High (H) (0.7, 0.9, 1.0)

Very high (VH) (0.9, 1.0, 1.0)

Table 2. Linguistic variables for the alternative performance.

Meaning of Linguistic Scale Numerical Scale

Very poor (VP) (0, 0, 1)
Poor (P) (0, 1, 3)

Medium poor (MP) (1, 3, 5)
Fair (F) (3, 5, 7)

Medium good (MG) (5, 7, 9)
Good (G) (7, 9, 10)

Very good (VG) (9, 10, 10)

Figure 1. Membership functions of the linguistic variables.

Figure 1 shows the membership functions for the data stated in Table 1. As can be seen from
Figure 1, the intervals to represent the linguistic variables are chosen in order to have a uniform
representation from 0 to 10 in the triangular fuzzy numbers. The intervals are not unique and can have
other representations [28,30,64–66].
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Thus, a fuzzy MCDM problem can be expressed in a matrix form as

Criterion
Alternative Ỹ1 Ỹ2 Ỹ3 . . . Ỹn

Ã1 Ỹ11 Ỹ12 Ỹ13 . . . Ỹ1n

Ã2 Ỹ21 Ỹ22 Ỹ23 . . . Ỹ2n

Ã3 Ỹ31 Ỹ32 Ỹ33 . . . Ỹ3n
...

...
...

...
...

...
Ãq Ỹq1 Ỹq2 Ỹq3 . . . Ỹqn

,

W̃ = [w̃1, w̃2, . . . , w̃n] ,

where the performance of criterion j in alternative i is now evaluated by the triangular fuzzy number
Ỹij = (aij, bij, cij) and the weight of each criterion is represented by the triangular fuzzy number
w̃j = (wj1, wj2, wj3) for i = 1, . . . , q, j = 1, . . . , n. Again, n is the number of criteria, and q is the number
of alternatives.

For group decision-making, consider a decision group that has a K number of DMs. Each DM is
required to rate the performance of the alternatives and the weights of the criteria using the linguistic
variables as in Tables 1 and 2. The final values for the alternative performance with respect to each
criterion and the weight of each criterion are considered as the average values from the rating scores,
given by the formula:

Ỹij =
1
K

[
Ỹ1

ij ⊕ Ỹ2
ij ⊕ · · · ⊕ ỸK

ij

]
, (1)

w̃j =
1
K

[
w̃1

j ⊕ w̃2
j ⊕ · · · ⊕ w̃K

j

]
. (2)

Here, ỸK
ij and w̃K

j are the fuzzy performances of the alternatives and the fuzzy weight of each
criterion, evaluated by the K-th decision maker [30]. The operator ⊕, an addition of fuzzy numbers,
is described further in the next section.

2.2. Arithmetic Operations on Triangular Fuzzy Numbers

In this section, several basic definitions and notations of fuzzy sets are briefly introduced.
These definitions and notations are used throughout the paper for each fuzzy MCDM method.

Figure 2 shows a triangular fuzzy number f̃ = (a, b, c), where a, b, c are real numbers. The interval
[a, c] reflects the fuzziness of the evaluation data b, where a closer interval means a lower degree of
fuzziness. The membership function µ f̃ (x) is defined as:

µ f̃ (x) =


x−a
b−a , a ≤ x ≤ b,
c−x
c−b , b ≤ x ≤ c,

0, otherwise.
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Given a real number r, some arithmetic operations on the fuzzy numbers are defined as follows:

Addition:
m

∑
l=1
⊕ f̃l =

(
m

∑
l=1

al ,
m

∑
l=1

bl ,
m

∑
l=1

cl

)
, (3)

Scalar addition: f̃ ⊕ r = (a + r, b + r, c + r), (4)

Subtraction: f̃1 	 f̃2 = (a1 − c2, b1 − b2, c1 − a2), (5)

Multiplication: f̃1 ⊗ f̃2 = (a1 × a2, b1 × b2, c1 × c2), (6)

Scalar multiplication: r× f̃ = (r× a, r× b, r× c), (7)

Scalar division: f̃ /r = (a/r, b/r, c/r), r > 0, (8)

Operator MAX: MAX
l

f̃l = (max
l

al , max
l

bl , max
l

cl), (9)

Operator MIN: MIN
l

f̃l = (min
l

al , min
l

bl , min
l

cl), (10)

Distance: d( f̃1, f̃2) =

√
1
3
[(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2] , (11)

Defuzzification: Crisp( f̃ ) =
a + 2b + c

4
. (12)

The distance between two triangular fuzzy numbers, Equation (11), is also known as a vertex
method [30]. In turn, the defuzzification, Equation (12), is known as the second weighted average
formula [53]. As mentioned in Section 1, the defuzzification process turns the triangular fuzzy numbers
into a crisp value. Such a process is the simplest way of tackling the fuzzy MCDM problem.

