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Abstract: In order to meet the higher accuracy and system reliability requirements, the information
fusion for multi-sensor systems is an increasing concern. Dempster–Shafer evidence theory
(D–S theory) has been investigated for many applications in multi-sensor information fusion due to its
flexibility in uncertainty modeling. However, classical evidence theory assumes that the evidence is
independent of each other, which is often unrealistic. Ignoring the relationship between the evidence
may lead to unreasonable fusion results, and even lead to wrong decisions. This assumption severely
prevents D–S evidence theory from practical application and further development. In this paper,
an innovative evidence fusion model to deal with dependent evidence based on rank correlation
coefficient is proposed. The model first uses rank correlation coefficient to measure the dependence
degree between different evidence. Then, total discount coefficient is obtained based on the
dependence degree, which also considers the impact of the reliability of evidence. Finally, the discount
evidence fusion model is presented. An example is illustrated to show the use and effectiveness of
the proposed method.
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1. Introduction

With the development of science and technology, in order to meet the higher accuracy and
system reliability requirements, the information fusion filters for multi-sensor systems have been
widely applied [1]. Various methods have been proposed for multi-sensor modeling and sensor data
fusion [2–7], including night-vision image fusion [8], weighted measurement fusion and Unscented
Kalman Filter [9], neural network models [10], fuzzy set theory [11], belief function theory [12],
and so on.

The fusion of different uncertain data is an important research topic of modern intelligent
multi-sensor systems. Among these methods, Dempster–Shafer evidence theory (D–S theory) has
been investigated for many applications in multi-sensor information fusion due to its flexibility
in uncertainty modeling [13–15]. D–S theory was first proposed by Dempster in 1967 [16],
and further developed by Shafer in 1976 [17]. It can not only deal with imprecise information and
uncertain information, but also deal with complimentary information and missing information [18–21].
Therefore, besides multi-sensor information fusion, D–S theory has also been investigated for
applications in many fields such as fault diagnosis [22,23], pattern recognition [24–28], multi-source
information fusion [29], multiple attribute decision making [30–36] and risk analysis [37–40].

In D–S theory, Dempster’s rule plays a vital part in the process of information fusion.
However, there is an issue that limits the application of evidence theory. The classical evidence
theory is based on the assumption that the evidence is independent of each other [41]. In practice,
the dependence is more common. In other words, some elementary item of evidence will be counted
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twice without considering dependent evidence in the process of information fusion [42]. For example,
one expert’s opinion may be affected by another expert’s opinion in an open decision making
environment. In addition, there will be dependence between the evidence “grain production” and the
evidence “natural disaster” in the agriculture risk analysis system [43]. A mistake will be generated
if ignoring dependence between different evidence. To deal with dependent sources of information,
many scholars proposed different methods [44]. The existing methods could be divided into two
categories [45]: (1) improve the combination rule or (2) modify the original belief structure.

For the first category, the basic idea is to find a new evidence fusion method without considering
dependence [45]. Some scholars have proposed their own combination rules. Cattaneo proposed
the rules based on an assumption of minimal conflict rather than the independence assumption [46].
However, this method only analyzes the dependence between BBAs (Basic Belief Assignments) and
fails to reveal the dependence between information sources. Destercke holds the view that the
minimum rule of possibility theory could be generalized to the dependent evidence fusion [47,48].
However, in [18], the author thought this rule didn’t satisfy the fundamental evidence equation.
In [42], the cautious rule of combination aiming at reliable sources of evidence and the bold disjunctive
rule aiming at unreliable sources of evidence is proposed. Both of them satisfy commutative law,
associative law and idempotent law. However, this combination rule was established in the canonical
decomposition of BBA. Choenni proposed a dependent evidence fusion method using the idea of joint
probability distribution of probability theory [49]. However, this method essentially deals with BBA
as a discrete probability distribution and the fusion result is a couple of focal elements rather than
BBA. Chebbah et al. proposed a new combination rule that takes consideration of sources’ degree of
independence and they also suggest a method to quantify sources’ degree of independence [50].

