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Abstract: The support vector machine is used as a data mining technique to extract 

informative hydrologic data on the basis of a strong relationship between error tolerance and 

the number of support vectors. Hydrologic data of flash flood events in the Lan-Yang River 

basin in Taiwan were used for the case study. Various percentages (from 50% to 10%) of 

hydrologic data, including those for flood stage and rainfall data, were mined and used as 

informative data to characterize a flood hydrograph. Information on these mined hydrologic 

data sets was quantified using entropy indices, namely marginal entropy, joint entropy, 

transinformation, and conditional entropy. Analytical results obtained using the entropy 

indices proved that the mined informative data could be hydrologically interpreted and have 

a meaningful explanation based on information entropy. Estimates of marginal and joint 

entropies showed that, in view of flood forecasting, the flood stage was a more informative 

variable than rainfall. In addition, hydrologic models with variables containing more total 

information were preferable to variables containing less total information. Analysis results 

of transinformation explained that approximately 30% of information on the flood stage 

could be derived from the upstream flood stage and 10% to 20% from the rainfall. 

Elucidating the mined hydrologic data by applying information theory enabled using the 

entropy indices to interpret various hydrologic processes. 
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1. Introduction 

The support vector machine (SVM), proposed by Vapnik [1,2], is a commonly used method for 

solving classification and regression problems. The SVM has been proven to be a robust method for 

hydrologic modeling and forecasting, with various applications in hydrology that include runoff 

forecasting [3–9], flood stage forecasting [10–15], rainfall forecasting [16–18], typhoon rainfall 

forecasting [19–21], modeling and correction of radar rainfall estimates [22,23], and statistical 

downscaling [24–27]. Constructing SVM models involves using a portion of data as support vectors (SVs) 

to build the SVM network architecture, which is similar to a multilayer perceptron neural network. The 

pruning of SVs to simplify SVM networks was proposed to increase the calculation speed, reduce 

hardware requirements, or attain model parsimony [28,29]. Chen and Yu [13] applied support vector 

regression (SVR) to flood forecasting and demonstrated that pruning SVs reduced network complexity, 

but did not degrade forecasting ability. They [13] also showed that SVs are informative hydrologic data, 

and that the SVs that were informative in characterizing floods were preserved in the networks during 

the pruning process. Therefore, they [13] suggested that the SVM be used as a data mining technique for 

extracting meaningful and informative data. The research results of [13] serve as the inspiration for the 

present study’s use of SVM models to mine informative hydrologic data related to flash flood events 

and application of information entropy to quantify and provide a meaningful explanation of mined 

hydrologic data. 

Information entropy, proposed by Shannon [30], has been applied to numerous problems in 

hydrology. Studies have used the principle of maximum entropy to estimate probability distributions. 

For example, Sonuga [31] and Jowitt [32] have applied the principle of maximum entropy to derive a 

least biased probability distribution of hydrologic data. Padmanabhan and Ramachandra Rao [33] used 

maximum entropy spectral analysis for various applications of hydrologic time series. The Bayesian 

maximum entropy method has recently been used to estimate the spatiotemporal characteristics of 

hydrologic or environmental variables [34–37]. Previous studies have also used entropy to characterize 

the uncertainty in hydrologic data. Amorocho and Espildora [38] and Chapman [39] have used entropy 

as a measure of hydrologic data uncertainty and model performance. Information entropy is also used in 

hydrologic monitoring network designs. Husain [40] proposed a gage network design method based on 

entropy to express information transfer. Harmancioglu and Alpaslan [41] used an entropy-based 

approach to design a water-quality monitoring network. Numerous relevant studies have applied 

information entropy to hydrometric network design and evaluation [42–46]. Singh [47] and Mishra and 

Coulibaly [48] have provided detailed reviews of applying entropy to hydrometric network design. The 

application of entropy combined with various methods in hydrology has become widespread.  

Sang et al. [49] applied wavelet-based entropy in determining the complexity of a hydrologic series on 

multitemporal scales. Zhang and Singh [50] combined copula theory with entropy theory to derive the 

bivariate rainfall and runoff distributions. Recently, entropy has been used as a pre-processing step for 

model input selection [51–53]. Comprehensive reviews of the use of entropy in hydrology are provided 

in [47,54]. 