The definitions and properties of the above operations, Equations (3)–(12), are discussed further
in several papers (see [30,53,67–69]).

Figure 2. Triangular fuzzy number f̃ = (a, b, c).

2.3. The Fuzzy TOPSIS Method

TOPSIS is based on the concept of having an alternative with the closest to the ideal solution and
the farthest from the anti-ideal solution as the best option. The ideal and the anti-ideal solutions are
considered as the artificial solutions.

The first step in the TOPSIS method is to normalize the decision matrix. To avoid the complicated
normalization formula used in the classical TOPSIS, the linear normalization is used in the fuzzy
TOPSIS [30]. Therefore, the normalized fuzzy decision matrix R̃ is given by equation:

R̃ = [r̃ij]q×n, i = 1, . . . , q, j = 1, . . . , n,



Axioms 2018, 7, 1 7 of 21

where

r̃ij =

(
aij

c+j
,

bij

c+j
,

cij

c+j

)
and c+j = max

i
cij for benefit criteria,

and

r̃ij =

(
a−j
cij

,
a−j
bij

,
a−j
aij

)
and a−j = min

i
aij. for cost criteria.

Next, the weighted normalized fuzzy decision matrix Ṽ is obtained by multiplying the weights
w̃j with r̃ij as:

Ṽ = [ṽij]q×n

= [r̃ij ⊗ w̃j]q×n, i = 1, . . . , q, j = 1, . . . , n.

Equation (6) is used for the multiplication of two fuzzy numbers. The Fuzzy Positive Ideal
Solution (FPIS), I+ and the Fuzzy Negative Ideal Solution (FNIS), I− are then defined as follows:

I+ = (ṽ+1 , ṽ+2 , . . . , ṽ+n ),

I− = (ṽ−1 , ṽ−2 , . . . , ṽ−n ),

where ṽ+j = (1, 1, 1) and ṽ−j = (0, 0, 0) [30].
The distance for each weighted alternative to the FPIS and FNIS is computed using formulas:

d+i =
n

∑
j=1

d(ṽij, ṽ+j ),

d−i =
n

∑
j=1

d(ṽij, ṽ−j ), i = 1, . . . , q,

where d(·, ·) is the distance between two fuzzy numbers (11).
Finally, the closeness coefficient is calculated, in order to determine the ranking order of all

alternatives, as follows:

CCi =
d−i

d+i + d−i
, i = 1, . . . , q.

The alternative with the highest closeness coefficient represents the best solution.

2.4. The Fuzzy VIKOR Method

Next, consider the basic formulation of the fuzzy VIKOR method. Assume the alternatives and
the weights are evaluated by the triangular fuzzy numbers Ỹij = (aij, bij, cij) and w̃j = (wj1, wj2, wj3),
respectively, for i = 1, . . . , q, j = 1, . . . , n. The ranking algorithm for fuzzy VIKOR involves the
following steps [53]:

1. Determination of the ideal Ỹ+
j = (a+j , b+j , c+j ) and the anti-ideal Ỹ−j = (a−j , b−j , c−j ) for

j = 1, . . . , n, where

(a) Ỹ+
j = MAX

i
Ỹij and Ỹ−j = MIN

i
Ỹij, if the j-th criteria represents the benefit,

(b) Ỹ+
j = MIN

i
Ỹij and Ỹ−j = MAX

i
Ỹij, if the j-th criteria represents the cost.

The MAX and MIN are fuzzy operators as in Formulae (9) and (10), respectively.
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2. Compute S̃i = (Sa
i , Sb

i , Sc
i ) and R̃i = (Ra

i , Rb
i , Rc

i ), i = 1, . . . , q by the equations

S̃i =
n

∑
j=1
⊕(w̃j ⊗ d̃ij),

R̃i = MAX
j

(w̃j ⊗ d̃ij), j = 1, . . . , n,

with

(a) d̃ij = (Ỹ+
j 	 Ỹij)/(c+j − a−j ), if the j-th criteria represents the benefit,

(b) d̃ij = (Ỹ+
j 	 Ỹij)/(c−j − a+j ), if the j-th criteria represents the cost,

where d̃ij is a normalized fuzzy difference, S̃ is a fuzzy weighted sum as in Equation (3) and R̃ is
a fuzzy operator MAX (9).