For the second category, the basic idea is to reduce the repetitive computation of the dependent
part of the information sources as far as possible [45]. In this category, there are two research ideas.
The first research idea is based on the relevant source evidence model, which is first proposed in [51]
by Smets. This paper holds that the reason why the two pieces of evidence are related is that they are
obtained from the same source of evidence. The same source of evidence represents the correlation
part between the pieces of evidence. Smets proposed a combination method in [51] based on the TBM
(transferable belief model). Then, Xiao et al. proposed a combination rule based on the model in [51],
and this rule is in the framework of D–S evidence theory. According to this theory, if we know the
correlation part of two information sources, and the evidence of the correlation information source
is available, this method is effective to deal with dependent evidence. However, this method is not
reasonable as it does not care about the significance of the common evidence in some application
systems. In addition, how to acquire the common evidence between two dependent pieces of evidence
remains a question.

The second research idea is based on the discount evidence model. The main idea of this model is
that dependent evidence shouldn’t be given the same weight as independent evidence in the process
of information fusion since it provides less effective information [52]. The dependent evidence should
be discounted in advance, and the discounting coefficients (or weight) are related to the degree
of dependence. Guralnik et al. [53] presented a formal definition of algorithm dependency based
on three criteria, i.e., method, sensors and features, and divided evidence into highly dependent,
weakly dependent and independent evidence. Yager [54] proposed an interesting approach that makes
use of a weighted aggregation of the belief structures where the weights are related to the degree of
dependence. It is more practical to be used in real applications; however, how to define the degree of
dependence is not addressed. To address this problem, Su et al. [43] presented a strategy of handling
dependent evidence at a systematic level, which is able to capture both inner dependence (or interior
relationship) and outer dependence (or exterior relationship). For inner dependence, they suggested
using the analytic network process (ANP) to derive the degree of dependence. For outer dependence,
they proposed a model based on the intersection of influencing factors identified during the information
propagating and evaluating process. However, the method is subjective to some extent. For variables
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with a certain amount of historical data and samples, statistical methods can be used to measure the
dependence among information sources. Su et al. [53] suggests using the Pearson correlation coefficient
to represent the correlation between evidence. However, the Pearson correlation coefficient presents
only a linear correlation between two variables, which is not always the case in real applications.
In this paper, we proposed a method to measure the dependence between evidence based on rank
correlation coefficient that could remove the limitation of Pearson correlation coefficient.

This paper is organized as follows. In Section 2, the preliminaries on D–S evidence theory,
the definition of the discounted BBA and Spearman’s rank correlation coefficient are briefly introduced.
In Section 3, the model based on Spearman’s rank correlation coefficient is proposed. In Section 4,
an experiment is illustrated to show the rationality of this new method. Finally, the conclusions are
given in Section 5.

2. Preliminaries

Some preliminaries are introduced in this section, including Dempster–Shafer evidence theory,
the discounted evidence, Pignistic Probability Transformation and Spearman’s rank
correlation coefficient.

2.1. Dempster–Shafer Evidence Theory

Definition 1. Let Θ= {A1,A2, · · · ,AN} be a finite nonempty set of N elements that are mutual and exhaustive,
and we define Θ as Frame of Discernment [43]. Let P(Θ) be the power set composed of 2N elements of Θ. The
Basic Belief Assignment function (BBA) is defined as a mapping from the power set P(Θ) to a number between
0 and 1, m : P(Θ)→ [0, 1], which satisfies the following conditions [43]:

m(∅) = 0, ∑
A⊆Θ

m(A) = 1, (1)

where m(A) denotes the Basic Belief Assignment of proposition A.

