Plasma Homocysteine, Folic Acid, and Vitamin B₁₂ Levels in Patients With Pseudoexfoliation Syndrome, Pseudoexfoliation Glaucoma, and Normotensive Glaucoma

Fatih Mehmet Türkcü¹, Özlem Gürbüz Kızı², Alper Yarangümeli², Veysi Öner³, Gülcan Kural²
¹Department of Ophthalmology, Faculty of Medicine, Dicle University, ²1st Eye Clinic, Ankara Numune Education and Research Hospital, ³Department of Ophthalmology, Batman State Hospital, Turkey

Key Words: homocysteine; pseudoexfoliation; normotensive glaucoma; folic acid; vitamin B₁₂.

Summary. Objective. The aim of this study was to evaluate the levels of plasma homocysteine (Hcy), vitamin B₁₂, and folic acid in patients with pseudoexfoliation glaucoma (PEXG), pseudoexfoliation syndrome (PEXS), PEXS plus normotensive glaucoma (NTG).

Material and Methods. In total, 24 patients with PEXG, 35 patients with PEXS, 18 patients with PEXS plus NTG, and 35 control subjects were enrolled into study. Their Hcy levels were measured by high performance liquid chromatography (HPLC); the levels of vitamin B₁₂ and folic acid were measured by a competitive electrochemiluminescence immunoassay.

Results. Higher plasma Hcy levels and lower folic acid and vitamin B₁₂ levels were found in all 3 patients’ groups compared with the control group (all P<0.001, except for folic acid in the PEXG group, P=0.03). Although plasma Hcy levels in the PEXG and PEXS groups were similar, the PEXS plus NTG group had significantly higher Hcy levels compared with these groups (P=0.019 and P=0.032, respectively).

Conclusions. Our study showed that there was an association between hyperhomocysteinemia and PEXS either with or without glaucoma. The patients with PEXS plus NTG had higher plasma Hcy levels than the patients with PEXS or PEXG and the healthy controls. The treatment of hyperhomocysteinemia by taking low-cost vitamin B₁₂ and folic acid preparations may prevent additional vascular problems.
patients with PEXS plus NTG in one or both eyes, and 35 control subjects. The subjects were divided into 4 groups: PEXG, PEXS, PEXS plus NTG, and control. All patients were newly diagnosed and had no previous history of antiglaucomatous treatment. The study was conducted in accordance with the Declaration of Helsinki, all the subjects gave their informed consent, and the Local Ethics Committee approved the study.

A detailed medical history was obtained from all the enrolled subjects in order to determine whether they had known or suspected diabetes mellitus, systemic hypertension, coronary artery disease, cerebrovascular disease or were receiving any drug therapy at that time. All the patients were referred to the same cardiologist (C.K.) for the further evaluation of possible systemic diseases.

Each patient underwent a complete eye examination, including best-corrected visual acuity, perimetry (Humphrey Field Analyzer; HFA II, model 750, Humphrey instruments, San Leandro, CA, 30–2 full threshold program), slit-lamp examination of the anterior segment, pachymetry, IOP measurement by Goldmann applanation tonometry, gonioscopic evaluation of the anterior chamber angle, biomicroscopic examination of the anterior lens capsule or the edge of the pupil before or after dilatation during the biomicroscopical examination.

The patients with IOP of 21 mm Hg or more, glaucomatous damage in the optic disc, and glaucomatous damage during a visual field examination were diagnosed as having PEXG. The glaucomatous visual field was considered when one of the following criteria was fulfilled on 2 consecutive examinations: abnormal results of the glaucoma hemifield test; a band of 3 or more nonedge points approved with a<5% probability of normality, one of which should have P<1% and none should be contiguous with the blind spot; or a corrected pattern standard deviation of <5% when the visual field was otherwise normal (16).

The diagnostic criteria for NTG were glaucomatous changes in the optic disc (focal or concentric atrophy, neuroretinal rim loss, peripapillary hemorrhage), IOP of 21 mm Hg or lower, and glaucomatous changes in a visual field test (16).

The control subjects did not have any history of ocular diseases (except refractive error, cataract). The patients with a retinal lesion other than glaucoma that might affect the visual field examination, any ocular disease similar to corneal opacity, any inflammatory or compressive disease that might affect the optical nerve, a history of eye surgery and fundoscopy.