3. Compute Q̃i = (Qa
i , Qb

i , Qc
i ), i = 1, . . . , q, by the equation

Q̃i = v(S̃i 	 S̃+)/(S−c − S+a)⊕ (1− v)(R̃i 	 R̃+)/(R−c − R+a),

where S̃+ = MIN
i

S̃i, S−c = max
i

Sc
i , R̃+ = MIN

i
R̃i, R−c = max

i
Rc

i and v is the weight of the

maximum group utility, whereas 1− v is the weight of individual regret. Normally, v = 0.5 [27].
For the fuzzy MCDM problem, v is modified as v = (n + 1)/2n [53].

4. “Core” ranking.
Rank the alternatives by sorting the values of Qb

i , i = 1, . . . , q. A lower value implies a higher
ranking. The obtained ranking is denoted by {Rank}Qb .

5. Fuzzy ranking.
The i-th ranking position in {Rank}Qb is confirmed if MIN

k∈`
Q̃(k) = Q̃(i), where ` = {i, i + 1, . . . , q}

and Q̃(k) is the fuzzy numbers for alternative A(k) at the k-th position in {Rank}Qb . Confirmed
ordering represents fuzzy ranking {Rank}Q̃.

6. Defuzzification of S̃i, R̃i, Q̃i, i = 1, . . . , q to convert the fuzzy numbers into crisp value using
Equation (12).

7. Defuzzification ranking.
Rank the alternatives by sorting the crisp values of S, R and Q in Step 6. A lower value
implies a higher ranking. The results of the ranking lists are denoted by {Rank}S, {Rank}R

and {Rank}Q, respectively.

8. The best solution (A(1)) ranked in {Rank}Q is regarded as the best compromise solution if the
following two conditions are satisfied:

(a) C1. Suppose A(1) is the first rank alternative and A(2) is the second rank in {Rank}Q,
Adv ≥ DQ, where DQ = 1/(q− 1) and Adv = (Q(A(2))−Q(A(1)))/(Q(A(q))−Q(A(1))).

(b) C2. The alternative A(1) is also the best solution ranked by S and/or R.

If one of the conditions is not satisfied, a set of compromise solutions is then proposed
compromising the following:

(a) Alternatives A(1) and A(2) if only condition C2 is not satisfied; or

(b) Alternatives A(1), A(2), . . . , A(M) if condition C1 is not satisfied; A(M) is determined by
the relation Q(A(M))−Q(A(1)) < DQ for maximum M.
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Further reading on the theoretical definitions of S and R values can be made by referring to
Opricovic and Tzeng [27].

3. Trade-Off Ranking Method

As mentioned in the Introduction, the trade-off ranking method is developed to solve the MCDM
problem with conflicting criteria. Such a problem gives a set of Pareto solutions. Eventually, the DM
has to choose only one solution out of many. Therefore, an evenly distributed Pareto set is important in
the trade-off ranking method. The evenness property gives a sufficient set of solutions that represents
the whole Pareto solutions for the DM to make a decision in a limited time. Such a Pareto set can be
obtained, in particular, by the Directed Search Domain (DSD) algorithm [70].

In a fuzzy MCDM problem, the simplest way of solving the problem is by defuzzification, in which
the fuzziness is dissolved at an early stage of the decision-making process. The defuzzification process
turns the fuzzy numbers into a crisp value.

Thus, the first task in solving the fuzzy MCDM problem is to defuzzify the alternative performance
Ỹij = (aij, bij, cij), i = 1, . . . , q, j = 1, . . . , n and the weight of each criterion w̃j = (wj1, wj2, wj3),
j = 1, . . . , n using Equation (12). Each defuzzification is then denoted as Yij and wj, respectively.

After the defuzzification process, the ranking of the alternatives is then calculated using a
conventional trade-off ranking method described below.

3.1. Trade-Off Ranking Method with Defuzzification

The trade-off ranking method is utilised to give a solution with the least compromise as the best
option. To measure the value of compromise, the distance formula is used to calculate the trade-off
between the alternatives.

