
sensors

Article

Closed-Loop Lifecycle Management of Service and
Product in the Internet of Things: Semantic
Framework for Knowledge Integration

Min-Jung Yoo *, Clément Grozel and Dimitris Kiritsis
Swiss Federal Institute of Technology, Mechanical Engineering, ICT for Sustainable Manufacturing, EPFL,
CH-1015 Lausanne, Switzerland; clement.grozel@epfl.ch (C.G.); dimitris.kiritsis@epfl.ch (D.K.)
* Correspondence: min-jung.yoo@epfl.ch; Tel.: +41-79-948-8088

Academic Editor: Yunchuan Sun
Received: 31 March 2016; Accepted: 28 June 2016; Published: 8 July 2016

Abstract: This paper describes our conceptual framework of closed-loop lifecycle information sharing
for product-service in the Internet of Things (IoT). The framework is based on the ontology model of
product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open
Data Format (O-DF), which ensures data communication. (1) Background: Based on an existing
product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose
of integrating efficiently the product-service ontology model that was newly developed; (2) Methods:
The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside
which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of
product-service lifecycle data transfer; (3) Results: The product-service ontology model facilitates
information retrieval and knowledge extraction during the product lifecycle, while making more
information available for the sake of service business creation. The vertical integration of IoT message
transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to
knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to
IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction.
The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM
data while breaking traditional vertical information silos; (5) Conclusion: The framework was applied
to a fictive case study with an electric car service for the purpose of demonstration. For the purpose
of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs,
which play the role of an Internet-connected Resource Description Framework (RDF) database.

Keywords: Closed-Loop Lifecycle Management (CL2M); Internet of Things (IoT); Product Lifecycle
Management (PLM); Product-Service ontology; O-DF; O-MI; electric car

1. Introduction

The Closed-Loop Lifecycle Management (CL2M) of products addresses the ability of collecting
useful product information during its full lifecycle phases for the purpose of re-using such information
in developing product qualities and enhancing business opportunities [1]. Being applied to the product
and service lifecycle management, this issue requires first of all collecting all possible and potentially
useful data about products and services for the whole lifecycle. Afterwards, the collected data should
be shared and understood interchangeably, from which knowledge can be extracted by combining
all gathered information. The knowledge will contribute to defining key product functionalities
expected by the end users, or to identifying additional services and functionalities. Therefore, this
is an important step to generate added values to products and services. As for the methodology of
structuring and managing a wide range of product lifecycle data, a semantic approach based on the
ontology model has already been approved as a promising method [2,3].

Sensors 2016, 16, 1053; doi:10.3390/s16071053 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1053 2 of 26

In today’s innovative environments of Information and Communication Technology (ICT), the
data acquisition of Product Lifecycle Management (PLM) calls for open infrastructure, including
Internet, cloud computing and big data, with a view toward creating an open ecosystem. Thanks to
highly developed sensor technologies, product-related data are being generated from many kinds of
sources throughout the lifecycle of products. Data from sensors installed in manufacturing workshops
during manufacturing, transactional data during the transportation of finished products, data from
warehouse-installed electronic surveillance systems that control the product in-out and product usage
data from intelligent products are some such examples. However, for the purpose of taking advantage
from the integration of sensor technologies with a semantically-enriched modelling approach, some
weaknesses were observed, which need further enhancement. On the one hand, in traditional
approaches to sensor data collection and information handling, data from physical products are
often generated in a predefined context of a specific object: the integration of semantically annotated
data with the other sensor data is still on-going [4]. The approach to a semantic sensor network [5,6]
and the achievement seem promising so that the information on the data-providing devices, i.e.,
sensors, can also be transferred and used for knowledge inference. On the other hand, product data
collection is highly restricted to sensor-generated data while excluding, or considering only a limited
range of, other types of information on product usage or wear state. Such information can be collected
during the products’ Middle of Life (MOL) operations, i.e., during maintenance or repair processes
under the form of human technicians’ observation, or service activities operated on products during
its usage phase. Even though such data are available, they have been neither systematically collected
by manufacturers nor intensively reused for PLM purposes. By strategically closing all types of data
while relevantly transforming them into targeted information and knowledge, a manufacturing firm
will achieve better business opportunities.

For that purpose, there are still gaps between existing approaches and the expected ideal
infrastructure of PLM, which must be narrowed. Some of them have been identified during this
research and are summarized into two points: (i) shifting the means of data collection: from
achieving exclusively by a dedicated on-product sensor towards an open and IoT-enabled environment;
(ii) enlarging the category of data to be collected: integrating not only product-generated data, but
also data generated from other sources, such as human observation or user profile data, which help to
understand the state of product usage; (iii) applying semantic annotation to an extended range so that
information extraction can occur at every level of product life data.

There are potential business opportunities that manufacturing firms can create thanks to the
deployment of extended closed-loop PLM. Here are some examples:

1. Now, the lifecycle data of a product as-a-whole and its parts can be closed. Thanks to this
information closing, the volume of knowledge assets, which are available to and reachable by companies,
might be increased and enhanced. This opens up a new horizon of business opportunities since the
knowledge assets play an important role in the company’s management and strategic decision for
future operations. Such opportunities were underlined as new business challenges in the sector of
electric batteries and cars [7]. Here is an example with the electric car/battery presented in Section 4.
If a company wants to access the knowledge assets of the previous life history of an electric battery,
this might be possible even after that the battery was removed from a car and its usage type has been
changed. PLM information will be available at the starting time of the battery’s second life. This enables
companies to infer useful knowledge from an extended range of information, while breaking the silos
due to their place of creation or initial purpose.

2. It enhances the smooth integration of third-party service providers that offer knowledge-intensive
services. Such services can be based on knowledge assets delivered from stakeholders’ PLM information.
One such example concerns a recommendation service to customers based on user habits of using
products, such as household machines or electric cars. For example, a good battery charging habit is
valuable to extending an electric battery’s life span. During the usage phase of the product, such user

Sensors 2016, 16, 1053 3 of 26

habits can be traced by third party service providers, whereas other technical specialists or manufacturing
firms might provide the necessary technical constraints to be checked.

The main motivation of this research is to propose a conceptual framework of CL2M providing
an architectural solution that can improve both drawbacks by: (i) providing a well-defined framework
within which Internet of Things (IoT) data can be seamlessly integrated in a semantic ontology layer;
(ii) extending an existing ontology of PLM to a larger scale of Product-Service Lifecycle Ontology
(PSLO) in order to manage product-service lifecycle data using the framework of knowledge sharing.

From now on, the paper is organised as follows. In the next section, the state-of-the-art and
existing methods are presented in order to define the baseline context of this research. Section 3
discusses the semantic framework for CL2M. In Section 4, the case study example is illustrated which
was created as a domain specific instance of the semantic framework. Section 5 deals with some
discussions on the approach such as benefits and limitations, which will be followed by conclusions in
Section 6.

2. State-of-the-Art and Methods

In this section, we discuss the basic knowledge and research background that supported the work
described in this paper. The key questions to answer are listed below:

‚ What is a Product-Service (PS)?
‚ Which approaches were already tackled as for the ontology-based PLM?
‚ Which mechanism of IoT message transfer will best fit our needs?