Definition 2. (Dempster’s Rule) Let m1, m2 · · ·mN be N independent BBAs in the frame of Discernment of Θ.
The result of their combination is denoted as m = m1 ⊕m2 ⊕ · · · ⊕mN , and calculated as follows [16]:

m(∅) = 0,

m(A) = K−1 ∑
∩Aj=Ai=1

N
∏
i=1

mi(Aj),
(2)

where K is normalizing factor, calculated as:

K = 1− ∑
∩Aj=∅

N

∏
i=1

mi(Aj). (3)

Definition 3. Let m be the BBA on Θ and α be the discount coefficient, α ∈ [0, 1] the discounted BBA αm
defined as:

αm = α⊗m :

{
αm(A) =αm(A), ∀A ⊂ Θ, A 6= Θ,

αm(Θ) = 1− α + αm(Θ).
(4)

Definition 4. (Pignistic Probability Transformation, PPT) To make a decision after BBA fusion results in
acquisition, there are two methods: the first method is decision according to the BBA fusion results, the second
method is translating the BBA fusion results to the probability and making decision. In the first method, the
information loss may be large, and the second method helps to draw a more accurate result. Based on such
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consideration, Smets proposed the Pignistic Probability Transformation method [55]. Supposing m is BBA in Θ,
let BetP be the Pignistic Probability distribution. The Pignistic Probability Transformation is defined as

BetPm(ω) = ∑
A⊆Θ,ω∈A

1
|A|

m(A)

1−m(∅)
, m(∅) 6= 1, (5)

where |A| is the cardinality of A, and ∅ is denoted as the empty set.

2.2. Spearman’s Rank Correlation Coefficient

There are all kinds of parameters to evaluate the dependent degree. The article [56] suggests using
the Pearson correlation coefficient to represent the correlation between evidence. However, before using
the Pearson correlation coefficient, it is necessary to assume that experiment data derived from normal
distribution and was equidistant at least within the logical range. The rank correlation coefficient
is a parameter-free measure for correlations that may be used to measure the level of agreement
between two stochastic variables without making assumptions regarding the parametric structure of
the probability distribution of the variables. The rank correlation coefficient, a parameter independent
of the distribution, was proposed by Sperman in 1904 and used to measure the correlation between the
two variables [57,58].

The basic idea of the Spearman rank correlation coefficient is to use the rank of the variable instead
of the specific data for statistical inference [59]. Suppose that the variables x and y have n samples
(measured values) denoted as xi, yi, where i = 1, 2, ... n. Sorting the sample data from large to small
(or from small to large), let x′i , y′i be the position of original data xi, yi after arrangment. The Spearman
rank correlation coefficient is defined as

rs =

n
∑

i=1
(x′ i − x̄′)(y′ i − ȳ′)√

n
∑

i=1
(x′ i − x̄′)2 n

∑
i=1

(y′ i − ȳ′)2
= 1−

6
n
∑

i=1
d2

i

n(n2 − 1)
, (6)

where −1 ≤ rs ≤ 1, the |rs| is growing with x, y closer and closer to the strict monotonic function.
rs = 1 represents x, y becoming a strictly monotone increasing function and rs = −1 represents x, y
becoming a strictly monotone decreasing function. If rs = 0, x, y have no relevance to the distinct
monotonic function.

3. Proposed Method

3.1. The Framework of the Proposed Method

In this section, the method of handling dependent evidence is given in detail in order to
fuse dependent sensor data properly. A flowchart of the proposed method is given in Figure 1.
From Section 1, we can know that there are two basic directions to handle dependent evidence. One is
to modify the Dempster’s combination rule, finding a new evidence fusion method without considering
dependence. The other is to reduce the repetitive computation of the dependent part of the information
sources as far as possible. Here, we adopt the latter method to establish our evidence fusion model.
First, collect sensor data as the raw data to generate BBA. Then, analyze the association between every
two sensor information sources and calculate the correlation discount coefficient based on the analysis
of sensor data. In addition, fuse the discounted BBA according to Dempster’s combination rule. Finally,
a decision conclusion is making by using the method of Pignistic Probability Transformation proposed
in [55].
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Figure 1. Flowchart of the proposed method.