First, the algorithm starts with the normalization of Yij and wj, respectively, by the formula:

fij =

Yij −min
j

Yij

max
j

Yij −min
j

Yij
, i = 1, . . . , q, j = 1, . . . , n,

w′j =
wj

∑n
j=1 wj

, j = 1, . . . , n. (13)

The normalization guarantees that the range of normalized triangular fuzzy numbers belongs
to [0,1] and eliminates the units of criteria functions.

It is to be noted that the triangular fuzzy numbers are considered for the sake of simplicity because
of the lack of information on the uncertainties. However, the technique can be extended to more
sophisticated approximations straightforward.

Next, the extreme solutions, A∗k , k = 1, . . . , n, are determined. The extreme solutions are the
solutions with the best value in at least one criterion. Thus, a k-th extreme solution is the alternative
with the optimal j-th criterion such as:

A∗k = {min
1≤i≤q

fij}, j = 1, . . . , n for the cost criteria, or

A∗k = {max
1≤i≤q

fij}, j = 1, . . . , n for the benefit criteria. (14)

The benefit criteria are the criteria to be maximized such as profit, while the cost criteria are the
ones to be minimized such as price.
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The trade-off ranking method has two levels of selection. The first level is the trade-off between
each alternative and the extreme solutions. Before we determine the first level of the selection,
the distance between an alternative α and an extreme solution is calculated. Such a distance, denoted
as dTOR1(A∗k , Aα), is calculated using the L2-metric distance:

dTOR1(A∗k , Aα) =

[
n

∑
j=1

( fkj, fαj)
2

]1/2

, α = 1, . . . , q, k = 1, . . . , n. (15)

Then, the first level of trade-off is calculated using equation

DT1Aα
=

n

∑
j=1

[w′j × dTOR1(A∗k , Aα)], α = 1, . . . , q, k = 1, . . . , n. (16)

The ranking is determined by the value of DT1, where the least value holds the highest ranking.
The extreme solutions are chosen to be the reference point since they are the optimal solutions

for each single-criterion problem. An alternative with the least DT1 has the least trade-off with the
extreme solutions. In a conflicting multi-criteria problem, it is not possible to have a solution that
simultaneously satisfies all criteria. Therefore, having the alternative that is the closest to the optimal
value of most criteria, if not all, is considered to be a relevant compromise solution. In the case of the
same value of DT1, the second level of selection is considered that takes into account a compromise
with the other alternatives.

The distance between the alternatives is calculated using equation:

dTOR2(Aα, Aβ) =

[
n

∑
j=1

(Pαj − Pβj)
2

]1/2

, α, β = 1, . . . , q,

where Pij = w′j × fij, i = 1, . . . , q, j = 1, . . . , n, known as the weighted performance of alternative i in
criterion j.

The second level of trade-off is then calculated using equation:

DT2Aα
=

q

∑
i=1

[dTOR2(Aα, Ai)] , α = 1, . . . , q.

The least value of DT2 denotes the least value of compromise in terms of the alternative differences.
Therefore, an alternative with the lowest value of DT2 is defined as the best trade-off solution among
the alternatives with the same value of DT1.

To illustrate the application of the trade-off ranking method, consider an example of buying a
share investment with two conflicting criteria, low risk and high return. Note that, in a conflicting
multi-criteria problem, it is impossible to optimize both criteria simultaneously. However, there are
usually two extreme opportunities: (i) low risk with a low return; and (ii) high risk with a high
return. These two extreme opportunities are known as the extreme solutions. With these two options,
the solution would depend on the DM preferences, either towards a low risk or a high return per
investment. Suppose there are other options between the two extreme solutions. Conveniently, the DM
usually prefers a trade-off between the two criteria. In this example, if the DM preferences towards
both criteria are equal, the trade-off ranking method is able to give the best compromise solution as
the best choice.
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The concepts of distance measure in TOPSIS and the trade-off ranking method are illustrated in
Figure 3.

Figure 3. Distance measurement in TOPSIS and trade-off ranking.