The present study applied information entropy to quantify the amount of information of hydrologic 

data mined using an SVR flood forecasting model [13]. The results of data mining demonstrated that the 

mined data sets constituting various percentages of the complete data set comprised informative 
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hydrologic data that characterized a flood hydrograph. Entropy indices, namely marginal entropy, joint 

entropy, transinformation, and conditional entropy, were used to quantify the amount of information in 

the mined data. Analytical results obtained using the entropy indices proved that the mined informative 

data had hydrologic implications for the flood process and contained meaningful information measures 

that could be hydrologically explained using entropy theory. 

2. Methodology 

2.1. Support Vector Regression 

SVR is a supervised learning method in which input and output data are assigned before learning 

begins. Let u be the input vector and v be the output variable. A regression function is constructed after 
u is mapped into a feature space by using a nonlinear function, )(uΦ , as follows: 

bf T +Φ⋅= )()( uwx  (1) 

where vector w and variable b are parameters of the regression function. SVR differs from traditional 
regressions in the definition of the loss function. SVR uses Vapnik’s ε-insensitive loss function, εL , 

which penalizes only the data outside the ε-tube; the data within the extent of the ε-tube are tolerated and 
cause no loss. Figure 1 illustrates the mechanism of SVR and Vapnik’s ε-insensitive loss function, εL , 

which is formulated as follows: 
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where subscript i = 1, 2, …, l, and l is the number of data.  

 

Figure 1. Illustration of SVR (modified from [11]). 
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The SVR model can be formulated as the following optimization problem: 
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where +
iξ  and −

iξ  are slack variables indicating the upper and lower training errors subject to error 

tolerance ε, and C is a positive cost constant that determines the level of penalized loss when a training 
error occurs (Figure 1). Using a dual set of Lagrange multipliers, +

iα  and −
iα , the optimization problem 

is solved by applying the standard quadratic programming algorithm. 
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The preceding objective function is a convex function, and the solution is unique and optimal. 
According to the solution provided by the Lagrange multipliers, +

iα  and −
iα , the parameters w and b in 

the SVR function can be calculated using complementarity conditions, where 
=

−+ Φ−=
l

i
iii

1

)()( uw αα . 

Therefore, the SVR function can be written as follows: 
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The inner products in this equation are computed using a kernel function, )()() ,( uuuu Φ⋅Φ= T
iiK . 

The Gaussian radial basis function with a parameter γ  is used as the kernel: 

( )2
exp) ,( uuuu −−= iiK γ  (6) 

In addition, let the Lagrange multiplier terms )( −+ − ii αα  be denoted as iα . Thus, the SVR function is 

written as follows: 
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According to this equation, the data sets corresponding to zero coefficients iα  are ineffective in the 

SVR function; only the data sets with nonzero coefficients iα  are effective in the final SVR function. 

The data on the margin or outside the ε-insensitive tube have nonzero coefficients iα ; therefore, these 

data are termed SVs that support the construction of the regression function. SVs with iα  less than C 

are called margin SVs, and the SVs with iα  equal to C are called bounded SVs. The margin SVs are 
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located on the margin of the ε-tube, and the bounded SVs are outside the tube (Figure 1). Finally, the 

SVR function can be expressed as follows: 
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where the subscript s represents the SV, and r is the number of SVs. The parameters of the SVR to be 

calibrated are the cost constant C, the error tolerance ε, and the kernel parameter γ. In this study, a two-step 

grid search method [11,55] was used to determine the parameters. 

2.2. Information Entropy 

Information entropy is used to quantify the amount of information in a data set. Shannon [30] 

introduced the concept of information entropy and mathematically formulated Shannon entropy )( XH  

for a discrete random variable X as follows: 
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where )( mxP  is the probability of the outcome mx , and M is the number of outcomes. For continuous 

variables, such as the flood stages in this study, the entropy is calculated by dividing the domain of the 

variable into several class intervals. In this case, M is the number of class intervals. The entropy )(XH  

is nonnegative and its unit is typically expressed in bits when the base of the logarithm is 2. Entropy is 

a measure of the average amount of information or uncertainty contained in a random variable X. If the 

outcome of the variable is determinate, then it contains no uncertainty and, thus, no information (when 

this outcome is observed). In this certain case that the outcome is determinate, the entropy is 0. 

