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Abstract: Bluetooth Low Energy (BLE) is a recently developed energy-efficient short-range 

wireless communication protocol. In this paper, we discuss and compare the maximum 

peer-to-peer throughput, the minimum frame turnaround time, and the energy consumption 

for three protocols, namely BLE, IEEE 802.15.4 and SimpliciTI. The specifics and the 

main contributions are the results both of the theoretical analysis and of the empirical 

measurements, which were executed using the commercially available hardware 

transceivers and software stacks. The presented results reveal the protocols’ capabilities 

and enable one to estimate the feasibility of using these technologies for particular 

applications. Based on the presented results, we draw conclusions regarding the feasibility 

and the most suitable application scenarios of the BLE technology. 

Keywords: Bluetooth Low Energy; BLE; 802.15.4, SimpliciTI, performance; throughput; 

latency; efficiency; measurements; energy 

 

1. Introduction 

During recent years, energy-efficient short-range wireless communication technologies have 

become a hot topic for research and development. The efforts of researchers and engineers have 

increased the energy efficiency of and reduced the monetary costs for wireless data transmission. 
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Therefore, for many applications today, wireless data transfer appears to be more efficient than data 

transfer using wired media [1,2]. 

Nowadays, numerous transceivers implementing the different wireless communication protocols are 

available on the market. One of the recently suggested protocols is Bluetooth Low-Energy (BLE), 

which is aimed at applications and products requiring low current consumption and low 

implementation complexity and having low production costs [3]. During the development of BLE and 

shortly after its introduction, it was predicted that the protocol would have a very wide application area. 

For example, in [4] the authors predicted that BLE-based devices would dominate the Wireless Sensor 

Network (WSN) application market by 2015. Nonetheless, even today, i.e., more than two years after 

the finalization of the BLE specification and over a year since the appearance of the first commercial 

BLE transceivers, the features of the protocol itself and the capabilities of the hardware (HW) and 

software (SW) implementing the protocol are still not broadly known. Therefore, in this paper we 

study BLE and compare it with a proprietary radio protocol and with IEEE 802.15.4, which is today 

one of the most popular technologies for energy-efficient short-range wireless data transmission. 

The specifics and the major contributions of this paper are the results of the heuristic analysis of 

the protocols’ capabilities and the results of the empirical measurements that we performed using the 

real-life off-the-shelf transceivers. These data reveal the maximum throughput and the minimum 

turnaround time one can potentially achieve using the protocols under discussion, and they reveal the 

values of these parameters for real transceivers. Additionally, in the paper, we discuss the energy 

consumption of the real-life transceivers implementing the protocols. All the transceivers that we used 

for our experiments have the same processing core, which is based on the 8051 microcontroller. This 

enabled us to estimate the complicity of the protocols based on the resources consumed by each 

protocol stack. These data are presented and discussed in the paper as well. 

We first discuss some of the previous research focused on the protocols under discussion in  

Section 2. In Section 3 we provide a brief overview of the protocols and present the analytic 

estimations of the maximum throughput and the minimum turnaround time. Section 4 describes the 

details of our testbed and the experiments. Section 5 presents and discusses in detail the obtained 

analytic and experimental results. Finally, Section 6 concludes the paper, summarizes the obtained 

results and discusses the feasibility and the most suitable application scenarios for BLE. 

2. Related Work 

2.1. IEEE 802.15.4 

The initial revision of the IEEE 802.15.4 standard was introduced in 2003. During the following 

years, multiple research papers discussing different aspects of the IEEE 802.15.4 protocol were published.  

The performance of IEEE 802.15.4 has been studied in [5]. There, the authors state that for the  

single-hop scenario, the upper bound of the throughput in the IEEE 802.15.4 nonbeacon-enabled network 

is defined by the time required to transfer the frame header, data, acknowledgement (if used) and wait 

period between frames. According to their analysis, the maximum effective throughput for 

unacknowledged single-hop data transmission is 140.9 kbit/s [5]. Nonetheless, the authors did not account 
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for the fact that some service operations (including, e.g., the carrier sense multiple access (CSMA) 

algorithm) can be executed during the interframe space (IFS) period [6]. 