Figure 3 shows the difference in the distance measure between TOPSIS and the trade-off ranking
method in evaluating three Pareto alternatives A1, A2, and A3. TOPSIS uses the distance between
an alternative to the ideal/anti-ideal solutions as a ranking measure, which are denoted in Figure 3
as d(Ai, I+) and d(Ai, I−), respectively, for i = 1, 2, 3. In turn, the trade-off ranking method uses
the distance between an alternative to the extreme solutions or other alternatives to determine the
ranking. In Figure 3, such distances are marked as d(A1, A2), d(A2, A3) and d(A1, A3). The ranking
determination in the trade-off ranking method depends on the sum of the distances between those
alternatives. The example in Figure 3 also shows that alternative A2, which is the closest to the ideal
solution, is also the closest to the anti-ideal solution compared to alternatives A1 and A3. In this case,
the property of the TOPSIS method to have the best solution as the closest to the ideal solution and the
farthest to the anti-ideal solution is violated.

3.2. Fuzzy Trade-Off Ranking Method

Another way to solve the fuzzy MCDM problem is using the fuzzy MCDM method. In this
approach, the fuzzy numbers are processed until the end of the algorithms. As such, the fuzzy
information is preserved and the final solution is more accurate. In a fuzzy MCDM method, the distance
formula between fuzzy numbers (11) is used for the ranking determination. An algorithm for the
fuzzy trade-off ranking (FTOR) method is presented in the following steps:

1. Normalization of the performance of criterion j in alternative i,
Ỹij = (aij, bij, cij), by equation:

f̃ij =
Ỹij 	 ã

max
j

cij −min
j

aij
, i = 1, . . . , q, j = 1, . . . , n,

where ã = (min
j

aij, min
j

aij, min
j

aij), i = 1, . . . , q, j = 1, . . . , n. The operator 	 is the subtraction of

the fuzzy numbers such as Equation (5). The result of the normalized performance f̃ij is denoted
as a triangular fuzzy number f̃ij = ( fij1, fij2, fij3).
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2. Determination of the extreme solutions, Ã∗k , k = 1, . . . , n, by formula:

Ã∗k = {min
1≤i≤q

fij1}, j = 1, . . . , n, for the cost criteria, or

Ã∗k = {max
1≤i≤q

fij3}, j = 1, . . . , n, for the benefit criteria.

3. Calculation of the distance of an alternative α to an extreme solution Ã∗k , denoted as
dFTOR1(Ã∗k , Ãα), using equation:

dFTOR1(Ã∗k , Ãα) =
n

∑
j=1

[d( f̃kj, f̃αj)], α = 1, . . . , q, k = 1, . . . , n. (17)

The distance between two fuzzy numbers, d(·, ·), is calculated using Equation (11).

4. Calculation of the first level of fuzzy trade-off, which is the trade-off between an alternative with
all the extreme solutions, is given by formula:

DFT1Ãα
=

n

∑
j=1

[w′j × dFTOR1(Ã∗k , Ãα)], α = 1, . . . , q, k = 1, . . . , n, (18)

where

w′j =
wj

∑n
j=1 wj

, j = 1, . . . , n,

wj = Crisp(w̃j), j = 1, . . . , n.

Here, wj is defuzzified using Equation (12). In turn, w̃j is the weight of each criterion in the
fuzzy MCDM problem, presented by a triangular fuzzy number w̃j = (wj1, wj2, wj3), j = 1, . . . , n.
Similarly to DT1, the alternative with the least DFT1 is regarded as the best option. Again, in
the case of the same DFT1 value, the fuzzy trade-off ranking formulation is imposed further,
as shown in Step 5 onwards.

5. Calculation of the distance of an alternative to the other alternatives is determined by the formula:

dFTOR2(Ãα, Ãβ) =
n

∑
j=1

[
d(P̃αj, P̃βj)

]
, α, β = 1, . . . , q, α 6= β,

where P̃ij = w̃j ⊗ f̃ij, i = 1, . . . , q, j = 1, . . . , n. The multiplication of two fuzzy numbers is
calculated using Equation (6), while d(·, ·) is the distance between two fuzzy numbers determined
by Formula (11). The distance calculation represents the total trade-off in the quantity of each
criterion. Hence, the least distance value denotes the least trade-off between the two alternatives.

6. Calculation of the second level of fuzzy trade-off, which is the trade-off among the alternatives,
is given by equation:

DFT2Ãα
=

q

∑
i=1

[
dFTOR2(Ãα, Ãi)

]
, α = 1, . . . , q.