The entropy )( XH  for a single variable is also called the marginal entropy, in contrast to the joint 

entropy ),( YXH  of two variables: 
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where ),( nm yxP  is the joint probability of mxX =  and nyY = , and N is the number of class intervals 

of variable Y. For practical application, Markus et al. [43] and Mishra and Coulibaly [44] have set M 

equal to N; this setting was used in this study. The joint entropy represents the amount of combined 

information of the two variables. The joint entropy and marginal entropy are expressed in the formula 

as follows: 

),()()(),( YXTYHXHYXH −+=  (11) 

where ),( YXT  is transinformation indicating the information that can be transferred from X to Y, or vice 

versa. Transinformation, also known as mutual information, is symmetrical so that ),(),( XYTYXT = . 

Transinformation is the partial information of one variable that can be obtained when a second variable 

is known. In other words, it is a measure of the shared information contained in one variable about a 

second variable. Figure 2 shows an information diagram illustrating the relationships among various 

entropies of two variables. 
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The conditional entropy )|( YXH  of X given Y is defined as follows: 
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where )|( nm yxP  is the conditional probability of mxX =  given nyY = . The conditional entropy 

)|( YXH  indicates the additional information required to quantify the marginal information of X when 

Y is known. Given the known transinformation ),( YXT , the conditional entropy )|( YXH  is the 

marginal information minus the transinformation: 

),()()|( YXTXHYXH −=  (13) 

Similarly, the conditional entropy )|( XYH  is as follows: 

),()()|( YXTYHXYH −=  (14) 

Equations (13) and (14) show that less information exists in the conditional entropy than in the 

marginal entropy (Figure 2).  

 

Figure 2. Information diagram illustrating the relationships among the marginal entropies 

H(X) and H(Y), joint entropy H(X, Y), transinformation T(X, Y), and conditional entropies 

H(X | Y) and H(Y | X) (modified from [56]). 

If X has a complete relationship with Y such that 1)|( =YXP , then 0)|( =YXH , and, thus, 

),()( YXTXH = . All information of X can be determined using transinformation if Y is known. If X and 

Y are independent, then )()|( XHYXH = . This indicates that the transinformation is 0; the information 

of Y does not provide any information of X. Two variables are generally correlated, and the 

transinformation captures a specific quantity of the marginal information. The fraction of the amount of 

information of X that is obtained from Y can be evaluated according to R(X, Y) in Equation (15), which 

is the ratio of transinformation to marginal entropy. The transinformation ratio R(X, Y), ranging from 

zero to unity, is a relative measure of the dependence of X on Y. A similar concept of transinformation 

ratio was used in [42,43] as a measure of the information transmission in hydrometric network design. 
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3. Mining Informative Hydrologic Data 

3.1. Hydrologic Data and Flood Forecasting Model 

This study used the data and the SVR flood forecasting model developed in [13]. This section 

summarizes the hydrologic data used and the structure of the SVR flood forecasting model; a detailed 

description of the data and the model is provided in [13]. 

Hourly hydrologic data, namely flood stage and rainfall data in the Lan-Yang River basin in Taiwan, 

were used. The flood stage data were from two water level stations, the downstream Lan-Yang Bridge 

Station and upstream Niu-Tou Station, and the rainfall data were records of the areal rainfall accumulated 

in the catchment area between Lan-Yang Bridge and Niu-Tou Stations. Figure 3 presents the map of 

Lan-Yang River basin and the location of stations. The distance between the upstream and downstream 

stations is approximately 25 km. Complete records of flood stage and rainfall data measuring flood 

events were obtained, and 12 flood events from 1990 to 2001 were used for model development.  

 

Figure 3. Location of stations with hydrologic variables. 