2.1. Product, Service and Product-Service System

In this subsection, we discuss generally accepted definitions of product, service and a Product-Service
System upon which the context of this work is based. In the work of [8], the terms related to Product-Service
System (PSS) are summarized as follows:

‚ Product-Service (PS): an integrated combination of tangible products and intangible services.
‚ Product-Service System (PSS): social systems that enhance social and economic value received by

each actor in the network through the mutual provision of a PS.
‚ Actor: an individual, group or organization that is actively engaged in the PSS (e.g., provider,

partner or customer).

In [9], the term PSS has been defined as “a marketable set of products and services capable
of jointly fulfilling a user’s need”. The product/service ratio can vary either in terms of function
fulfilment or economic value.

The list below outlines various approaches and trends, among many, towards the development of
PSS taken from several research works [8–13]:

‚ The sale of the use of the product instead of the product itself.
‚ The change to a ‘leasing society’.
‚ The substitution of goods by means of service machines.
‚ A repair-society instead of a throw-away society.
‚ The change in consumer attitudes from sales to service orientation.

So far, PSSs are likely to give more attention to the use phase of the product’s life cycle (consumer
state) rather than thinking of information reuse within the other phases of lifecycle. The following
elements borrowed from [9] characterize the current thinking of PSS.

‚ Service at the point of sale, comprised of personal assistance in shops, financial schemes, provided
to customers, explanations about product use and, of course, marketing.

Sensors 2016, 16, 1053 4 of 26

‚ The category of product use: use oriented, where the user extracts product utility; and result
oriented, where product utility is extracted by the utility provider.

‚ Maintenance services include servicing of products with the goal of prolonging the product life
cycle, comprising maintenance and upgrading.

‚ The importance of upgrading services aiming at closing the product material cycle by taking
products back, secondary utilization of usable parts in new products and recycling of materials if
reuse is not feasible.

The last point concerns the end-of-life operation, which is considered as one of the services. The
end-of-life service can be achieved as a finalizing operation while playing a key role in closing the
material cycles. Closing the information cycles is much more complex and must be followed with care.

According to [8], the benefits of service offerings are manifold.

‚ A service offering by manufacturing companies might be a source of continuous revenue as a
result of long-term relationships with customers.

‚ It is a differentiator for competing in global market.
‚ It gives the capability to offer a flexible value proposition to customers throughout the lifetime of

a product.

Table 1. Summary of Section 2.1. PSS, Product-Service System.

Definition Approach or Methodology to PSS

[8]
Product service: an integrated combination of
tangible products and intangible services Give the capability to offer a flexible value

proposition to customers throughout the
lifetime of a product

PSS: social systems that enhance social and
economic value received by each actor in the
network through the mutual provision of a PS

[9] PSS: a marketable set of products and services
capable of jointly fulfilling a user’s need

Theoretical framework for PSS composed of
five key elements: 1. Products, services and
their combinations; 2. Services at the point
of sales; 3. Different concepts of product
use; 4. Maintenance services;
5. Revalorisation services

[10]
Product-service: composed proposition of tangible
products and intangible services designed to
optimize the product use and increase the value

Smart maintenance service for strategic
progress of PSS from product-oriented to
a service-oriented lifecycle

[11] PSS: definition based on [9] referenced
Framework integrating technical product
with non-physical service by an automated
design processes

[12]

PSS: a system of products, services, supporting
networks and infrastructures that are designed to
be competitive, satisfy customer needs and have a
lower environmental impact than traditional
business models, according to [9]

Classification of PSS model based on three
dimensions: Product-oriented services,
Use-oriented services,
Result-oriented services

[13] PSS: an integrated product and service offering that
delivers value in use to the customer

Several methodologies presented including
Fast-Track Total Care design process,
Heterogeneous IPS concept modelling, and
Dimensions of PSS Design

In [10], the authors discussed the importance of PSS in the context of PSS design and management.
They presented a methodology called “smart maintenance service”, which enabled the strategic
progress of PSS from product-oriented to a service-oriented lifecycle. They argued that services bring
industries competitive advantages from the economic point of view through the cost reduction as well
as profit increase.

Sensors 2016, 16, 1053 5 of 26

Several industries, which have already achieved PLM strategies, are still struggling to move to
service-centric holistic CL2M. According to [11], the suggestion goes to transfer the manufacturing
business strategy from “designing and selling products only” to “support and accompany their usages
with services and end-of-life management”. The above-discussed PSS researches are summarized on
Table 1.

According to the classification of the business model of product-service [12], such a trend can
be regarded as a move from a ‘use-oriented’ towards a ‘result-oriented’ product-service offering.
How should the service lifecycle be integrated coherently and seamlessly with legacy PLM data
and information? Our experience revealed that the more CL2M data and the environment are
heterogeneous, the more a semantic approach turns out to be beneficial. This paper will take a
look at the semantic modelling and ontologies in PLM in the following subsection.

2.2. Ontology and Semantic Modelling for Product-Lifecycle Management

The question of “what is an ontology?” is very difficult to answer [14] since the answer depends
on the objective of the ontology developer with the purpose of ontology use. This subsection starts
with giving a generally-accepted definition of ontology and semantic approaches.

Ontology includes a semantic definition. Wikipedia interprets semantics (from Ancient Greek:
σηµαντικóσ sēmantikós, “significant”) as the study of meaning. It focuses on the relation between
signifiers, like words, phrases, signs and symbols, and what they stand for, their denotation. Linguistic
semantics is the study of meaning that is used for understanding human expression through language.
Other forms of semantics can include the semantics of programming languages, formal logics and semiotics.

The work in [15] defines the information model and semantic modelling as follows: “An
information model provides the ability to abstract different kinds of data and provides an
understanding of how the data elements relate. A semantic model is a type of information model that
supports the modelling of entities and their relationships”. The total set of entities in our semantic
model comprise the taxonomy of classes we use in the model to represent the real world.

Together, these ideas are represented by an ontology: the vocabulary of the semantic model
that provides the basis on which user-defined model queries are formed. The model supports the
representation of entities and their relationships and can support the constraints on those relationships
and entities. This provides the semantic makeup of the information model. It is now generally
recognized that an ontology describes the formal constraints of the terms in a common vocabulary and
expresses relationships among them, described using a type of ontology representation language. An
ontology can describe hierarchical relationships among terms (as in a taxonomy), describe associative
relationships among terms (as in a thesaurus) and relate terms within the vocabulary to other terms
described outside of the vocabulary.

During a workshop organized by the U.S. National Institute of Standards and Technology
(NIST) [14], three common views on ontologies were discussed, which are listed below:

‚ Ontologies are models of reality: This is the most classical point of view from which the word
‘ontology’ was understood.

‚ Ontologies are models of information: According to this view, the ontology itself means the
information representation of a given domain problem. In this case, it is possible that such an
information model is not a model of any reality.

‚ Ontologies are compendia of controlled terms: In this view, the use of ontology for defining terms
and relationships is importantly underlined in order to define the above-mentioned models. The
clear definition of relationships makes terms accessible and useful when they are retrieved.

Ontology developers often have one of these uses in mine. Therefore, the developed ontologies
are built with particular purposes in mind, which were inadequate in other contexts. By and large, the
ontology issues always include the context, i.e., the context in which the utility of the ontology was
targeted, the context of the domain that the ontology was intended to model or the context in which

Sensors 2016, 16, 1053 6 of 26

the information should be retrieved. Subsequently, without considering such a context, it is hardly
possible to figure out for what purpose an ontology was intended.