The degree of fuzzy trade-off DFT2 represents the sum of distances between one alternative and
all the other alternatives in a fuzzy environment. The least value of DFT2 denotes the least value
of compromise between the alternatives. Therefore, the best alternative in the fuzzy trade-off
ranking contains the lowest value of DFT2 if DFT1 is the same.
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4. Numerical Example: Personnel Selection Problem

Consider a numerical example of the personnel selection problem where five benefit criteria
are considered in selecting one of three candidates, A1, A2 and A3, for the post of system analysis
engineer [30]. The criteria considered are stated as follows:

1. Emotional steadiness, Y1;

2. Oral communication skill, Y2;

3. Personality, Y3;

4. Past experience, Y4;

5. Self-confidence, Y5.

Here, the fuzzy trade-off ranking, fuzzy TOPSIS and fuzzy VIKOR methods are used to solve the
personnel selection problem. Suppose the rating process of each alternative and the weight of each
criterion are made by three DMs. The results of the rating evaluations are shown in Tables 3 and 4.
The rating value is described by the linguistic terms expressed in the triangular fuzzy numbers as seen
in Tables 1 and 2.

Table 3. Criteria weightage by decision-makers.

Criterion DM1 DM2 DM3

Y1 H H H
Y2 VH VH VH
Y3 VH H H
Y4 VH VH VH
Y5 M MH MH

Table 4. Alternatives ratings by decision-makers.

Criterion
A1 A2 A3

DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3

Y1 MG G MG G G MG VG G F
Y2 VG VG VG MG MG MG G G G
Y3 G G G F G G VG VG G
Y4 G G G VG VG VG VG G VG
Y5 G G G F F F G G MG

Formulae (1) and (2) are applied to the data in Tables 3 and 4, respectively, in order to find the
average performance of the alternative and the average weight of each criterion. The fuzzy decision
matrix of the problem is then given in Table 5.

Table 5. The fuzzy decision matrix for the personnel selection problem.

Weight Ỹ1 Ỹ2 Ỹ3 Ỹ4 Ỹ5
(0.7,0.9,1) (0.9,1,1) (0.77,0.93,1) (0.9,1,1) (0.43,0.63,0.83)

Ã1 (5.7,7.7,9.3) (9,10,10) (7,9,10) (7,9,10) (7,9,10)
Ã2 (6.3,8.3,9.7) (5,7,9) (5.7,7.7,9) (9,10,10) (3,5,7)
Ã3 (6.3,8,9) (7,9,10) (8.3,9.7,10) (8.3,9.7,10) (6.3,8.3,9.7)

The defuzzified decision matrix using Formula (12) is given in Table 6.
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Table 6. Defuzzified decision matrix.

Weight Y1 Y2 Y3 Y4 Y5
0.875 0.975 0.908 0.975 0.630

A1 7.60 9.75 8.75 8.75 8.75
A2 8.15 7.00 7.53 9.75 5.00
A3 7.83 8.75 9.43 9.42 8.15

This problem aims to maximize all the criteria. However, the conflicting situation arises since none
of the candidates possessed the best in all criteria. More details can be seen in Table 6. According to
Table 6, candidate A3 is ranked second in criteria Y1, Y2, Y4 and Y5. Meanwhile, candidate A3 is ranked
first in criterion Y3. Furthermore, candidate A1 is ranked first out of two criteria, which are Y2 and Y5,
but ranked third in two other criteria, Y1 and Y4. Meanwhile, candidate A2 is ranked the best in two
criteria, Y1 and Y4, but the worst in three other criteria, which are Y2, Y3 and Y5.

The normalized defuzzified decision matrix by the trade-off ranking method, Formula (13),
is given in Table 7.

Table 7. Normalized defuzzified decision matrix by the trade-off ranking.

Weight Y1 Y2 Y3 Y4 Y5
0.201 0.223 0.208 0.223 0.144

A1 0 1 0.64 0 1
A2 1 0 0 1 0
A3 0.42 0.64 1 0.68 0.84

Referring to Table 7 and using Formula (14), the extreme solutions for the trade-off ranking
method are determined. As an example, an alternative with the optimal value in criterion Y5 is the
fifth extreme solution for the problem, i.e., A∗5 = {0, 1, 0.64, 0, 1} since max

1≤i≤3
fi5 = 1.