3.2. The Generation of the Correlation Discount Coefficient

Thinking of the need to experience the construction and fusion of BBA from the sensor information
source and the final decision making, the analysis of the relevance of the evidence should begin with
the initial information source, as the real application involves multi-sensor sources of information,
and the relationship between the sensor information source is complex. In order to find a simple and
effective representation, this paper adopts the following method:

Step1: Calculate the Spearman rank correlation coefficient between every two sensor information
sources according to Equation (6).

Step2: The correlation between the two sensor information sources can be divided into positive
correlation and negative correlation. In other words, rank correlation coefficients are
positive or negative, and negative correlation evidence can be regarded as conflict evidence.
Calculate the dependence degree dsx,sy between two information sources:

dsx,sy = |rsx,sy|. (7)

Here, dsx,sy is defined as the absolute value of rsx,sy because the positive correlation or
negative correlation does not substantially affect the fusion result for the information fusion
system based on the D–S evidence theory. To illustrate this problem, there is an example:

Suppose that there are two sensors A and B to qualitatively measure the water level.
The recognition framework is defined as Θ= {high, middle, low}. As shown in Figure 2,
sensor A measures the distance between the top of the well and water surface, denoted as LA,
while sensor B measures the distance between the bottom of the well and water surface,
denoted as LB.

Assume that the depth of this well is 1. The interval [0, 0.4], [0.3, 0.7] and [0.6, 1],
respectively, represent the statuses of low water level, middle water level and high water
level. By analysing the geometric relationship, LA and LB satisfy the follow equation:

LA = −LB + 1. (8)

That is, LA and LB have a strictly negative correlation relationship, rA,B = −1.
However, LA and LB may have different values for the same water level, and they established
the same BBA for the water level. For example, when LA = 0.9, LB = 0.1, both of the sensors
establish the same BBA:

m({low}) = 1. (9)
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In addition, when LA = 0.35, LB = 0.65, both of the sensors establish the same BBA:

m({middle}, {high}) = 1. (10)

In other words, the positive correlation or negative correlation does not substantially affect
the fusion result for the information fusion system based on the D–S evidence theory.

Supposing that there are M sensor sources, we can then establish dependency matrix D:

D =


dS1,S1 dS1,S2 · · · dS1,SM
dS2,S1 dS2,S2 · · · dS2,SM

...
...

. . .
...

dSM,S1 dSM,S2 · · · dSM,SM

 . (11)

Figure 2. Measurement of the water level.

Step3: Calculate the total dependence degree of each sensor information source. The total
dependence degree of Si is defined as

TSi =
M

∑
k=1

dSi,Sk. (12)

Step4: Considering that the evidence with strong relevance should be given a smaller discount factor,
the correlation discount coefficient is defined as

αSi =
1

TSi
. (13)

3.3. Reliability Assessment

In a multi-sensor information fusion system, the global system performance is closely related to
each sensor’s reliability. The reliability of the information source refers to the correct rate obtained
by direct decision by the information source. The higher reliability evidence helps to draw a more
accurate result in the decision-making process. In addition, the higher reliability evidence should be
given larger weight in evidence fusion. For the target recognition, it is assumed that there are N groups
of training data to establish BBA by Si and M of them have correct classification results. The reliability
of the information source Si is defined as

βSi =
M
N

. (14)



Sensors 2017, 17, 2362 7 of 15

3.4. The Fusion of Dependent Evidence

On the basis of the above analyses, the total discounting coefficient of evidence from information
source Si, represented by ωSi, can be defined as

ωSi = αSiβSi. (15)

Suppose that BBA mS1, mS2, · · ·mSM is established by S1, S2, · · · SM, whose total discounting
coefficient is ωS1, ωS2, · · ·ωSM ∈ [0, 1]. The formula of dependent evidence fusion is as follows:

m = ωS1 ms1 ⊕ ωS2 ms2 ⊕ · · · ⊕ ωSM msM, (16)

where ωSi msi represents discount calculation with discounting coefficient ωSi. (see Equation (4)).