The output variable of the flood forecasting model was the downstream flood stage at the Lan-Yang 

Bridge at time t, denoted as SL(t). The input variables were the flood stage at the Lan-Yang Bridge at 

time t − 1, denoted as SL(t − 1); the upstream stage at Niu-Tou at time t − 3, denoted as SN(t − 3); and 

the average of the areal rainfall at times t − 1 to t − 5, denoted as Rm(t − 5). The above time lags of the 

input variables were determined on the basis of the hydrologic response time [11,13,57,58]. The lag for 

upstream stage SN was determined by calculating the coefficient of correlation with different time lags 

between the upstream and downstream stage series, and by identifying the time lags of significant feature 

points, such as the peak stage, of the stage hydrographs with respect to each flood event. Based on the 
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methods, the average time lag for SN is 3.3 h. The lag of rainfall Rm was determined by using the time of 

concentration according to the same concept of hydrologic response time. The average time of concentration 

pertaining to flood events is 5.3 h. The lagged input variables that are most relevant to the output variable are 

used in the model. Therefore, the SVR flood forecasting model can be expressed as follows: 

SL(t) = fSVR [SL(t − 1), Rm(t − 5), SN(t − 3)] (16) 

where fSVR represents the SVR model.  

According to the model structure with lagged variables, 963 input-output data sets were available for 

analysis. The variables of the model were normalized to the interval from 0 to 1, according to the 

minimum and maximum data. This method is commonly adopted in data-driven models to prevent the 

model from being dominated by variables with high values. The following discussion on the hydrologic 

data and the calculated information indices are based on the normalized hydrologic data, of which the 

values are between 0 and 1. In the constructed SVR model in [13], 63% of the data were SVs. SVs were 

pruned in [13], and the remaining SVs were informative hydrologic data characterizing the flood process. 

3.2. Support Vectors as Informative Data 

Chen and Yu [13] demonstrated that SVs are types of informative flood data and suggested that the 

SV pruning method is a data mining technique for extracting condensed informative hydrologic data. 

The pruning method is based on a strong relationship between the error tolerance ε and the number of 

SVs. Considering several fixed sets of cost constant C and the kernel parameter γ values, with different 

ε values used to build the SVR models, the correlation between ε and the percentage of SVs can be 

obtained. Figure 4 shows the relationship between ε values and the percentages of SVs from the analysis 

performed in [13], which depicts the detailed process to derive the relationship. The current study used 

this relationship to control the number of SVs by setting appropriate ε values. It investigated five data 

mining cases to extract 50%, 40%, 30%, 20%, and 10% of the flood data (denoted as Cases A to E, 

respectively). Five SVR models were calibrated by constraining the ε value within a small interval 

corresponding to the desired percentage of SVs according to Figure 4. The two-step grid search  

method [11,55] was then used to determine the parameters of the SVR models, although the parameter ε 

was kept in a small interval that was in line with the desired percentage of SVs. The parameter search was 

conducted by using a coarse grid and a finer grid to find the optimal parameters. A six-fold cross-validation 

was employed in this study. Table 1 presents the calibrated parameters and data mining results of the 

SVs. The parameter and root mean square error (RMSE) values were similar to those in [13], and the 

values of mined SVs were approximately the desired percentages of 50%, 40%, 30%, 20%, and 10% 

(from a total of 963 data sets).  
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Figure 4. Relationship between error tolerance ε and the percentages of SVs, as well as 

between ε and the RMSE in [13].  

Table 1. Calibrated parameters and results of SVs. 

Case 
Parameters 

Number of SVs 
Percentage of 

SVs (%) 
RMSE 

C ε γ 

Case A 40.8 0.0032 0.131 480 49.8 0.0127  
Case B 47.3 0.0045 0.134 388 40.3 0.0126  
Case C 54.3 0.0072 0.164 298 30.9 0.0124  
Case D 50.3 0.0105 0.173 192 19.9 0.0126  
Case E 49.0 0.0182 0.183 98 10.2 0.0139  

To demonstrate the mining results, Figure 5 shows three flood events of typical small, medium, and 

large sizes on a scale of normalized flood stages. Figure 6 illustrates the process of pruning SVs from 