After calculating the data in Table 7, using Formulae (15) and (16), and the data in Table 5 with
Formulae (17) and (18), the ranking by the trade-off method with defuzzification and the fuzzy trade-off
ranking are given in Table 8. As can be observed in Table 8, the best candidate ranked by the fuzzy
trade-off is candidate A3. In addition, it is also the best candidate ranked by the pre-defuzzification
approach in the trade-off ranking method. Note that, even though candidate A3 is only ranked first in
one criterion, he/she is not ranked the worst in the other criteria. Thus, this candidate has the most
balanced traits, i.e., the least compromise, out of all five criteria compared to A1 and A2.

Table 8. Ranking by fuzzy trade-off.

Ranking 1 2 3

Fuzzy trade-off A3 A1 A2
Defuzzification A3 A1 A2

Table 9 shows the results of the fuzzy trade-off DFT1 and the defuzzification trade-off DT1.
The indifference in the ranking by the trade-off method with defuzzification and the fuzzy trade-off
ranking method is due to the small range of fuzziness in the triangular fuzzy numbers and small
differences in the criteria ratings. The crisp values of the fuzzy numbers given in Table 6 significantly
close to their middle values, bij, presented in Table 5. A graphical explanation for this statement is
given in Figure 4.
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Table 9. Results by fuzzy trade-off.

Trade-Off A1 A2 A3

DFT1 1.027 1.039 0.984
DT1 1.090 1.105 1.030

DT1 is first level trade-off; DFT1, fuzzy DT1.

Figure 4. Triangular fuzzy numbers and their crisp values of each criterion for alternative A2.

The triangular fuzzy numbers of each criterion for alternative A2 and their respective crisp values
are shown in Figure 4. As can be seen, the crisp values are situated close to the middle values of the
triangular fuzzy numbers. Hence, there is a small difference in the DFT1 and DT1 values for each
alternative and indifference in the ranking solutions. In the fuzzy MCDM problem, the final result is a
crisp value since the MCDM method must provide a deterministic solution.

Next, consider the ranking by fuzzy VIKOR as given in Table 10. The fuzzy ranking {Rank}Q̃ in
the fuzzy VIKOR method gives a partial ranking since the first position in {Rank}Qb is not confirmed
(Step 5 in Section 2.4).

Table 10. Ranking by fuzzy VIKOR.

Ordering 1 2 3

{Rank}Qb A3 A1 A2
{Rank}Q̃ A1 A2

Defuzzification {Rank}Q A3 A1 A2
{Rank}S A3 A1 A2
{Rank}R A3 A1 A2

In the case of ranking by VIKOR defuzzification, the final decision is the set of compromise
solutions {A3, A1, A2} (Step 8 in Section 2.4). Eventually, since there are only three options,
the defuzzification ranking by VIKOR gives a set of solutions with all three options. The results
obtained by the fuzzy VIKOR are given in Table 11.
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Table 11. Results by fuzzy VIKOR.

A1 A2 A3

Sa −1.49 −1.02 −1.42
S̃ Sb 0.62 1.39 0.43

Sc 3.25 4.01 2.85
Crisp(S) 0.75 1.44 0.57

Ra −0.18 0 −0.17
R̃ Rb 0.33 0.6 0.2

Rc 1 1 0.85
Crisp(R) 0.37 0.55 0.27

Qa 0 0.11 0.01
Q̃ Qb 0.066 0.24 0

Qc 0.095 0.18 0
Crisp(Q) 0.057 0.193 0.003

Next, the ranking by the fuzzy TOPSIS is given in Table 12. This method also identifies candidate
A3 as the best candidate.

Table 12. Ranking and results by fuzzy TOPSIS.

Ranking 1 2 3
A3 A1 A2

d+ 1.45 1.48 1.87
d− 3.93 3.95 3.52
CC 0.731 0.728 0.653

As can be seen from Table 12, alternative A3 is the closest to the ideal solution (d+ = 1.45).
However, it is not the farthest from the anti-ideal solution (d− = 3.93). In fact, the alternative farthest
from the anti-ideal solution is A1 (d− = 3.95). It shows that the concept of the TOPSIS method, to have
the best solution that is the closest to the ideal and the farthest from the anti-ideal solutions, is not
realized in this conflicting multi-criteria problem.

Now, suppose the DM have changed their preferences towards each criterion. The new DM’s
preferences, presented by the linguistic variables, are given in Table 13. According to Table 1, as well
as Formulae (2) and (12), the fuzzy and defuzzified weights associated with the new preferences are
shown in Table 14.