In [7] and [8], the authors accounted for the possibility of executing the CSMA algorithm during the 

IFS. In [7], Latre et al. used the default values for the variable defining the operation of the CSMA 

algorithm and obtained a maximum throughput of 148.8 kbit/s and 162.2 kbit/s for acknowledged and 

unacknowledged single-hop transmission, respectively. Choi and Zhou [8] optimized the CSMA algorithm 

parameters and reported maximum single-hop throughput values of 167.6 kbit/s and 189.5 kbit/s for 

acknowledged and unacknowledged transmission, respectively. In [6] we have confirmed these results 

and provided the analytic framework for IEEE 802.15.4 throughput analysis for different operation 

modes. The transmission delay, end-to-end latency and packet delivery rate analyses for the 

Electrocardiogram (ECG) monitoring system based on IEEE 802.15.4 have been studied by Liang and 

Balasingham in [9]. 

2.2. BLE 

BLE was introduced as a part of the Bluetooth Core Specification version 4.0 [3] in June 2010. 

Although quite significant time has passed since the standard was developed, there are only a few 

research papers discussing BLE. 

The implementation of the BLE transceiver or of particular transceiver components was discussed 

by the authors in [10–12]. In their work, Zhang et al. [10] and Masuch and Delgado-Restituto [11] 

suggested ways to implement the demodulators of the BLE receiver. In [12] Wong et al. presented a 

new low power transceiver chip that supports three different protocols, including BLE. 

The feasibility of BLE for real-life applications and the lessons learned while developing 

applications using BLE technology were discussed in [13–15]. The authors of all these papers 

considered utilizing BLE for different biomedical use cases. 

In [16] the authors analysed the network discovery process in BLE and estimated the average 

latency and the average energy consumption for it. In [17] and [18] the authors analysed and used the 

simulation tools to estimate the throughput and the latency for BLE communication. They reported that 

the maximum application layer throughput for BLE equals 236.7 kbit/s [17]. Additionally, the authors 

in [17] reported the experimental energy consumption measurements for a real BLE transceiver and 

pointed out that due to the limitations of the used BLE stack in practice, they were able to obtain a 

maximum throughput of only 58.48 kbit/s. The energy consumption of BLE was also discussed in [19] 

and [20]. In [19] the results revealing the Texas Instruments (TI) CC2540 BLE transceiver’s power 

consumption were presented and discussed. In [20] the authors reported and compared the results of 

the power consumption measurements for the BLE and ZigBee [21] transceivers, showing that BLE’s 

energy utility is 2.5 times better than the one of ZigBee [20]. 

2.3. SimpliciTI 

SimpliciTI is a proprietary radio protocol developed by TI for its radio modules, and we are not 

aware of any research focusing on the performance evaluation of the protocol. Nonetheless, the 

protocol has been used to implement radio communication in [22–24]. 
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3.1.1. Maximum Single-Hop Throughput 

In [6] we showed that the maximum throughput for the MAC payload (in kbit/s) in the  

nonbeacon-enabled IEEE 802.15.4 2450 DSSS PAN for acknowledged and unacknowledged  

single-hop data transfer can be calculated by Equations (3) and (4), respectively. In Equations (3), (4) 

and onwards  denotes the number of MAC payload bytes in a single frame,  stands for the radio 

signal propagation delay, T ( )	and	T ( )	account for the time required to process the  

n-byte data frame before the transmission and after the reception, respectively. The notation ( ; )  denotes the function that returns  if ≥  and  if < . For further details and 

explanations about the frame format please refer to [6]. ℎ ℎ ( , T , T , ) =∙. ( ); ( ) ∙ . , < 8∙. . 	 ; ( ) . ; ( ) ∙ . , ≥ 8	  (3)