In this study, increased plasma Hcy levels and decreased folic acid and vitamin B12 levels were found.
Table 1. Demographic and Clinical Data of the Groups

<table>
<thead>
<tr>
<th></th>
<th>PEXG (n=24)</th>
<th>PEXS (n=35)</th>
<th>PEXS+NTG (n=18)</th>
<th>Control (n=35)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), years</td>
<td>67.0 (6.9)</td>
<td>67.6 (7.4)</td>
<td>68.3 (9.4)</td>
<td>69.6 (6.5)</td>
<td>>0.05*</td>
</tr>
<tr>
<td>Gender, n (male/female)</td>
<td>10/14</td>
<td>20/15</td>
<td>10/8</td>
<td>18/17</td>
<td>>0.05†</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>6 (25)</td>
<td>10 (28.5)</td>
<td>5 (27.7)</td>
<td>9 (25.7)</td>
<td>>0.05†</td>
</tr>
<tr>
<td>CAD, n (%)</td>
<td>3 (12.5)</td>
<td>5 (14.2)</td>
<td>2 (11.1)</td>
<td>4 (11.4)</td>
<td>>0.05†</td>
</tr>
</tbody>
</table>

PEXG; pseudoexfoliative glaucoma, PEXS; pseudoexfoliative syndrome, NTG; normotensive glaucoma, CAD; coronary artery disease.

*Kruskal-Wallis test (for quantitative data), †chi-square test (for qualitative data).

Table 2. Laboratory Data of the Groups

<table>
<thead>
<tr>
<th></th>
<th>PEXG (n=24)</th>
<th>PEXS (n=35)</th>
<th>PEXS+NTG (n=18)</th>
<th>Control (n=35)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homocysteine, μmol/L</td>
<td>15.4</td>
<td>15.8</td>
<td>19.8</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>Folic acid, pg/mL</td>
<td>8.2</td>
<td>6.3</td>
<td>7.0</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>Vitamin B<sub>12</sub>, ng/mL</td>
<td>232.2</td>
<td>241.4</td>
<td>227.2</td>
<td>372.8</td>
<td></td>
</tr>
</tbody>
</table>

Values are expressed as mean (standard deviation).

Our results are in accordance with the previous studies that put forward the association of hyperhomocysteinemia and PEXS, with or without glaucoma (9–12). Vessani et al. (9) have compared plasma Hcy concentrations among patients with exfoliation syndrome, exfoliative glaucoma, and normal-tension glaucoma and healthy control subjects and shown that Hcy levels were higher in both exfoliative groups compared with the control group. The levels were higher in those with normal-tension glaucoma, but not significantly different from those of the controls. Leibovitch et al. (10) have demonstrated the prevalence of hyperhomocysteinemia in patients with PEXG to be significantly increased compared with subjects who did not have ocular disease, but they had a similar vascular risk profile. Puustjärvi et al. (11) have shown that plasma Hcy levels were significantly higher in the patients with PEXS, PEXG, and PEXS plus NTG as compared with the healthy controls. In addition, the PEXS plus NTG group had the highest level of plasma Hcy among the groups, and nearly all of the patients (94%) in this group had hyperhomocysteinemia. To the best of our knowledge, this is the first study that evaluated plasma Hcy, folic acid, and vitamin B₁₂ levels in patients with PEXS plus NTG.

PEXS presents clinically as small whitish deposits of the fibrillar and granular material in the anterior segment of the eye. It may also be found in the extracellular tissues, including the skin, heart, lungs, liver, kidneys, gall bladder, and cerebral meninges (17, 18). Although the pathogenic mechanism of PEXS and its clinical importance still are not exactly clear, some studies have shown decreased orbital blood flow in patients with PEXS (19–23). Ocular and systemic vascular disorders, especially central retinal vein occlusion, aortic aneurysms, and cerebrovascular and cardiovascular disease, were seen commonly in patient with PEXS and high Hcy levels (21, 24–28).

Hyperhomocysteinemia causes an increase in the expression of elastolytic matrix metalloproteinase (MMP) 2 and 9 in the vessel wall, as well as the expression of the human tissue activator of MMP-2 and MMP-9 (29). The structural association of exfoliation fibers with the components of the elastic system (i.e., zonular fibers) has been reported, along with the similar histochemical staining properties of the exfoliative material and zonules and the ultrastructural indications for the development of degenerating elastic microfibrils into the exfoliative material (8). These findings support the hypothesis that Hcy plays a role in the mechanism involved in the formation of the pseudoexfoliation material.

In the patients with PEXS, PEXG, and PEXS plus NTG as compared with the healthy controls. In addition, the PEXS plus NTG group had the highest level of plasma Hcy among the groups, and nearly all of the patients (94%) in this group had hyperhomocysteinemia. To the best of our knowledge, this is the first study that evaluated plasma Hcy, folic acid, and vitamin B₁₂ levels in patients with PEXS plus NTG.

PEXS presents clinically as small whitish deposits of the fibrillar and granular material in the anterior segment of the eye. It may also be found in the extracellular tissues, including the skin, heart, lungs, liver, kidneys, gall bladder, and cerebral meninges (17, 18). Although the pathogenic mechanism of PEXS and its clinical importance still are not exactly clear, some studies have shown decreased orbital blood flow in patients with PEXS (19–23). Ocular and systemic vascular disorders, especially central retinal vein occlusion, aortic aneurysms, and cerebrovascular and cardiovascular disease, were seen commonly in patient with PEXS and high Hcy levels (21, 24–28).