Table 13. New criteria weightage by decision makers.

Criterion DM1 DM2 DM3

Y1 MH H H
Y2 VL L VL
Y3 ML ML ML
Y4 H H VH
Y5 L VL L

Table 14. New fuzzy and defuzzified weights.

Ỹj Ỹ1 Ỹ2 Ỹ3 Ỹ4 Ỹ5

w̃j (0.63,0.83,0.97) (0,0.03,0.17) (0.1,0.3,0.5) (0.77,0.93,1) (0,0.07,0.23)
wj 0.82 0.06 0.3 0.91 0.09
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As can be seen from Table 14, the DM now prefer criterion Y1 (emotional steadiness) and criterion
Y4 (past experience) more than the other criteria. The results by each fuzzy MCDM method for the
new criteria weights are given in Table 15.

Table 15. Results by the fuzzy MCDM methods with the new criteria weights.

MCDM Method A1 A2 A3

Fuzzy Trade-off

DFT1 1.700 0.354 1.272
DT1 1.799 0.364 1.334

Fuzzy VIKOR

Crisp(S) 0.662 0.411 0.357
Crisp(R) 0.405 0.276 0.253

Qa 0.007 0 0.016
Qb 0.145 0.024 0
Qc 0.188 0.045 0

Crisp(Q) 0.121 0.023 0.004

Fuzzy TOPSIS

d+ 3.283 3.215 3.184
d− 2.074 2.096 2.125
CC 0.387 0.395 0.400

From the results in Table 15, the best candidate by the fuzzy trade-off ranking method is candidate
A2. Note that candidate A2 is ranked the lowest with the previous criteria weights. The difference is
related to DM’s preferences. In the previous problem, DM’s preferences towards each criterion are
quite equal (Table 7). However, in the new weights problem, the DM prefer criteria Y1 and Y4 more
than the others. According to Table 7, candidate A2 possesses the best score in both criteria preferred
by the DMs. Hence, it is now regarded as the best choice. In turn, the worst candidate is A1 since this
candidate is ranked the lowest in both criteria Y1 and Y4.

Meanwhile, the fuzzy VIKOR method gives a set of compromise solutions {A3, A2, A1} as a final
ranking result for the new weights case. As for the fuzzy TOPSIS, the best option for the new weights
is the same as in the previous weights case, i.e., candidate A3. The difference now is in the results
such that the alternative that is closer to the ideal solution (d+) is also farther from the anti-ideal
solution (d−).

5. Conclusions

A fuzzy trade-off ranking method for the fuzzy MCDM problem has been proposed. The approach
has been utilised to find the best solution to the fuzzy conflicting multi-criteria problem. The fuzzy
trade-off ranking method is able to capture the solution with the least compromise. It is also able to
comprehend DM’s preferences in a conflicting MCDM problem. The algorithm takes into account
the position of an alternative with respect to the other alternatives. Therefore, in contrast to other
techniques, the ranking analysis is nonlocal. The proposed methodology has been compared against
two well known fuzzy methods, VIKOR and TOPSIS, in application to the personnel selection problem.

In contrast to the fuzzy trade-off ranking method, the fuzzy TOPSIS method is an individual
performance method, where an alternative is only compared against the ideal/anti-ideal solutions,
which are artificial solutions. Such a ranking calculation is the best for the MCDM problem, where
an alternative that is close to the ideal solution is also far from the anti-ideal solution. However, in a
conflicting MCDM problem, such an assumption is not always realized. The best solution that is
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the closest to the ideal solution may not be the farthest from the anti-ideal solution. On the contrary,
the fuzzy VIKOR gives a similar solution as the fuzzy trade-off ranking since the fuzzy VIKOR was
also developed to tackle the conflicting MCDM problems. However, in some problems, as shown in
the numerical example, the fuzzy VIKOR gives a set of compromise solutions rather than one single
solution. In that matter, the DM still has to choose one solution out of the compromise set proposed
by the fuzzy VIKOR method. In future work, the approach will be applied to a wider range of data
including continuous, ordinal and categorical variables. More practical problems will be considered.
Comparisons with other available ranking techniques are also needed. The final selection of the
ranking method depends on the preferences of the Decision-Maker. Systematic comparison of the
available techniques for different classes of problems should be valuable.
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