ℎ ℎ _ ( , T , T , )
=

∙ 8max T ( ) + 0.512 ; + T ( ) + ∙ 8250 + 0.544 		 , < 8	∙ 8max 0.64 ; T ( ) + 0.512ms; + T ( ) + ∙ 8250 + 0.544 	 , ≥ 8	 	 (4)

In a beacon-enabled PAN, the maximum throughput depends on the number of time slots in the 

CAP (i.e., ) and CFP and can be calculated by Equation (5) using Equations (6) and (7) for 

acknowledged data transfer or Equations (8) and (9) for unacknowledged transfer. In Equations (6)  

and (8)  denotes the function that rounds x to the nearest integer greater than or equal to x. ℎ ℎ ( , , , T , TTXprep, TRXproc, ) = ℎ ℎ ( , TTXprep, TRXproc, ) ∙ ∙ +ℎ ℎ ( , TTXprep, TRXproc, ) ∙  
(5)

ℎ ℎ _ ( , T , T , )= ∙ 8max + 0.544 +max T ( ) + 0.832 ; T ( ) + + 0.544 + ∙ 8250 /0.32 ∙ 0.32  (6)

ℎ ℎ _ ( , T , T , )
=

∙ 8max + 0.736 + T ( ); T ( ) + ∙ 8250 + 0.544 + 		 , < 8	∙ 8max + 0.544 + T ( ) + 0.192 ; 0.64 , T + ∙ 8250 + 0.544 + 	 , ≥ 8	  
(7)

ℎ ℎ _ ( , T , T , )= ∙ 8max T ( ) + 0.832 ; T ( ) + + 0.544 + ∙ 8250 /0.32 ∙ 0.32 	 (8)

ℎ ℎ , T , T , = ∙. , ∙ . 	 	 , < 8	∙. , . , ∙ . 	 , ≥ 8	  (9)
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3.1.2. Minimum Single-Hop Turnaround Time 

By minimum turnaround time we understand the minimum time required for sending a data frame 

from node A to node B and for getting a data frame from node B to node A in reply. If the payload of 

the forward frame (i.e., a frame sent from A to B) is n bytes and the payload of reply frame is m bytes, 

the minimum turnaround time for acknowledged and unacknowledged transmissions in the  

nonbeacon-enabled IEEE 802.15.4 PAN is given by: T _ , , T , T , T , = 2 ∙ T + T ( ) + T ( ) + T = 2.656	 +( )∙ + 2 ∙ T + T + + T  (10)

T _ , , T , T , T , = 1.92 + ( + ) ∙ 8250 + 2 ∙ T + T + + T (11)

where, T 	denotes the time required for executing CSMA-CA, T ( ) signifies the time for 

sending the data frame with an x-byte payload, T  indicates the time for sending the ACK frame and T  denotes the time for processing the forward frame and generating the reply frame by the layers 

above the ones standardized by IEEE 802.15.4 (e.g., the application layer). 

For a nonbeacon-enabled PAN the minimum turnaround time for data transfer in CAP and CFP 

differs significantly. Besides, in CFP the turnaround time is affected by the duration of the GTSs and 

their direction (i.e., whether the data within a GTS are transferred from the coordinator to a device or 

vice versa). During the CAP, the roundtrip time for acknowledged and unacknowledged scenarios is 

given by the following equations: T , , T , T , T , = 3.296 + ( )∙ + 2 ∙ T + T + + T  (12)T _ , , T , T , T , = 2.56 + ( + ) ∙ 8250 + 2 ∙ T + T + + T (13)

3.2. Bluetooth Low Energy 

BLE was introduced as a part of Bluetooth Core Specification 4.0 in 2010 [3]. The major purpose of 

developing BLE was to enable products to have lower current consumption, lower complexity and 

lower cost than the ones possible with the classic Bluetooth [3]. 