Ontology models, through their formal semantics, support several useful features, the main ones
being: to share common understanding of the structure of information among human or/and software
agents; to enable re-use of domain knowledge; to make domain assumptions explicit; to separate
domain knowledge from operational knowledge; to provide the formal analysis of terms; and based
on them, to analyse the domain knowledge; all were well addressed in [16]. The author assessed
as well that formal analysis of terms is extremely valuable when attempting both to re-use and to
extend ontologies.

The basic Resource Description Framework (RDF) [17] makes few distinctions in the ways that
Uniform Resource Identifiers (URIs) can be used to represent predicates and objects. However, other
systems have been developed to extend basic RDF and to provide ways to indicate more clearly the
nature of resources and the relationships between them. RDF Schema (RDFS) [18] and Web Ontology
Language 2 (OWL2) [19] provide increasingly complex means of describing such relationships.

It is possible to use advanced methods and tools, such as the Semantic Web Rule Language
(SWRL), SPARQL - or Simple - Protocol And RDF Query Language (SPARQL) and the Java Expert
System Shell (Jess) [20–22], to name a few, in order to exploit the inferred knowledge from the model
using reasoning capabilities. The use of these methods and tools will support seamless continuation of
knowledge so that relevant knowledge should be available whenever necessary.

The approach to PLM used here is mainly based on the ontological definition and knowledge
extraction taking advantage of interoperability, reasoning capability and incremental modelling. In the
context of Product Lifecycle Management (PLM), domain professionals have already acknowledged
the importance of representing and sharing product data during the different phases of the product
lifecycle. There has been significant achievement in integrating product data from Beginning of Life
(BOL), to the Middle of Life (MOL), until its End of Life (EOL), especially using shared common
ontologies and an intelligent retrieval mechanism [1–3,23,24]. Figure 1 illustrates the different PLM
phases with the shared information types. PLM has specific objectives in each phase of the lifecycle:
during the BOL, the improvement of product design and production quality is the main concern;
during the MOL, improving the reliability, availability and maintainability of products are the most
interesting issues, for example.

Sensors 2016, 16, 1053; doi:10.3390/s16071053 www.mdpi.com/journal/sensors

Figure 1. Product lifecycle management and information closing.

Figure 2. O-MI/O-DF transport layer inside the landscape of IoT data transfer.

Beginning of Life (BOL)

Middle of Life (MOL)

End of Life (MOL)

P
ro

d
u

c
t

li
fe

c
y

c
le

In

fo
rm

a
ti

o
n

 t
y

p
e
s

Information sharing

- Product design
data

- Mode of use
- Condition of

retirement
- Maintenance book

- Product usage
data

- Failure history
- Maintenance

records
- Service event

- Product status
- Recovery

information
- Remanufacturing

status
- EOL decision

Design

Manufacturing

Use

Repair

Maintenance

Reuse

Remanufacturing

Disposal

Business Models and Services

Data storage/Retrieve: Cloud databases

Data context process: context-aware
software

Data representation: RDF, JSON, O-DF,
and so on.

Data synchronization: O-MI

TCP, for example

H
ig

h
e

r-le
v
e

l c
o

m
m

u
n

ic
a

tio
n

,
 A

b
s
tra

c
t, b

u
s
in

e
s
s
-re

la
te

d

Application Layer

Session
/Communication
Layer

Transport layer

 Such as RFID Link Protocol

 Physical connectors Connectivity layer

Communication: HTTP, FTP, SSH, …

Figure 1. Product lifecycle management and information closing.

In the context of the work by [2,3], ontology-based closed-loop physical product lifecycle
management was addressed. The authors translated, in OWL2, a previously developed Semantic

Sensors 2016, 16, 1053 7 of 26

Object Model (PLM SOM), for physical products. The PLM SOM is one of the outcomes from the
European project, PROduct lifecycle Management and Information tracking using Smart Embedded
Systems (PROMISE) [25]. The initial data were collected from an existing database that contained
real-world physical product data. The resulting ontology model is dynamic and incremental.

The relevance of an ontology-based approach to the closed-loop PLM is evident, so much that it
has furthered the research interest to the extension of an existing model. The main reasons for reusing
PLM SOM as the base of extension are summarized as follows: (i) the model consistency of the existing
ontology was already validated; (ii) the instances, which were delivered from real product data, are
provided as an initial dataset on which tests of the ontological search could be conducted; (iii) as for
the MOL ontology, the physical product data should be semantically coherent with the service life
data. The PLM SOM data included automobile parts’ information, which is semantically coherent
with the electric car ontology used in this work, even though the data did not directly concern electric
car products. Therefore, from the perspectives of data reusability, the extension of PLM SOM has
been justified.

2.3. Internet of Things and Semantic Modelling Approach

A variety of applications, data sources, exchange formats and transport protocols requires a high
level of flexibility and scalability on the IoT. Besides the traditional approaches to data integration,
a number of semantic approaches remains to be taken into account. Big data solutions and cloud
platforms can provide infrastructure and tools for processing and analysing the huge amount of IoT
data. However, efficient methods and solutions are still required that can structure, annotate, share
and make sense of the IoT data, which facilitate transforming raw data into actionable knowledge and
intelligence in different application scenarios. Experience with the semantic sensor network [5,6] is to
be underlined in such perspectives. The advantages of using semantic modelling approaches in the
infrastructure of IoT are discussed further by [26], which are summarized below:

1. Semantics for interoperability: This means that different stakeholders can access and interpret
the data unambiguously. Things on the IoT need to exchange data with each other and with
other users on the Internet. Semantic annotation of the data can provide machine-interpretable
descriptions about what the data represent, where they originate from, how they can be
related to the surroundings, who is providing them and what are the quality, technical and
non-technical attributes.

2. IoT data integration: IoT data usually originate from a device or a human and refer to the
attributes of a phenomenon or an entity in the physical world. The data can be combined
with other data to create different abstractions of the environment or they can be integrated
into the data processing chain in and existing application to support context and situation
awareness. Semantic descriptions can support this integration by enabling interoperability
between different sources.

3. Resource/service search and discovery: In the IoT, a resource is referred to as a device or entity
that can provide data or perform actuation (e.g., a sensor or an actuator), and a service is a
software entity that exposes the functionality of its corresponding resource. The search and
discovery mechanisms allow locating resources or services that provide data related to an entity
of interest in the physical world. Semantically-annotated data and apps can be processed by
and retrieved by intelligent reasoning tools, therefore giving the possibility of integrating an
e-ecosystem layer for smart search and knowledge retrieval.

The work presented in [27] clearly demonstrates that the sensor systems are taking advantage of
semantic annotation and reasoning capability to develop an intelligent problem-solving framework
within which the function of matching sensors to compatible algorithms in surveillance systems is
effectively integrated.