4. Experiment and Discussion

In this paper, Iris Dataset from the machine learning database [60] is used as the data source of
the experiment. The dataset contains three types of irises, such as Setosa, Versicolour and Virginica,
and each group of irises contains 50 sets of data samples. Each group has four different attributes:
SL (Sepal Length), SW (Sepal Width), PL (Petal Length) and PW (Petal Width). These four different
attributes can be used as four kinds of information sources to construct BBA.

4.1. Possible Application of the Proposed Evidence Fusion Model

The dependent evidence fusion method in this paper could effectively deal with uncertain
information fusion issues existing in the real world. One of the applications of this method could be
target recognition. For example, to recognize the enemy aircraft, which could be in the form of a bomber,
the Air Early Warning plane or fighter plane, we could first acquire information such as airborne
radar signal, infrared signal or the electronic support measure (ESM) information. Different types of
enemy aircraft usually have different features in the information. Thus, the type of aircraft could be
recognized based on the acquired information. The recognition rate can be improved by combining
information from different sensors. The dependence among the sensors is also considered in the
proposed method. Similar to the iris example, the airborne radar signal, infrared signal or the ESM
information are associated with the iris attributes SL, SW, PL or PW, and the types of enemy aircraft
are associated with the iris types Setosa, Versicolour or Virginica.

Another possible application could be fault diagnosis. For example, in a power transformer
fault diagnosis system, we want to recognize different fault types including transformer winding,
transformer core, arc discharge or transformer insulation aging, and so on. In addition, the
corresponding fault symptoms including transformer core earth current, insulation resistance or
other symptoms could be acquired to establish different BBAs. Different fault symptoms may be
dependent and the fusion method proposed in this article can handle this problem. In other words, the
dependent information fusion model based on rank correlation coefficient could be investigated for
applications in many fields.

4.2. Experimental Method

The main procedure of the proposed method to recognize iris class is shown in Figure 3.
In the experiment, some samples were randomly selected as the training set, and the remaining

samples were used as test set. The steps are as follows:

Step1: Calculate the correlation discount coefficient αSi of four attributes. Refer to Section 3.2.
Step2: Build BBA. Four BBAs were established for SL, SW, PL and PW. The BBA was established

according to the article [61].
Step3: Calculate reliability coefficient βSi, and refer to Section 3.3.
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Step4: Calculate the total discounting coefficient of four attributes according to Equation (15).
Step5: Model testing. Using the test data, we assume for four cases that the evidence is independent

from each other, only considering the dependence between the evidence, only considering the
reliability of the evidence, considering both dependence and reliability, and then calculating
the recognition accuracy. Then, we increase the proportion of training set data, and repeat
the above experiment. In the four cases, the fusion rule as follows:

Group 1: Assume that the evidence is independent from each other

m = ms1 ⊕ms2 ⊕ · · · ⊕msM. (17)

Group 2: Only considering the dependence between the evidence

m = αS1 ms1 ⊕ αS2 ms2 ⊕ · · · ⊕ αSM msM. (18)

Group 3: Only considering the reliability of the evidence

m = βS1 ms1 ⊕ βS2 ms2 ⊕ · · · ⊕ βSM msM. (19)

Group 4: Considering both dependence and reliability

m = ωS1 ms1 ⊕ ωS2 ms2 ⊕ · · · ⊕ ωSM msM. (20)

The method of decision-making after fusion is based on the Pignistic Probability Transformation
(PPT) proposed in [55].

Figure 3. The main procedure of the proposed method to recognize iris class.

4.3. Experimental Procedure

In this section, the correlation of iris data sets is performed. The main procedures are as follows:

Step1: The first step is to analyse the dependence among SL, SW, PL, and PW attributes. Rank
correlation coefficients among attributes of iris data sets are shown in Table 1.
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Then, we can establish dependency matrix D:

D =


1.0000 0.1595 0.8814 0.8344
0.1595 1.0000 0.3034 0.2775
0.8814 0.3034 1.0000 0.9360
0.8344 0.2775 0.9360 1.0000

 .

Calculate the total dependence degree of each attribute as Equation (12). Results are
as follows:

TSL = 2.8753, TSW = 1.7404, TPL = 3.1208, TPW = 3.0479.