Like the classic Bluetooth, a BLE transceiver includes two major components: a Controller and a 

Host [3]. The Controller is the logical entity that is responsible for the PHY layer and the link layer 

(LL) [3]. Although BLE Controllers inherit some features from the classic Bluetooth Controllers, both 

types of Controllers are not compatible [17]. The Host implements the functionalities of the upper 

layers. Those include (see Figure 4): L2CAP, GAP, ATT, GATT and SM. The logical link control and 

adaptation protocol (L2CAP) defines the procedures for higher level multiplexing, packet 

segmentation and transfer of quality of service (QoS) information [3]. The generic access profile (GAP) 

specifies generic procedures related to the discovery of devices, link establishment and termination 

management and procedures related to the use of the different security levels; it also includes the 

common format requirements of the parameters accessible on the user interface level. The security 

manager (SM) handles the management of pairing, authentication, bounding and encryption for BLE 

communication. The attribute protocol (ATT) specifies the mechanisms for discovering, reading and 
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An advertising event ends and connection events start if the advertiser receives and accepts the 

connection request. Once a connection is established, the initiator becomes the master device and the 

advertiser becomes the slave device. As illustrated in Figure 5c, at the beginning of each connection 

event (referred to as the connection event anchor point) the used radio channel is changed following 

the predefined sequence. The communication in each connection event is initiated by the master device, 

which sends a frame to the slave. The master and the slave alternate sending the frames on the same 

data channel while at least one of the devices has data to transmit or until the end of the current 

connection event. In the case if either master or slave receives two consecutive frames with CRC errors, 

the connection event is closed. The same happens if either of the devices is missing a radio packet. 

According to the specification [3], the minimum time between frames on the same data channel should 

exceed the IFS, which equals	150	 . Note that unlike IEEE 802.15.4, which defines the IFS as the 

period of time between two successive frames transmitted from a device, BLE considers IFS the time 

interval between two consecutive frames on one channel. 

The timing of connection events is determined using two parameters, namely the connection event 

interval (connInterval), and the slave latency (connSlaveLatency). The connInterval is a multiple of 

1.25 ms and has values ranging from 7.5 ms to 4.0 s. The connSlaveLatency defines the maximum 

number of consecutive connection events in which a slave device is not required to listen to the master 

(used to enable energy saving). The format for BLE frames is depicted in Figure 3b. 

3.2.1. Maximum Throughput on Advertising Channels 

As illustrated in Figures 5a, 5b and Table 1, BLE enables data transmission in ADV_IND, 

ADV_SCAN_IND and ADV_NONCONN_IND advertising events. To include the data in the 

advertising frames, the Host sends the Controller either the LE_Set_Advertising_Data_Command or 

LE_Set_Scan_Response_Data_Command and specifies up to 31 data bytes to be included in the 

advertising or scan response frames. Note that upper layers of BLE add some overhead and each frame 

will carry less than 31 bytes of user-defined data. Nonetheless, to make the comparison with other 

technologies fair, we will consider the LL payload when discussing BLE. Assuming that in each of the 

advertising events the advertiser sends new data, the maximum throughput can be estimated as ℎ ℎ ( ) = ∙ 8 , = 0. .31 (15)

where  is defined from Equation (14) with advInterval value taken from Table 1. 

Note that data transferring on the BLE advertising channels is not straightforward. The major 

challenge is that according to the standard [3], the BLE Controller has no means to inform the Host 

about the end of an advertising event so that the Host can update the advertising data. Therefore, to 

enable such data transmission, the application layer needs to control the timing on its own and 

periodically update the advertising data. 
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3.2.2. Maximum Throughput on Data Channels 

The transfer of data using connection events and data channels is illustrated in Figure 5c. The 

throughput for master-slave unidirectional data transfer is given by  ℎ ℎ , , T , T ,= ∙ 80.16 + ( + ) ∙ 81000 + 2 ∙ + 2 ∙ max(0.15 , T + T ) , , = 0. .27	 			 (16)

where n denotes the payload of each frame transferred from the master to the slave (i.e., forward 

frame), m is the payload of the reply frame and 0.16 ms accounts for the time for transmitting the 

frame headers. 