Sensors 2016, 16, 1053 8 of 26

2.4. Open Messaging Interface/Open Data Format: The Open Group IoT Standards for Message
Synchronization and Semantic Integration

As far as the standards are concerned, Internet of Things standards, such as O-MI (Open
Messaging Interface) [28] and O-DF (Open Data Format) [29], facilitate the collection of information
on things into a semantically-provided knowledge structure [30]. O-MI/O-DF, which is The Open
Group [31] Internet of Things message standards worked out by the IoT Workgroup [32], emerged
from the PROMISE EU FP6 project. Information, such as sensor readings, alarms, manufacturing,
disassembly and supply chain events and other information related to the entire product lifecycle,
needs to be exchanged between products and systems of different organizations. O-MI/O-DF is one
such message interfacing standard that satisfies all of the requirements.

The key idea of O-DF and O-MI is to make available the management of product lifecycle
information while tracing how the product has behaved or how the customer has used each individual
product. The set of information can be provided through the data generated by a product-instance
with the help of sensors and actuators. Thanks to the IoT-related technologies, a very large volume
of data, in a wide range, can be collected. However, due to the diversity of information sources, the
analysis and knowledge extraction from those data becomes too tricky to cope with.

Here are some functional requirements for an IoT message to be suitable for a PLM context [30]:

‚ Possible to implement for any kind of instance as independently of the application domain as possible.
‚ Possible to implement for any kind of information system, including embedded and mobile systems.
‚ Support for ‘synchronous’ messaging, such as immediate read and write operations, including

‘client-poll’ subscriptions.
‚ Not restricted to one communication protocol only; it must be possible to send messages using

protocols, such as plain HTTP, Simple Object Access Protocol (SOAP), simple Mail Transfer
Protocol (SMPT), as file copies, etc.

‚ Possible to create ad hoc, loosely-coupled tie to limited information flows on the fly.
‚ Peer-to-peer communication possibility for all devices, i.e., client and server functionality can be

implemented for any device, depending on available processing power, network, connectivity, etc.
‚ Handling mobility and intermittent network connectivity, i.e., support for asynchronous

messaging capabilities that imply for instance message persistence, time-to-live, etc.
‚ Context-dependent discovery of instances, instance-related services and meta-data about them.
‚ Support for context and domain-specific ontologies.
‚ Queries by regular expression for retrieving information about more than one instance and more

than one kind of information.
‚ Historical queries, i.e., retrieving values between two points in time.

The last four points are particularly important options to be satisfied so that IoT data can be
combined with a semantic modelling approach. Here are some beneficial aspects from applying
O-MI/O-DF to ontology-enabled PLM, which were found from our research:

‚ Support for context and domain-specific ontologies is an important point for the purpose of
integrating several domain problems into a global point of view.

‚ The query possibility is a mandatory factor with the aim of knowledge extraction.
‚ The possibility of specifying time ranges is useful so that knowledge inference can occur while

including temporal constraints. This function helps improve the quality of data search.

O-MI can be used for transporting payloads also in formats other than O-DF (such as RDF data
structures). O-DF can be viewed as a generic content description model for things in the IoT. A simple
example of an O-MI and an O-DF message is given in Appendix A1. The initial approach described in
their paper used XML for the content description. However, O-MI and O-DF can also be represented
using JSON [33], RDF and other formats that can be translated directly to and from XML. O-MI and

Sensors 2016, 16, 1053 9 of 26

O-DF may be used independently of each other. The role of O-MI/O-DF in the global context of IoT
message transfer layers is illustrated in Figure 2, which is more detailed in [34].

Sensors 2016, 16, 1053; doi:10.3390/s16071053 www.mdpi.com/journal/sensors

Figure 1. Product lifecycle management and information closing.

Figure 2. O-MI/O-DF transport layer inside the landscape of IoT data transfer.

Beginning of Life (BOL)

Middle of Life (MOL)

End of Life (MOL)

P
ro

d
u

c
t

li
fe

c
y

c
le

In

fo
rm

a
ti

o
n

 t
y

p
e
s

Information sharing

- Product design
data

- Mode of use
- Condition of

retirement
- Maintenance book

- Product usage
data

- Failure history
- Maintenance

records
- Service event

- Product status
- Recovery

information
- Remanufacturing

status
- EOL decision

Design

Manufacturing

Use

Repair

Maintenance

Reuse

Remanufacturing

Disposal

Business Models and Services

Data storage/Retrieve: Cloud databases

Data context process: context-aware
software

Data representation: RDF, JSON, O-DF,
and so on.

Data synchronization: O-MI

TCP, for example

H
ig

h
e

r-le
v
e

l c
o

m
m

u
n

ic
a

tio
n

,
 A

b
s
tra

c
t, b

u
s
in

e
s
s
-re

la
te

d

Application Layer

Session
/Communication
Layer

Transport layer

 Such as RFID Link Protocol

 Physical connectors Connectivity layer

Communication: HTTP, FTP, SSH, …

Figure 2. O-MI/O-DF transport layer inside the landscape of IoT data transfer.

O-DF is generic enough for representing any object and information that is needed for information
exchange in the IoT. As shown in Appendices A1 and A2, the top-level “Objects” element may contain
any number of “Object” sub-elements. Inside an “Object” element, users can include the object id with
the description, as well as the main message content with the help of the “InfoItem” element. It is also
possible to construct a hierarchical view of each object. The architecture is simple and generic enough,
so that O-DF can be applied to ontology data communication (see also Section 3.3).

O-MI allows the read/write/cancel operation concerning the data that the message contains [28].
O-MI does not impose any message enclosing structure. In the O-MI convention, three types of
operations should be followed while receiving an O-MI message: (i) “write” used for sending
information updates to an O-MI node; (ii) “read” used for immediate retrieval of information and for
placing subscriptions to an O-MI node; (iii) “cancel” for cancelling subscriptions before they expire.

As for the subscription mechanism, two types of subscription mechanisms are supported: (i) with
callback address: the data are sent to the subscriber node using an O-MI response at the requested
interval; the interval can be either “interval-based” or “event-based”; (ii) without call-back address:
the data are memorized on the subscribed node as long as the subscription is valid. The subscriber can
retrieve the memorized data (i.e., polling using subscription id) by issuing a new O-MI read query.
Some application examples of O-MI and O-DF are explained in [30]. Such features were considered
to be beneficial while integrating O-MI/O-DF in the semantic framework, which is detailed in the
following section.

3. Semantic Framework for CL2M of Product-Service in IoT: Conceptual Architecture

For the purpose of responding to a holistic CL2M, which includes the notions of services, service
lifecycle and actors, the Product-Service Lifecycle Ontology (PSLO) was modelled. The model
was described in OWL2, using the Protégé ontology editor [35], while taking advantage of this
language, demonstrated in [8,11,13,36–38]. Inside PSLO, several object property relations between
product-service-actor objects were established in view of reusing the physical product ontology model
provided by PLM SOM. The consistency check between the existing ontology and the extended part
was achieved with the help of the Pellet [39] inference engine.

This section presents PSLO, as well as the framework of information sharing. Considering the
detailed information of the PLM SOM ontology, which concerns the physical products’ lifecycle,
readers are referred to [2,3]. Provided that IoT data shall be collected from different sources of data

Sensors 2016, 16, 1053 10 of 26

providers, which are heterogeneous and geographically distributed, it turned out that O-DF was a
relevant message envelope.