50% to 10% (Cases A to E), and shows that informative flood data, particularly the data around the peak 

stage and in the rising limb, were typically mined as SVs. The results of the data mining process are 

described as follows [13]: (1) data around the peak stage were mined as SVs; (2) a majority of data in 

the rising limb of the hydrograph remained SVs; and (3) data in the recession limb were eliminated 

during the data mining process. These results prove that informative data that characterized the flood 

hydrograph were mined as SVs, and that SVs obtained using the proposed SVR model represent 

informative hydrologic data. Moreover, the SVR flood forecasting models constructed using fewer SVs 

performed equally well in providing real-time flood forecasting as those constructed with more SVs did [13], 

indicating that the pruned SVs contained sufficient information to describe the flood process. The SVs 

mined using the SVR method were hydrologically interpreted as informative data, and the following 

section describes the use of entropy indices to quantify the amount of information in the mined 

informative hydrologic data.  
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Figure 5. Small, medium, and large flood events used to demonstrate the mining of 

informative hydrologic data. 

 

Figure 6. Process of pruning SVs to mine informative hydrologic data.  
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4. Assessment of Information Entropy 

4.1. Marginal Entropies of the Flood Stages and Support Vectors 

Entropy measures the amount of information contained in a data set. To calculate the marginal entropy 

of a data set by using Equation (9), the number of class intervals of the data must be specified. The 

number of class intervals can influence the value of entropy, but the relative amount of information is 

not sensitive to the number of intervals, as stated in [43,44]. This study used 10 and 20 intervals to test 

the influence of the number of intervals on entropy. It also compared the entropy indices related to the 

mined SVs and the randomly selected data of the output flood stage variable SL(t). Figure 7 shows the 

marginal entropies of all flood stage data, as well as the SVs of Cases A to E for 10 and 20 class intervals. 

The marginal entropies for the 20 intervals were greater than those for the 10 intervals, indicating that 

data categorized into more intervals contained more information. The results in Figure 7 confirm that 

the number of intervals influenced entropy values, but did not alter the relative pattern of information 

indices. In the following analysis and interpretation of various entropy indices, 10 class intervals of data 

were used because the relative information measures were not sensitive to the number of intervals, and 

using 20 intervals would result in numerous empty intervals when calculating entropies for two variables.  

 

Figure 7. Marginal entropies for various data sets and intervals.  

Figure 7 also shows that the entropies of mined data increased as the number of SVs decreased, but 

the entropies of the randomly selected 50% to 10% of the data (the same number as those of the SVs in 

Cases A to E) were comparable. This phenomenon can be explained in terms of data compression; 

compressed data contain less redundancy and have higher entropy. If a data set contains an excessive 

amount of unnecessary information, then it is more redundant and less informative. Therefore, the higher 

the entropy, the more informative and less redundant a data set is. Redundant flood data in the mined 

SV data sets were pruned, causing the data sets to become compressed and more informative. Therefore, 

the mined SVs were more compact and had higher entropy. The randomly selected data sets had similar 

characteristics (redundancy or information) as the original data set did; therefore, the entropies were 
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comparable. Accordingly, the SVs mined using the SVR method were determined to be meaningful and 

informative hydrologic data based on entropy theory. 

Figure 8 shows the relative frequencies related to various class intervals of the normalized flood stage 

data. In the data mining process from Cases A to E, the percentages of low stage data decreased and the 

percentages of high stage data increased. The relative frequency curves in Figure 8 provide additional 

information on the percentages of mined SVs, and confirm that higher flood stages are mined as SVs 

and lower flood stages tend to be pruned. 

 

Figure 8. Relative frequencies relating to various class intervals of flood stage data. 

4.2. Entropies Related to Various Hydrologic Variables 

The flood forecasting model contains one output and three input variables: the output downstream 

flood stage SL(t); the input downstream flood stage SL(t − 1); the input average rainfall Rm(t − 5), and the 

input upstream flood stage SN(t − 3). The various entropy indices relating to these four variables were 

calculated and listed in Tables 2–4 (each table relates the output variable to an input variable).  

Table 2. Entropies relating to variables of the output downstream flood stage X = SL(t) and 

the input downstream flood stage Y = SL(t − 1). 