Note that in real-life scenarios, strong interferences and losses can significantly decrease the BLE 

throughput. The reason for this is that once a BLE transceiver misses a frame, communication is 

suspended until the next connection event. Moreover, if a device receives two consecutive frames with 

CRC errors, it will also suspend the transmission until the following event.  
Clearly, if = 27, T = T = = = 0 (16) gives a maximum BLE LL throughput of 

319.5 kbit/s and considering that the overhead introduced by the upper layers of the forward frame 

protocols equals 7 bytes (see [17] and [18]), we obtain a maximum application layer throughput of 

236.7 kbit/s. This corresponds to the analytic results reported in [17] and [18], which are obtained 

using Equations (1–3) in [18] for a no packet loss scenario. 

3.2.3. Minimum Turnaround Time 

For the transfer on data channels, the minimum turnaround time is T , , T , T , T ,= 0.16 + ( + ) ∙ 81000 + 2 ∙ + T + T +max	(0.15 , T+ T +T ) (17)

3.3. SimpliciTI 

SimpliciTI is an open-source low-power proprietary radio protocol developed by TI for their 

wireless products (both the IEEE 802.15.4-compatible and the proprietary transceivers) [29]. The 

target of the protocol is to enable the fast and low-cost development of the low-power wireless 

networking applications using TI’s products. Like the other proprietary protocols, SimpliciTI lacks 

rigid specification and is provided as a software (SW) stack with a set of examples and  

minimum documentation. 

SimpliciTI is currently available for TI’s CC1100/2500 (i.e., 433/868/2,400 MHz radio transceivers 

supporting OOK, FSK, GFSK, MSK modulation), CC2420 (i.e., 2,400 MHz radio transceiver compatible 

with IEEE 802.15.4) and the chips originating from those. The typical over-the-air data rate for 

SimpliciTI is 250 kbit/s, although users can easily change this as well as the other radio settings. 

Unlike IEEE 802.15.4, SimpliciTI enables users to choose whether they would like to use CCA or not. 

Moreover, SimpliciTI does not define IFS. The format of a SimpliciTI frame is depicted in Figure 3c.  
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3.3.1. Maximum Throughput  

The maximum throughput for SimpliciTI can be calculated by Equations (18) and (19) for the cases 

in which one uses CCA and when CCA is not required. In Equations (18), (19) and onwards T → 	and T →  denote the time needed to switch between receive and transmit modes and vice 

versa, T  is the minimum time required to test the channel during CCA, DR stands for the used  
over-the-air data rate and N  and N  are the lengths of preamble and synchroword in bytes, 

respectively. For SimpliciTI the T → , T →  and T  are the hardware parameters of the 
transceiver, and DR,	N  and N  are set by users for the majority of transceivers. ℎ ℎ , T , T , T → , T → , T , DR, N , N= ∙ 8+ 11 + N + N ∙ 8DR +max T + T → + T → + T , T 	 (18)

ℎ ℎ , T , T , DR = ∙ 8+ 11 + N + N ∙ 8DR +max T , T 	
(19)

3.3.2. Minimum Turnaround Time 

The minimum turnaround time for SimpliciTI can be calculated by: T , , T , T , T , DR,= + + 22 + 2 ∙ N + N ∙ 8DR +2 ∙ T + T + + T 	 (20)

T , , T , T , T , T → , T → , T , DR,= T , , T , T , T , DR, +2 ∙ (T → + T → + T )	 (21)