3.1. Service Upper Ontology and Service Lifecycle Ontology

The main purpose of modelling an upper ontology is to provide a generic high-level model that
might be extended into a more specific and detailed semantic model. The upper ontology allows
the reusability of other parts, including generic rules and inference mechanisms inside the extended
models. The upper ontology of PSLO integrates the characteristics of Product-Service Systems and
requirements for service lifecycle management presented in different works [8–13,36–38,40,41].

As for the service lifecycle ontology, three key issues were considered: (i) ‘service lifecycle’ during
the product use phase; (ii) EOL decision for material closing in the context of holistic CL2M; (iii) the
possibility of representing actor engagement as of different stakeholders of PSS networks.

As far as the service lifecycle is concerned, the whole cycle is composed of: service design,
service offering, provisioning, usage and decommissioning (top of Figure 3). The service upper
ontology integrates four main elements: the definition of a service, a customer for whom the service is
offered, the service provider who performs service operations and a service target on which specific
service operations should be performed in case this concerns a product-service. Subsequently, the
class ‘ServiceTarget’ which represent a service target can be further specialized into two subclasses:
‘Physical_Product’ for tangible services and ‘Intangible_Product’ for intangible services. The bottom
part of Figure 3 shows the relation between the service upper ontology, which is represented by
colour-filled elements, and the other domain-specific ontology elements. The domain-specific ontology
is further detailed in the case study in Section 4. The notion of service illustrated in Section 4 deals with
the ‘Service_Usage’, whose phase is overlapped with the physical products’ MOL phase (Figure 4).Sensors 2016, 16, 1053 2 of 2

Figure 3. Service lifecycle phases and service upper ontology.

Service Design

Service Offering

Provisioning Service Usage

Decommissioning

Service

Service

Provider

Maintenance

Center
Technician

Client
Service

Target

Physical_

Product

Intangible

_Product

Car

Performed_for Performed_on

hasProvider

subclass

Product_

Service

Service Design

Service Offering

Provisioning Service Usage

Decommissioning

Service

Service
Provider

Maintenance
Center

Technician

Customer
Service
Target

Physical_
Product

Intangible
_Product

Car

Performed_for Performed_on

Perfo
rm

ed_in

hasProvider

Subclass

Product_
Service

Perfo
rm

ed_by

U
p

p
e

r
O

n
to

lo
g

y

D
o

m
a

in
 s

p
e

c
if
ic

Object
property

Figure 3. Service lifecycle phases and service upper ontology.

Sensors 2016, 16, 1053 11 of 26
Sensors 2016, 16, 1053 11 of 26

Figure 4. Product-service and the existing ontology of Physical_Product.

3.2. Service and Product-Service

In PSLO, the notion of product-service is represented as a ‘Product_Service’ class, which is a
sub-ontology of a more generic ‘service’ class. A generic service can be offered without associating a
physical product, whereas a product-service should be created with an associated product object (i.e.,
link to the Physical_Product in Figure 4).

The product-service part is presented in Figure 4. The left-hand side elements, i.e.,
‘Physical_Product’, ‘Field_Data’ and ‘Event’, are existing items in PLM SOM, whereas the other parts
are newly-created elements. ‘Service_Usage’ has object properties, such as ‘service provider,
‘resource’ and ‘process’. As far as the associations with ‘Field_Data’ and ‘event’, their role is to link
instance data of services to the PLM SOM ontology. The following description illustrates the reason
for these semantic relations.

In PLM SOM, the product data were generated in terms of event data. Under the assumption
that product-service data should take part in product lifecycle information, this notion should still be
valid with the service data collection in PSLO. While maintaining such a semantic relation, our
assumption was based on the fact that services or maintenance actions can be one of the main ‘events’
that indicate part changing or machine fault detection and repair. Depending on the product type,
regular maintenance operations are even mandatory. Thanks to such maintenance histories, it is
possible to retrieve richer product information while measuring the rate of system failure and/or the
functional satisfaction level of product parts, for instance.

‘Maintenance_Service’ or ‘End-Of-Life_As_a_Service’ is a type of specialized ‘Product_Service’.
EOL operations can contain attributes that indicate initial products and post-products resulting from
refurbishing or remanufacturing processes according to an EOL decision. Such data can be useful
with information search about pre-lifecycle during the other phase of products lifecycle, e.g., the
product redesign in BOL.

A part of PSLO is demonstrated in Figure 5 for the purpose of showing the relationship between
physical product, service and respective lifecycle phase information. Hereby, we will use the word
‘service’ designating a product-service in general for the sake of simplicity. Figure 5a represents the
link from Service_Usage (upper ontology) to the service instance (in a domain-specific ontology).
Figure 5b represents the internal object property relation between the physical product ‘car’ and
‘service’, which will be detailed in Section 4. As far as Figure 5c is concerned, the car object is in the
MOL phase. The maintenance or event data can be represented as filed data Figure 5e, which are the
counter part of the relation between a specific field data type and some parts of physical products
Figure 5d.

Figure 4. Product-service and the existing ontology of Physical_Product.

3.2. Service and Product-Service

In PSLO, the notion of product-service is represented as a ‘Product_Service’ class, which is a
sub-ontology of a more generic ‘service’ class. A generic service can be offered without associating a
physical product, whereas a product-service should be created with an associated product object (i.e.,
link to the Physical_Product in Figure 4).

The product-service part is presented in Figure 4. The left-hand side elements, i.e., ‘Physical_Product’,
‘Field_Data’ and ‘Event’, are existing items in PLM SOM, whereas the other parts are newly-created
elements. ‘Service_Usage’ has object properties, such as ‘service provider, ‘resource’ and ‘process’. As far
as the associations with ‘Field_Data’ and ‘event’, their role is to link instance data of services to the PLM
SOM ontology. The following description illustrates the reason for these semantic relations.

In PLM SOM, the product data were generated in terms of event data. Under the assumption
that product-service data should take part in product lifecycle information, this notion should still
be valid with the service data collection in PSLO. While maintaining such a semantic relation, our
assumption was based on the fact that services or maintenance actions can be one of the main ‘events’
that indicate part changing or machine fault detection and repair. Depending on the product type,
regular maintenance operations are even mandatory. Thanks to such maintenance histories, it is
possible to retrieve richer product information while measuring the rate of system failure and/or the
functional satisfaction level of product parts, for instance.

‘Maintenance_Service’ or ‘End-Of-Life_As_a_Service’ is a type of specialized ‘Product_Service’.
EOL operations can contain attributes that indicate initial products and post-products resulting from
refurbishing or remanufacturing processes according to an EOL decision. Such data can be useful with
information search about pre-lifecycle during the other phase of products lifecycle, e.g., the product
redesign in BOL.

A part of PSLO is demonstrated in Figure 5 for the purpose of showing the relationship between
physical product, service and respective lifecycle phase information. Hereby, we will use the word
‘service’ designating a product-service in general for the sake of simplicity. Figure 5a represents the link
from Service_Usage (upper ontology) to the service instance (in a domain-specific ontology). Figure 5b
represents the internal object property relation between the physical product ‘car’ and ‘service’, which
will be detailed in Section 4. As far as Figure 5c is concerned, the car object is in the MOL phase. The
maintenance or event data can be represented as filed data Figure 5e, which are the counter part of the
relation between a specific field data type and some parts of physical products Figure 5d.

Sensors 2016, 16, 1053 12 of 26
Sensors 2016, 16, 1053 12 of 26

Figure 5. Global view of the physical product and product-service ontology model.