Considering that the evidence with strong relevance should be given a smaller discount factor,
the correlation discount coefficient is calculated as Equation (13). The results are as follows:

αSL = 0.3478, αSW = 0.5746, αPL = 0.3204, αPW = 0.3281.

Table 1. Correlation coefficients among attributes.

Attribute SL SW PL PW

SL 1.0000 −0.1595 0.8814 0.8344
SW −0.1595 1.0000 −0.3034 −0.2775
PL 0.8814 −0.3034 1.0000 0.9360
PW 0.8344 −0.2775 0.9360 1.0000

Step2: Build BBA. Four BBAs were established for SL, SW, PL and PW. The BBA was established
according to the article [61].

Step3: Calculate reliability coefficients of the four attributes as Equation (14). The results are
as follows:

βSL = 0.7267, βSW = 0.5467, βPL = 0.9533, βPW = 0.9600.

Step4: The total discounting coefficient of the four attributes can be calculated as Equation (15).
The results are as follows:

ωSL = 0.2527, ωSW = 0.3141, ωPL = 0.3054, ωPW = 0.3150.

After normalization, the total discounting coefficient of the four attributes is

ωSL = 0.8022, ωSW = 0.9971, ωPL = 0.9695, ωPW = 1.

Step5: Model testing. Based on the above calculation, we begin to test our evidence fusion model.
The detailed steps are shown in Section 4.2.

Step6: Then, we calculate the confidence interval of this experiment. For each piece of evidence,
we can acquire a BBA, and suppose its recognition result is A. Then, the Belief function
(Bel(A)), defined as a sum of the mass probabilities of all the proper subsets of A, is calculated
as follows:

Bel (A) = ∑
B⊆A

m (B). (21)

In addition, the Plausibility function ( Pl(A) ), defined as maximum belief of A, is calculated
as follows:

Pl(A) = ∑
B∩A 6=∅

m(B). (22)
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Then, the Belief Interval is defined as [Bel (A) , Pl (A)]. Here, calculate the average Bel and Pl of
each proportion of testing data.

4.4. Results and Analysis

In four cases, the average classification recognition accuracy test results are shown in Figure 4.
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Figure 4. Average classification recognition accuracy in four cases.

The confidence interval of this experiment as shown in Figure 5.
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(a) the confidence interval of group 1.
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(b) the confidence interval of group 2.
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(c) the confidence interval of group 3.
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(d) the confidence interval of group 4.

Figure 5. The confidence intervals of the experiments.

Comparing Group 1 with Group 3 (or Group 2 with Group 4), it is obvious that the recognition
accuracy is significantly improved when considering reliability. However, comparing Group 1 with
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Group 2 (or Group 3 with Group 4), the recognition accuracy is decreased. In addition, further research
shows the reliability coefficients of the four attributes and the correlation coefficients in Table 2.

Table 2. The reliability coefficient and correlation coefficient of four attributes.

Coefficient SL SW PL PW

reliability coefficient 0.7267 0.5467 0.9533 0.9600
correlation coefficient 0.3478 0.5746 0.3204 0.3281

From Table 2, the reliability coefficient of PW or PL is large, indicating higher reliability.
However, the correlation coefficient of PW or PL is small, indicating higher dependence of these
two attributes in the whole system. The reliability coefficient of SW is small (lower reliability),
while its correlation coefficient is the largest (the most independent attribute in the whole system).
In this experiment, a higher recognition accuracy was obtained when using PW or PL attributes.
However, there is strong dependence between PW and PL, and the higher recognition accuracy of
PW or PL attributes is actually unreasonable for repeating fusion of two similar pieces of evidence.
The recognition accuracy will be decreased when considering the effect of dependent evidence. On the
other hand, the recognition accuracy will be below actual accuracy if two dependent pieces of evidence
that both have low recognition accuracy are fused. In this case, the total recognition accuracy will
increase when considering dependent evidence. In the next section, a case study is used to show the
effectiveness of the proposed method.