Entropy All Data Case A Case B Case C Case D Case E 

H(X) 2.34  2.61  2.69  2.78  2.82  2.96  
H(X|Y) 0.49  0.68  0.76  0.82  0.91  1.06  
T(X,Y) 1.85  1.93  1.93  1.96  1.91  1.90  
H(Y|X) 0.49  0.66  0.75  0.81  0.88  0.98  
H(Y) 2.34  2.59  2.68  2.77  2.79  2.89  

H(X,Y) 2.83  3.27  3.44  3.59  3.70  3.94  
R(X,Y) 0.79  0.74  0.72  0.70  0.68  0.64  
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Table 3. Entropies relating to variables of the output downstream flood stage X = SL(t) and 

the input average rainfall Y = Rm(t − 5). 

Entropy All Data Case A Case B Case C Case D Case E 

H(X) 2.34  2.61  2.69  2.78  2.82  2.96  
H(X|Y) 2.12  2.35  2.41  2.42  2.37  2.28  
T(X,Y) 0.22  0.27  0.29  0.36  0.45  0.68  
H(Y|X) 1.19  1.60  1.70  1.73  1.74  1.62  
H(Y) 1.41  1.87  1.98  2.09  2.18  2.30  

H(X,Y) 3.53  4.22  4.39  4.51  4.56  4.57  
R(X,Y) 0.09  0.10  0.11  0.13  0.16  0.23  

Table 4. Entropies relating to variables of the output downstream flood stage X = SL(t) and 

the input upstream flood stage Y = SN(t − 3). 

Entropy All Data Case A Case B Case C Case D Case E 

H(X) 2.34  2.61  2.69  2.78  2.82  2.96  
H(X|Y) 1.65  1.92  1.98  2.03  2.00  1.96  
T(X,Y) 0.69  0.69  0.71  0.75  0.82  1.00  
H(Y|X) 1.55  1.84  1.89  1.90  1.80  1.66  
H(Y) 2.24  2.53  2.61  2.64  2.61  2.67  

H(X,Y) 3.88  4.46  4.59  4.68  4.62  4.62  
R(X,Y) 0.30  0.26  0.26  0.27  0.29  0.34  

Figure 9 shows the marginal entropies of all and mined data regarding the four variables. The marginal 

entropy is a measure of the average amount of information contained in a hydrologic variable. The 

marginal entropies of the four variables increased as the number of mined data decreased, indicating that 

the SVR method mined informative hydrologic data regarding these variables. Two downstream stage 

variables (with a lag of 1 h) showed similar entropies. The output variable SL(t) had a slightly higher 

entropy than the input variable SL(t − 1) did, suggesting that the SVR model mined the SVs by forecasting 

the output variable; therefore, the output variable showed a slightly higher entropy. This also explains 

the entropies regarding the output downstream stage SL(t) and input upstream stage SN(t − 3); the 

entropies of SL(t) were higher than those of SN(t − 3) were. The marginal entropies of the rainfall variable 

Rm(t − 5) were lower than those of the stage variables. Regarding the hydrologic process, rainfall 

provided indirect and less concrete information on a flood event than the stage did. Therefore, the flood 

stage was a more informative hydrologic variable than rainfall.  

Figure 10 shows the joint entropies of all and mined data regarding the output variable and three 

respective input variables. The joint entropy measures the combined information of two variables.  

Figure 10 shows that the joint entropies generally increased as the amount of mined data decreased. The 

joint entropies of SL(t) and SL(t − 1) were the lowest because these two variables contained similar types 

of information. However, the joint entropies of SL(t) and SL(t − 1) were higher than the marginal entropy 

of SL(t), indicating that the pair of successive flood stages provided more information on the floods than 

only one flood stage did. The joint entropies of SL(t) and SN(t − 3) were higher than those of SL(t) and 

Rm(t − 5), although they were close with respect to 20% and 10% of the data. The results of joint entropies 

in Figure 10 show that a Muskingum-type river routing model constructed using the downstream and 
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upstream stage variables, SL(t) and SN(t − 3), may be more effective than a rainfall-runoff (or rainfall-

stage) model constructed using the rainfall and downstream stage variables, Rm(t − 5) and SL(t), in terms 

of the total information used to describe the hydrologic process. Moreover, these two hydrologic models 

may outperform an autoregressive model constructed using SL(t) and SL(t − 1). 