3.3. Semantic Info-Node Agent Architecture in an Executable Instance of Framework

PSLO was created using Protégé 5.0 and written in OWL2 RDF/XML serialization. Using the
ontology editor and SPARQL query window, users can verify inferred instances or results provided
by a rule engine. In addition to the publication of the ontology, the ultimate goal is to provide a
framework for PLSO knowledge sharing in an IoT-enabled environment. Consequently, the ontology
framework is instantiated on OpenRDF Sesame [42]. Sesame is an open source Java framework for
processing RDF data. The framework offers a wide range of tools to developers to leverage the power
of RDF and related standards, including parsing, storing, inference and querying of/over semantic
data. It offers an easy-to-use API that can be connected to all leading RDF storage solutions. It allows
us to connect with SPARQL endpoints and create applications that leverage the power of linked data
and the Semantic Web.

Sesame offers two out-of-the-box RDF databases, i.e., the in-memory store and the native store,
which are endorsed by many third party storage solutions. Sesame fully supports the SPARQL 1.1
query and update languages for expressive querying and offers transparent access to remote RDF
repositories using the same API as for local access. Sesame supports all mainstream RDF file formats,
including RDF/XML, Turtle and JSON-Linked Data (JSON-LD).

The following list shows some available third-party database solutions that implement the
Sesame APIs.

 CumulusRDF is an RDF store on a cloud-based architecture, fully compatible with the Sesame
APIs. CumulusRDF provides a REST-based API with create, read, update, delete (CRUD)
operations to manage RDF data. The current version uses Apache Cassandra as the storage
backend.

 Sesame Adapter for Oracle Database: an Oracle-developed adapter component for accessing
Oracle Semantic Technologies via the Sesame APIs.

 Strabo is a geospatial RDF triple store based on Sesame.
 Virtuoso Sesame Provider is an OpenLink-developed component that allows accessing an

OpenLink Virtuoso triple store via the Sesame APIs.

After that PSLO is transferred to Sesame, the O-MI/O-DF node agent, Semantic Info-Node Agent
(SINA), is created while providing additional features required to access and update Sesame
databases. Figure 6 illustrates a simplified view of the SINA architecture.

Figure 5. Global view of the physical product and product-service ontology model.

3.3. Semantic Info-Node Agent Architecture in an Executable Instance of Framework

PSLO was created using Protégé 5.0 and written in OWL2 RDF/XML serialization. Using the
ontology editor and SPARQL query window, users can verify inferred instances or results provided
by a rule engine. In addition to the publication of the ontology, the ultimate goal is to provide a
framework for PLSO knowledge sharing in an IoT-enabled environment. Consequently, the ontology
framework is instantiated on OpenRDF Sesame [42]. Sesame is an open source Java framework for
processing RDF data. The framework offers a wide range of tools to developers to leverage the power
of RDF and related standards, including parsing, storing, inference and querying of/over semantic
data. It offers an easy-to-use API that can be connected to all leading RDF storage solutions. It allows
us to connect with SPARQL endpoints and create applications that leverage the power of linked data
and the Semantic Web.

Sesame offers two out-of-the-box RDF databases, i.e., the in-memory store and the native store,
which are endorsed by many third party storage solutions. Sesame fully supports the SPARQL 1.1
query and update languages for expressive querying and offers transparent access to remote RDF
repositories using the same API as for local access. Sesame supports all mainstream RDF file formats,
including RDF/XML, Turtle and JSON-Linked Data (JSON-LD).

The following list shows some available third-party database solutions that implement the
Sesame APIs.

‚ CumulusRDF is an RDF store on a cloud-based architecture, fully compatible with the Sesame APIs.
CumulusRDF provides a REST-based API with create, read, update, delete (CRUD) operations to
manage RDF data. The current version uses Apache Cassandra as the storage backend.

‚ Sesame Adapter for Oracle Database: an Oracle-developed adapter component for accessing
Oracle Semantic Technologies via the Sesame APIs.

‚ Strabo is a geospatial RDF triple store based on Sesame.
‚ Virtuoso Sesame Provider is an OpenLink-developed component that allows accessing an

OpenLink Virtuoso triple store via the Sesame APIs.

After that PSLO is transferred to Sesame, the O-MI/O-DF node agent, Semantic Info-Node Agent
(SINA), is created while providing additional features required to access and update Sesame databases.
Figure 6 illustrates a simplified view of the SINA architecture.

Sensors 2016, 16, 1053 13 of 26
Sensors 2016, 16, 1053 13 of 26

Figure 6. Semantic info-node agent architecture.

The agent behavior is based on a deliberative and communicative agent architecture [43]. In
terms of technical implementation, SINA is a Java thread object that is composed of a message box,
internal state, Sesame database access functions and SPARQL and the SPARQL Inferencing Notation
(SPIN) rule scripts, if applicable. One of the agent internal properties includes the namespace
definition referring to its ontology model. A particular namespace makes a unit SINA specific to a
certain domain of ontology. The agent messages are described in the O-DF message syntax. Appendix
A(b) shows an example of a data transfer message relative to SINA. The enclosed block of O-DF
InfoItem is parsed by the agent. Within an O-DF object “sina-rdf”, users can specify InfoItem
elements: for example, for the agent identifier (InfoItem = “agent-space”) or for the data to write
(InfoItem = “rdf-content”). The “rdf-content” element is the RDF graph data to be communicated for
data writing.

Thanks to an agent’s internal rule description and inference engine, the agent is capable of
generating new information (Figure 6a). The newly integrated information can recursively contribute
to another rule description (at an upper-level SINA), subsequently creating other types of knowledge
(Figure 6b). Such a framework allows one to continually collect data, infer and share inferred
information through IoT message transfer. In comparison with the conventional IoT data messaging
in which the transfer of hardware sensor data is the main objective, the framework makes it possible
to share the inferred information as a kind of abstract sensor data. For the moment, a simple O-DF
parser was developed for data collection, update and retrieval, without considering the full range
implementation, which includes O-MI node functions. However, if the framework is connected with
a full O-MI server node, it will be possible that other agents or IoT APIs can subscribe to collecting
the SINA node’s knowledge data. To summarize, the framework helps extend the notion of IoT from
physical sensor data towards an abstract level of logical data [44].

4. Electric Car and Battery Lifecycle: Case Study on Domain-Specific Ontology Creation

This section demonstrates the use case of PSLO in the context of electric car and battery lifecycle
information management. The above-presented ontology concept was applied to a specific
product-service type, i.e., electric car service, integrating actors and service details, as well as their
instance data.

The choice of the case study was mainly derived from the importance of service lifecycle
regarding this specific product. As discussed in [38], the needs for an approach based on Product-
Service System (PSS) management become more important than before, especially in new or evolving
markets, such as the electric car industry. Particularly, the management of product maintenance and
service records play an important role, since they provide the information of data generation time
(i.e., event) about the notice of failure or worn-out rate during a certain period of time. As mentioned
by the same authors, from a consumer perspective, the electric car is substantially different from the
traditional car. Although it meets a similar need to conventional cars, the electric car has a number of

Figure 6. Semantic info-node agent architecture.