4. Experiment Methodology 

In order to compare the analytic estimations of the maximum throughput and the minimum frame 

turnaround time obtained in Section 3 with the performance characteristics of the real-life transmitters, 

we have executed a set of experiments. In those, we have used the CC2430, CC2510 and CC2540 

commercial Systems-on-Chips (SoCs) from TI (see Figure 6). The features of the transceivers are 

summarized in Table 2. For our tests, we developed a special measurement application layer that 

operated on top of MAC layers implemented by SimpliciTI (version 1.2) and TIMAC (stack version 

1.0.1 implementing IEEE 802.15.4) software stacks and on top of the Host Controller Interface (HCI) 

provided by TI-BLE software stack (version 1.2.1).  

In our experiments we did the following: 

• defined the maximum unidirectional LL data throughput for the HW and SW implementations 

of the protocols; 

• measured the throughput and the energy consumption of the transceivers; 

• measured the minimum turnaround time; 

• measured the resources required to implement the protocols. 
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For the throughput estimation, in order to decrease possible environmental effects we measured the 

total time required for the transmission of 60,000 data frames with a predefined payload size from the 

transmitter to the receiver. The turnaround time was estimated by averaging the measurements of the 

turnaround time for 1,000 data frames sent to and from the transmitter. 

To measure the power consumption, we used the current-shunt method (refer to [30–32]). The 

maximum error for these measurements is below 3 mW. The power consumption of the transceivers 

supplied from the laboratory power source was measured. The supply voltage was set to 3 V. While 

measuring the power consumption, all the peripherals on the used test boards were powered down-the 

only active components were the radio transceiver and the microcontroller core running the stacks.  

As shown in Table 2, all the used transceivers have a processing core based on the 8051 

microcontroller. Therefore, by measuring the resources required to implement the protocols we were 

able to get a sufficiently fair estimation of the protocols’ complexity. Note that the developed 

application layers had the same functionality and were compiled using the same compiler with 

identical optimization settings. 

5. Discussion 

The data presented in Table 3 reveal the amount of program and data memory required to 

implement the stacks. As shown, the complete BLE stack requires almost four times more program 

memory than TIMAC and more than eight times more resources than SimpliciTI. The implementation 

of the PHY, LL and HCI BLE layers required 1.5 times more resources than the whole TIMAC stack 

and 3.5 times more resources than SimpliciTI.  

Table 3. Resources consumed by the stacks. 

Resource Stack 

SimpliciTI TI-MAC TI-BLE (Master) TI-BLE (Slave) 

Program memory, bytes 
16,024  36,573 55,786/137,719 2 50,913/117,050 2 

Data memory 1, bytes 
3,567 5,438 10,400/12,750 2 9,082/10,676 2 

Note: 1 Cumulative for RAM and Flash; 2 For PHY, LL and test application layers on top of HCI only/ for the 

complete stack including PHY, LL, HCI, L2CAP, GAP, ATT, GATT, GATT and GAP profiles. 

The analytic estimations of the maximum possible throughput of the three technologies for the 

different frame payloads are depicted in Figure 7. The results have been obtained using  
Equations (3–9), (15), (16), (18), (19) assuming that T = T = = 0, T → = 32.6	 , T → = 33.6	 , T = 1000	 , N = 4	bytes ,and N = 4	bytes  for DR = 250	kbit/s 
and N = 8	bytes for DR = 500	kbit/s (see [33]). The presented results reveal that although 

BLE has the highest over-the-air data rate among all protocols, SimpliciTI using the DR = 500	kbit/s 

can potentially provide a higher throughput. The major reasons for this are the following. First of all, 

during unidirectional data transmission, SimpliciTI does not have to send any data from the receiver 

node to the transmitter, whilst the BLE receiver always has to send a frame in reply to each received 

frame to continue communication in an event (see Section 3.2). Second, unlike the two other protocols, 

SimpliciTI does not define the IFS between transmitted frames. Third, the payload in SimpliciTI 
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Table 4. Cont. 