Hyperhomocysteinemia causes an increase in the expression of elastolytic matrix metalloproteinase (MMP) 2 and 9 in the vessel wall, as well as the expression of the human tissue activator of MMP-2 and MMP-9 (29). The structural association of exfoliation fibers with the components of the elastic system (i.e., zonular fibers) has been reported, along with the similar histochemical staining properties of the exfoliative material and zonules and the ultrastructural indications for the development of degenerating elastic microfibrils into the exfoliative material (8). These findings support the hypothesis that Hcy plays a role in the mechanism involved in the formation of the pseudoexfoliation material.

Our results are in accordance with the previous studies that put forward the association of hyperhomocysteinemia and PEXS, with or without glaucoma (9–12). Vessani et al. (9) have compared plasma Hcy concentrations among patients with exfoliation syndrome, exfoliative glaucoma, and normal-tension glaucoma and healthy control subjects and shown that Hcy levels were higher in both exfoliative groups compared with the control group. The levels were higher in those with normal-tension glaucoma, but not significantly different from those of the controls. Leibovitch et al. (10) have demonstrated the prevalence of hyperhomocysteinemia in patients with PEXG to be significantly increased compared with subjects who did not have ocular disease, but they had a similar vascular risk profile. Puustjärvi et al. (11) have shown that plasma Hcy levels were significantly higher in the patients with PEXS than in the normal controls, but the Hcy concentration in the aqueous humor did not differ between the 2 groups. Altuntas et al. (12) evaluated total plasma Hcy and nitric oxide marker levels in the patients with PEXS, PEXG, and primary open-angle glaucoma (POAG) and the healthy controls. The mean plasma homocysteine level was statistically significantly elevated in the PEXS and PEXG groups, but not in the POAG group when compared with the control group. In addition, multiple logistic regression analysis performed in this study showed that an elevation in the plasma Hcy concentration was a significant risk factor for PEXS and PEXG, but was not a significant risk factor for POAG.

Vitamin B₁₂ and folic acid are the most common environmental cofactors for Hcy. Deficiencies in vi-
tamin B₁₂ and folic acid cause the majority of cases of hyperhomocysteinemia (30). The levels of folic acid (15, 31) and vitamin B₁₂ (31, 32) have been found to be lower in patients with PEXG, which is similar to our results. A study by Lobo et al. has reported that folic acid, vitamin B₁₂, and vitamin B₉ supplementation can reduce Hcy levels by 30% (33).

The exfoliative process has been reported as a risk factor for optic nerve head damage, independent of IOP (34–37). In our previous study, we showed that there were glaucomatous findings in a significant proportion of the normotensive patients with PEXS (38).

This study showed that the plasma Hcy levels in the patients with PEXS plus NTG were higher than in the patients with PEXS and PEXG. However, the results concerning the plasma Hcy levels in NTG are conflicting. No relationship was found between the elevated Hcy levels and NTG (10, 13–15). On the other hand, Clement et al. (39) demonstrated that in their study population, elevated plasma Hcy occurred in NTG at comparable levels and concluded that elevated plasma Hcy seemed to be associated with glaucoma in these patients. The results of our study were in agreement showing that the patients in the PEXS plus NTG group had the highest plasma Hcy levels among all the groups. Therefore, we may infer that high Hcy levels increase the risk of NTG progression in patients with PEXS, independent of IOP. Vascular, neurotoxic, and apoptotic factors might play a role in this progression (40).

Conclusions

Our study showed that plasma Hcy levels were increased and those of folic acid and vitamin B₁₂ were reduced in the patients with PEXS, PEXG, and PEXS plus NTG. The most remarkable finding was that the patients who had PEXS plus NTG had higher plasma Hcy levels than the patients with PEXS and PEXG and the healthy controls and hyperhomocysteinemia was more common among them. However, it is not clear whether the elevated Hcy levels contribute to the pathogenesis of the pseudoexfoliation material and to the development of normotensive or high-pressure glaucoma in these patients, but we suggest that the measurements of plasma Hcy might be useful in order to understand the pathogenesis of PEXS plus NTG. Hyperhomocysteinemia is readily reversible in most patients, when they take low-cost vitamin B₁₂ and folic acid preparations. This treatment may also reduce other vascular problems in patients with pseudoexfoliation.

Acknowledgments

We would like to thank to Assoc. Prof. Cem Köz, MD, for collaborating with us in this study and for the systemic evaluation of the subjects.

This study was presented as a poster presentation in the 45th National Congress of Ophthalmology Society, Turkey, in 2011.

Statement of Conflict of Interest

The authors state no conflict of interest.

References

Received 7 November 2012, accepted 30 May 2013