4.5. Further Study

A case study is used to show the effectiveness of the proposed method. Assume that the
framework is Θ = {A, B, C}, and four independent pieces of evidence are R1, R2, R3 and R4. In this
case, the correct recognition result is A. As are shown in the following table, and the pieces of evidence
R1, R2, and R3 could draw the correct result; however, evidence R4 draws the wrong result (Table 3).

Table 3. Four pieces of evidence and their recognition results.

Item BBA PPT Recognition
Result

R1 m(A) = 0.5, m(B) = 0.2, m(AC) = 0.3 p(A) = 0.65, p(B) = 0.2, p(C) = 0.15 A
R2 m(A) = 0.55, m(B) = 0.15, m(ABC) = 0.3 p(A) = 0.65, p(B) = 0.25, p(C) = 0.1 A
R3 m(A) = 0.61, m(AB) = 0.35, m(AC) = 0.04 p(A) = 0.805, p(B) = 0.175, p(C) = 0.02 A
R4 m(AC) = 0.15, m(B) = 0.55, m(BC) = 0.3 p(A) = 0.075, p(B) = 0.7, p(C) = 0.225 B

Case1: Combining these four independent pieces of evidence according to the traditional
Dempster’s rule:

m = mR1 ⊕mR2 ⊕mR3 ⊕mR4

after PPT, the probability is

p(A) = 0.7834, p(B) = 0.2062, p(C) = 0.0104.

The recognition result is A, which is correct by combining four independent pieces of evidence.
Case2: Let us consider another condition: we have the fifth piece of evidence R5, which is the

same as R4, that is, R5 : m(AC) = 0.15, m(B) = 0.55, m(BC) = 0.3. Apparently, R4 is totally dependent
on R5, and there may be a mistake if we combine these five pieces of evidence regardless of their
association; for example:

m = mR1 ⊕mR2 ⊕mR3 ⊕mR4 ⊕mR5.
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after PPT, and the probability is

p(A) = 0.3942, p(B) = 0.5880, p(C) = 0.0178.

The recognition result is B; therefore, using traditional Dempster’s rule without considering
dependent can draw a wrong result. The reason is that one of the pieces of evidence is totally
dependent on another piece of evidence, which means that one of the pieces of evidence has been
counted twice.

Case3: By considering the dependent evidence based on the method proposed in Section 3,
the correlation discount coefficient could be given as follows:

αR1 = 1, αR2 = 1, αR3 = 1, αR4 = 0.5, αR5 = 0.5.

Then, the fusion rule is

m = αR1mR1 ⊕ αR2mR2 ⊕ αR3mR3 ⊕ αR4mR4 ⊕ αR5mR5.

The final result is
p(A) = 0.8881, p(B) = 0.1068, p(C) = 0.0051.

The recognition result is A. Thus, the proposed dependent evidence fusion model could improve
the decision-making result especially in the fusion of low recognition evidence.

5. Conclusions

With the rapid development of artificial intelligence, the acquisition of information has
increasing importance. In industrial applications, the multi-sensor information fusion system based on
Dempster–Shafer evidence theory plays a more and more important role in information collection and
decision-making. However, the classical evidence theory assumes that the evidence is independent
from each other, which is often difficult to establish in practice. To address this issue, this paper
analyzes the present researche about dependent evidence fusion. Comparing with all kinds of
correlation measurement methods, we select the Spearman’s rank correlation coefficient as the
metric to measure dependence existing in evidence. Rank correlation coefficient is a parameter-free
measure for correlations, which may be used to measure the level of agreement between two
stochastic variables without making assumptions regarding the parametric structure of the probability
distribution of the variables. Then, a dependent evidence fusion model based on rank correlation
coefficient is established. Finally, an experiment is developed to verify the effectiveness of this
model based on iris data sets. Experiment results suggest that considering reliability will improve
accuracy of decision-making and considering dependent evidence helps draw more reasonable and
robust conclusions. In other words, it is necessary to consider the influence of dependent evidence in
information fusion to gain a more credible result.
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