 

Figure 9. Marginal entropies of all and mined data regarding four variables. 

 

Figure 10. Joint entropies of all and mined data regarding the output downstream flood stage 

SL(t) and three respective input variables. 

Transinformation is a measure of the common information shared by two variables. The partial 

information of SL(t) that can be known from a second variable can be assessed according to the ratio of 
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transinformation to marginal entropy by using Equation (15). Therefore, transinformation can be 

considered a measure of dependence of one variable on another. Figure 11 shows the transinformation 

ratios R(X, Y) of all and mined data regarding the output flood stage SL(t) and three respective input 

variables. The transinformation ratios of R[SL(t), SL(t − 1)] ranged from 0.64 to 0.79 (cf. Table 2), 

meaning that approximately 65% to 80% of the information on SL(t) could be known from SL(t − 1). The 

transinformation ratios of R[SL(t), SN(t − 3)] were approximately 30%, and those of R[SL(t), Rm(t − 5)] 

were approximately 10% to 20%. The upstream stage variable SN(t − 3) contained more mutual 

information with SL(t) than did the rainfall variable Rm(t − 5). An interesting issue regarding 

transinformation in Figure 11 is that the lines in the figure show different trends. The increases in the 

variables SN(t − 3) and Rm(t − 5) as the number of SVs decreased indicated that the mined informative 

data showed a stronger relationship (or dependence) between the two variables and SL(t). However, the 

decrease in the variable SL(t − 1) as the number of SVs decreased cannot be explained according to this 

interpretation. SL(t) and SL(t − 1) were the same variable with a 1-hour lag. They shared more mutual 

information when the amount of data was increased. When the amount of data was reduced (even though 

the data were more informative to characterized a flood hydrograph), the dependence between SL(t) and 

SL(t − 1) was reduced.  

 

Figure 11. Transinformation ratios of all and mined data regarding the output downstream 

flood stage SL(t) and three respective input variables. 

The results shown in Figure 11 confirm the hydrologic modeling and forecasting concept of  

Equation (16), which provides the output of SL(t) and three inputs of SL(t − 1), Rm(t − 5), and SN(t − 3). 

With this input-output structure of the model, the dominating input variable was determined to be  

SL(t − 1), which was the lagged variable of the output. The upstream flood stage SN(t − 3) had secondary 

importance to the output of the downstream flood stage. Rainfall was a supplement used to adjust the 

modeling or forecasting and had the lowest level of direct influence on the output. The results of the 
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transinformation ratio in Figure 11 verify the aforementioned concept of hydrologic modeling that was 

obtained through sensitivity analysis.  

5. Conclusions 

This study adopted SVR as a method for mining informative hydrologic data. Flood stage and rainfall 

data in the Lan-Yang River basin in Taiwan and the SVR model developed in [13] were used for the 

case study. Data mining results demonstrated that the mined data were informative hydrologic data that 

characterized a flood hydrograph.  

Furthermore, this study applied entropy theory to quantify the mined hydrologic data and verified that 

the mined data showed a meaningful hydrologic interpretation by using entropy indices. The mined flood 

stage data, of which the percentage was reduced from 50% to 10%, had increased entropies, indicating 

that the mined data were more informative than the original data. Marginal entropies regarding various 

input and output variables showed that the flood stage was a more informative hydrologic variable than 

rainfall because rainfall provided less direct information on a flood event than the flood stage did. 

Analysis results of joint entropies implied that a hydrologic model with variables containing more total 

information was superior to a model containing variables with less total information. Transinformation 

was used to quantify the mutual information of two hydrologic variables and explained the relative 

importance of the input stage and rainfall variables on the output stage variable. 

This study successfully used entropy theory to meaningfully explain the information contained in 

mined hydrologic data. Future research on the interpretation of various hydrologic processes by using 

entropy theory is necessary. Related topics that were not discussed in this study, but are subjects worthy 

of further research, include the relationship between entropy indices and model performance, and using 

entropy indices as the objective function to maximize model forecasting accuracy. 
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