The agent behavior is based on a deliberative and communicative agent architecture [43]. In terms
of technical implementation, SINA is a Java thread object that is composed of a message box, internal
state, Sesame database access functions and SPARQL and the SPARQL Inferencing Notation (SPIN)
rule scripts, if applicable. One of the agent internal properties includes the namespace definition
referring to its ontology model. A particular namespace makes a unit SINA specific to a certain domain
of ontology. The agent messages are described in the O-DF message syntax. Appendix A(b) shows an
example of a data transfer message relative to SINA. The enclosed block of O-DF InfoItem is parsed
by the agent. Within an O-DF object “sina-rdf”, users can specify InfoItem elements: for example, for
the agent identifier (InfoItem = “agent-space”) or for the data to write (InfoItem = “rdf-content”). The
“rdf-content” element is the RDF graph data to be communicated for data writing.

Thanks to an agent’s internal rule description and inference engine, the agent is capable of
generating new information (Figure 6a). The newly integrated information can recursively contribute
to another rule description (at an upper-level SINA), subsequently creating other types of knowledge
(Figure 6b). Such a framework allows one to continually collect data, infer and share inferred
information through IoT message transfer. In comparison with the conventional IoT data messaging
in which the transfer of hardware sensor data is the main objective, the framework makes it possible
to share the inferred information as a kind of abstract sensor data. For the moment, a simple O-DF
parser was developed for data collection, update and retrieval, without considering the full range
implementation, which includes O-MI node functions. However, if the framework is connected with
a full O-MI server node, it will be possible that other agents or IoT APIs can subscribe to collecting
the SINA node’s knowledge data. To summarize, the framework helps extend the notion of IoT from
physical sensor data towards an abstract level of logical data [44].

4. Electric Car and Battery Lifecycle: Case Study on Domain-Specific Ontology Creation

This section demonstrates the use case of PSLO in the context of electric car and battery lifecycle
information management. The above-presented ontology concept was applied to a specific product-service
type, i.e., electric car service, integrating actors and service details, as well as their instance data.

The choice of the case study was mainly derived from the importance of service lifecycle regarding
this specific product. As discussed in [38], the needs for an approach based on Product-Service System
(PSS) management become more important than before, especially in new or evolving markets, such as
the electric car industry. Particularly, the management of product maintenance and service records
play an important role, since they provide the information of data generation time (i.e., event) about
the notice of failure or worn-out rate during a certain period of time. As mentioned by the same
authors, from a consumer perspective, the electric car is substantially different from the traditional

Sensors 2016, 16, 1053 14 of 26

car. Although it meets a similar need to conventional cars, the electric car has a number of innovative
features. The service component is particularly important as one of the relevant factors in decisions to
purchase electric cars. That is the main reason that we were interested in applying our methodology to
an electric car case study.

For that purpose, the upper ontology was specialized into a domain-specific ontology of electric
car and related services. The electric car product subsystems presented in [45] were the main reference
of our domain-specific model. Among four subsystems of the electric car, i.e., vehicle sub-system,
electronics on-board sub-system, infrastructure sub-system and energy sub-system, this paper focuses
more on the ontology model of “vehicle sub-system” and “energy sub-system”: the car with the other
structure for the former and the electric battery for the latter subject. In the following subsection, the
ontology model is detailed.

4.1. Domain-Specific Ontology Model

Figure 7 represents a semantic model for an electric car and related service classes modelled using
Protégé. It includes four main classes: actors, cars, clients and services. For the sake of understanding
the model, we will briefly describe the four main classes actors, cars, clients and services and their
principal relations (subclasses and object properties in Protégé).

Sensors 2016, 16, 1053 14 of 26

innovative features. The service component is particularly important as one of the relevant factors in
decisions to purchase electric cars. That is the main reason that we were interested in applying our
methodology to an electric car case study.

For that purpose, the upper ontology was specialized into a domain-specific ontology of electric
car and related services. The electric car product subsystems presented in [45] were the main
reference of our domain-specific model. Among four subsystems of the electric car, i.e., vehicle sub-
system, electronics on-board sub-system, infrastructure sub-system and energy sub-system, this
paper focuses more on the ontology model of “vehicle sub-system” and “energy sub-system”: the car
with the other structure for the former and the electric battery for the latter subject. In the following
subsection, the ontology model is detailed.

4.1. Domain-Specific Ontology Model

Figure 7 represents a semantic model for an electric car and related service classes modelled
using Protégé. It includes four main classes: actors, cars, clients and services. For the sake of
understanding the model, we will briefly describe the four main classes actors, cars, clients and
services and their principal relations (subclasses and object properties in Protégé).

Figure 7. Overview of the domain-specific ontology of EV service.

For the sake of understanding the model, we will briefly describe the four main classes actors,
cars, clients and services and their principal relations (subclasses and object properties in Protégé).

4.1.1. Car and Client Classes

Figure 8 depicts the car class has two subclasses: battery and structure. It has been decided to
separate the battery from the drive unit due to the fact that, with an electric car, they are independent
of one another. Moreover, they may have different lifespans, and most of the services focus on only
one part.

Figure 8. Overview of the car class and object properties.

Figure 7. Overview of the domain-specific ontology of EV service.

For the sake of understanding the model, we will briefly describe the four main classes actors,
cars, clients and services and their principal relations (subclasses and object properties in Protégé).

4.1.1. Car and Client Classes

Figure 8 depicts the car class has two subclasses: battery and structure. It has been decided to
separate the battery from the drive unit due to the fact that, with an electric car, they are independent of
one another. Moreover, they may have different lifespans, and most of the services focus on only one part.

Sensors 2016, 16, 1053 14 of 26

innovative features. The service component is particularly important as one of the relevant factors in
decisions to purchase electric cars. That is the main reason that we were interested in applying our
methodology to an electric car case study.

For that purpose, the upper ontology was specialized into a domain-specific ontology of electric
car and related services. The electric car product subsystems presented in [45] were the main
reference of our domain-specific model. Among four subsystems of the electric car, i.e., vehicle sub-
system, electronics on-board sub-system, infrastructure sub-system and energy sub-system, this
paper focuses more on the ontology model of “vehicle sub-system” and “energy sub-system”: the car
with the other structure for the former and the electric battery for the latter subject. In the following
subsection, the ontology model is detailed.

4.1. Domain-Specific Ontology Model

Figure 7 represents a semantic model for an electric car and related service classes modelled
using Protégé. It includes four main classes: actors, cars, clients and services. For the sake of
understanding the model, we will briefly describe the four main classes actors, cars, clients and
services and their principal relations (subclasses and object properties in Protégé).

Figure 7. Overview of the domain-specific ontology of EV service.

For the sake of understanding the model, we will briefly describe the four main classes actors,
cars, clients and services and their principal relations (subclasses and object properties in Protégé).

4.1.1. Car and Client Classes

Figure 8 depicts the car class has two subclasses: battery and structure. It has been decided to
separate the battery from the drive unit due to the fact that, with an electric car, they are independent
of one another. Moreover, they may have different lifespans, and most of the services focus on only
one part.

Figure 8. Overview of the car class and object properties. Figure 8. Overview of the car class and object properties.

Sensors 2016, 16, 1053 15 of 26

Creating further interaction between classes requires object properties. The objects’ properties
link one class to another according to a semantic meaning given with the relation. Concerning the car
class, there are two object properties defined between battery and structure.