Stack Time 1, 

ms 

Consumed energy 1,  

 

Energy efficiency 1,  

/byte 

Transmission (for BLE - also reception) of a single frame with other payloads: 

TIMAC, acknowledged 2 , 100-byte payload 5.07 406 4.1 

TIMAC, unacknowledged, 100-byte payload 4.30 347 3.5 

BLE, ADV_IND 3, 31-byte payload 0.80 50 1.6 

BLE, ADV_NONCONN_IND, 31-byte payload 0.60 39 1.3 

BLE (master node), 27-byte data frame transmission 4 0.72 44 1.6 

BLE (master node), 27-byte data frame reception 5 0.72 40 1.5 

SimpliciTI, 250 kbit/s, CCA, 50-byte payload 3.5 246 4.9 

SimpliciTI, 250 kbit/s, no CCA, 50-byte payload 3.16 227 4.5 

SimpliciTI, 500 kbit/s, CCA, 50-byte payload 2.23 148 3.0 

SimpliciTI, 500 kbit/s, no CCA, 50-byte payload 2.09 141 2.8 

Note: 1 Energy and time for pre-processing and post-processing (see [19]) not included; 2 Reception of an 

acknowledgement included; 3 Energy and time for checking the channel for incoming SCAN_REQ included; 4 Energy and 

time for receiving the reply frame with no payload included; 5 Energy and time for sending the starting frame at the 

beginning of a connection event with no payload included (see Figure 5c). 

6. Conclusions 

Bluetooth Low Energy (BLE) is rather new protocol, and in this study we deepened the 

understanding of both the theoretical capabilities of the protocol itself and the capabilities of the 

currently available transceivers to implement the protocol. In the paper, we also compared BLE with 

two other protocols-SimpliciTI, which is a proprietary protocol developed by Texas Instruments, and 

IEEE 802.15.4, which is the de-facto communication standard in the WSNs.  

The results reveal that BLE can potentially support the maximum LL data throughput of around  

320 kbit/s. This is about 70% higher than the maximum throughput possible for IEEE 802.15.4 with 

2450 DSSS PHY (i.e., 190 kbit/s). Nonetheless, the results of the measurements that were executed 

using the real BLE transceivers revealed that the current version of the used BLE stack has several 

limitations, which prevented us from obtaining a throughput higher than 123 kbit/s. This is about 20% 

lower than the throughput we have obtained with the IEEE 802.15.4 transceivers and 40% lower than 

the maximum throughput that was measured for SimpliciTI transceivers. The maximum throughput 

that we managed to obtain on BLE advertising channels was below 10 kbit/s. The absence of the 

mechanism for the BLE Controller to inform the Host about the start/end of an advertising event 

complicates the implementation of the data transfer on BLE advertising channels. 

The presented analytic results show that the BLE technology is capable of providing a frame 

turnaround time of less than one millisecond. The analytic estimations of the minimum turnaround 

times for SimpliciTI and IEEE 802.15.4 range from 0.7 ms to 5 ms and from 2.7 ms to 10 ms, 

respectively. The turnaround time that we have measured using SimpliciTI and the IEEE 802.15.4 

transceivers appeared to be 1.5–3 ms higher than the analytic expectations. The major reason for this 

discrepancy is the time required to generate the data frames and to execute the other service operations. 

This time depends exclusively on the features of the hardware and software that implement the 

protocol and was not accounted for during the analysis. The tested BLE transceivers delayed the 
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transmission of the reply data frame until the start of the next connection event. Due to this feature of 

the BLE stack, the minimum frame turnaround time that we observed during our experiments was 

around 7.6 ms. 

The conducted experiments have shown that the tested BLE transceiver required two to seven times 

less energy to transfer data than the SimpliciTI and the IEEE 802.15.4 transceivers. This result 

corresponds to the results presented in [20]. 

Table 2 reveals that the price of the BLE transceiver chip is slightly lower than the price of the 

SimpliciTI chip and about three times lower than the cost of the IEEE 802.15.4 transceiver. 

Additionally, the presented results have shown that the BLE software stack requires significantly more 

resources than SimpliciTI or IEEE 802.15.4. The implementation of the complete BLE stack requires 

almost four times more program memory than was used by TIMAC (implementing IEEE 802.15.4) 

and more than eight times more than was necessary for SimpliciTI. 

One of the factors that can somewhat limit the applicability of BLE is the restrictions concerning 

the BLE network’s topology. The current version of the standard requires a single-hop star network 

topology and states that a BLE device ‘is only permitted to belong to one piconet at a time’ [3]. 

Although this requirement does not forbid the establishment of the multihop links directly, it makes the 

implementation of multihopping for BLE more challenging. Indeed, to implement a multihop data 

transmission, a node will have to periodically switch the piconets to relay the data between those. 

The other important issue is the interoperability between the BLE and the other telecommunication 

systems, many of which are based on the Internet Protocol (IP). To address this issue, the authors  

of [35] specified a mechanism enabling IPv6 transmission over BLE links. In [36] the details of the 

implementation and evaluation of the IPv6 packets transmission over BLE are reported. Although the 

mechanism suggested in [35] enables BLE devices to transfer the IPv6 packets, it also requires the 

devices to support packet fragmentation at L2CAP (which is optional for BLE [3]) and to have a buffer 

capable of storing at least a datagram of at least 1280 bytes [37]. It is also not clear how energy 

efficient it is to use the IPv6 over BLE links and which applications require this capability, especially 

considering the restrictions regarding the topology of the BLE networks.  

Nonetheless, BLE has two significant advantages: its interoperability with other devices and its low 

cost. One of the factors that impeded the spreading of WSAN-based applications is their absence of 

common communication interfaces enabling other devices (e.g., laptops, smartphones, palmtop 

computers and mobile devices) to communicate directly with WSANs. The Bluetooth Special Interest 

Group (SIG) is addressing this challenge by suggesting dual-mode transceivers, i.e., radio modules that 

can support both the classic Bluetooth and BLE. The first consumer devices (i.e., smart phones, tablet 

computers and notebooks) encapsulating such transceivers have already appeared on the market. 

Moreover, in this paper we have shown that the BLE transceivers are lower in price than transceivers 

implementing the other evaluated technologies. This enables one to reduce the cost of the applications 

developed using this technology. 

To sum up, the results presented in this paper reveal that BLE already provides an inexpensive and 

power-efficient solution for wireless communication. Nonetheless, the tested BLE radio transceiver 

and stack still have many limitations that restrict the throughput and communication latency one can 

achieve with them. The other serious limitation of the BLE technology is the restrictions regarding its 

network topology.  
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Based on the analytic and measurement evaluation results, we expect that the major application area 

for BLE in the coming years will be energy efficient human-oriented applications that require either 

peer-to-peer or single-hop star topologies. These applications may include health and fitness, 

entertainment, smart home/office, personal security and proximity detection, and data and location 

advertisement. Although there is the mechanism enabling the IPv6 to be transferred over BLE links, 

we hardly think that this capability will be widely used in real-life applications in the immediate future. 

Meanwhile, we suppose that for non-human oriented applications and for applications requiring wide 

coverage areas (e.g., the wildlife, nature and environment monitoring, industrial monitoring and 

control, building and process automation, security, logistics) other communication protocols and 

standards will be predominantly used, such as IEEE 802.15.4 and its numerous extensions, e.g.  

ZigBee [21], WirelessHART [38], ISA100.11a [39] or 6LoWPAN [40]. Therefore, we suppose that 

BLE will have a wide application area, specifically for WSAN applications, although this technology 

will hardly dominate the market by 2015 as the authors in [4] assumed. 
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