The car is manufactured (battery and structure), then stored in an actor’s business location (i.e.,
product-manufacturer centre or service-provider centre), and finally, the client owns the car after
purchasing it. The corresponding object properties are illustrated on Figure 9.

Sensors 2016, 16, 1053 15 of 26

Creating further interaction between classes requires object properties. The objects’ properties
link one class to another according to a semantic meaning given with the relation. Concerning the car
class, there are two object properties defined between battery and structure.

The car is manufactured (battery and structure), then stored in an actor’s business location (i.e.,
product-manufacturer centre or service-provider centre), and finally, the client owns the car after
purchasing it. The corresponding object properties are illustrated on Figure 9.

Figure 9. Object properties linking the actors, cars and clients.

4.1.2. Actor Class

The actor class includes product-providers (providing the battery and the structure of the car to
the client) and service-providers (providing the services). The service-provider class is divided into
four sub-classes: two centre classes (where the service is performed) and two technician classes (by
whom the service is performed). Figure 10 illustrates the actor class and semantic relations with other
classes.

Figure 10. Overview of the actor environment.

There are two objects properties linking the centres with the technicians (Figure 11): employ and
employed-by.

Figure 11. Object properties of the actor environment.

The actor environment includes individuals of maintenance centres, battery recycling centres,
technicians for maintenances and technicians for battery recycling.

4.1.3. Electric Car Services Class and Relations

Here, as for the case study example, we created four types of specific services that are shown in
Figure 12.

 Maintenance: Regular maintenance performed by a technician. We assume a maintenance
service is performed every year from the date of purchase of the car during the service contract
period.

Figure 9. Object properties linking the actors, cars and clients.

4.1.2. Actor Class

The actor class includes product-providers (providing the battery and the structure of the car
to the client) and service-providers (providing the services). The service-provider class is divided
into four sub-classes: two centre classes (where the service is performed) and two technician classes
(by whom the service is performed). Figure 10 illustrates the actor class and semantic relations with
other classes.

Sensors 2016, 16, 1053 15 of 26

Creating further interaction between classes requires object properties. The objects’ properties
link one class to another according to a semantic meaning given with the relation. Concerning the car
class, there are two object properties defined between battery and structure.

The car is manufactured (battery and structure), then stored in an actor’s business location (i.e.,
product-manufacturer centre or service-provider centre), and finally, the client owns the car after
purchasing it. The corresponding object properties are illustrated on Figure 9.

Figure 9. Object properties linking the actors, cars and clients.

4.1.2. Actor Class

The actor class includes product-providers (providing the battery and the structure of the car to
the client) and service-providers (providing the services). The service-provider class is divided into
four sub-classes: two centre classes (where the service is performed) and two technician classes (by
whom the service is performed). Figure 10 illustrates the actor class and semantic relations with other
classes.

Figure 10. Overview of the actor environment.

There are two objects properties linking the centres with the technicians (Figure 11): employ and
employed-by.

Figure 11. Object properties of the actor environment.

The actor environment includes individuals of maintenance centres, battery recycling centres,
technicians for maintenances and technicians for battery recycling.

4.1.3. Electric Car Services Class and Relations

Here, as for the case study example, we created four types of specific services that are shown in
Figure 12.

 Maintenance: Regular maintenance performed by a technician. We assume a maintenance
service is performed every year from the date of purchase of the car during the service contract
period.

Figure 10. Overview of the actor environment.

There are two objects properties linking the centres with the technicians (Figure 11): employ
and employed-by.

Sensors 2016, 16, 1053 15 of 26

Creating further interaction between classes requires object properties. The objects’ properties
link one class to another according to a semantic meaning given with the relation. Concerning the car
class, there are two object properties defined between battery and structure.

The car is manufactured (battery and structure), then stored in an actor’s business location (i.e.,
product-manufacturer centre or service-provider centre), and finally, the client owns the car after
purchasing it. The corresponding object properties are illustrated on Figure 9.

Figure 9. Object properties linking the actors, cars and clients.

4.1.2. Actor Class

The actor class includes product-providers (providing the battery and the structure of the car to
the client) and service-providers (providing the services). The service-provider class is divided into
four sub-classes: two centre classes (where the service is performed) and two technician classes (by
whom the service is performed). Figure 10 illustrates the actor class and semantic relations with other
classes.

Figure 10. Overview of the actor environment.

There are two objects properties linking the centres with the technicians (Figure 11): employ and
employed-by.

Figure 11. Object properties of the actor environment.

The actor environment includes individuals of maintenance centres, battery recycling centres,
technicians for maintenances and technicians for battery recycling.

4.1.3. Electric Car Services Class and Relations

Here, as for the case study example, we created four types of specific services that are shown in
Figure 12.

 Maintenance: Regular maintenance performed by a technician. We assume a maintenance
service is performed every year from the date of purchase of the car during the service contract
period.

Figure 11. Object properties of the actor environment.

The actor environment includes individuals of maintenance centres, battery recycling centres,
technicians for maintenances and technicians for battery recycling.

4.1.3. Electric Car Services Class and Relations

Here, as for the case study example, we created four types of specific services that are shown in
Figure 12.

Sensors 2016, 16, 1053 16 of 26

‚ Maintenance: Regular maintenance performed by a technician. We assume a maintenance service
is performed every year from the date of purchase of the car during the service contract period.

‚ Battery exchange: Battery exchange, i.e., swapping, is an alternative to recharging and concerns
swapping a drained or nearly drained battery with a fully-charged battery, which is operated in
battery exchange stations.

‚ Battery recycling: This service concerns the recycling of old batteries either after swapping or after
complete change.

‚ Software update: A software update is offered to the client, at a relevant moment, by the car
manufacturer. Since it is not mandatory, the client can choose whether to install it or not.

Sensors 2016, 16, 1053 16 of 26

 Battery exchange: Battery exchange, i.e., swapping, is an alternative to recharging and concerns
swapping a drained or nearly drained battery with a fully-charged battery, which is operated in
battery exchange stations.

 Battery recycling: This service concerns the recycling of old batteries either after swapping or
after complete change.

 Software update: A software update is offered to the client, at a relevant moment, by the car
manufacturer. Since it is not mandatory, the client can choose whether to install it or not.

Figure 12. Overview of the service and its subtypes.

Figure 13 details five object properties which are assigned to a service object, which are described
below:

 perform: Which service is performed (e.g., a maintenance)?
 performed_by: By whom is the service performed (e.g., a technician)?
 performed_for: For whom is the service performed (e.g., a private client)?
 performed_in: Where is the service location (e.g., a maintenance centre)?
 performed_on: On which product is the service performed (e.g., a battery or a structure)?

Figure 13. Objects properties of the service.

In this case study, the class ontology and individuals are created manually with the help of the
Protégé editor. Afterward, the OWL ontology is transferred to the Sesame environment for the
purpose of being used as a SINA repository. Using IoT message passing, the instance data can be
progressively incremented, which was tested with some selected message passing, e.g., maintenance
records or battery wear level. As for the data retrieval, it is also possible to launch SPARQL queries
directly into the ontology base or to verify the data instances with the help of the Protégé SPARQL
query tab, which is discussed in the following subsection.

4.2. Data Retrieval Example

The following SPARQL query is used for the purpose of retrieving all of the services of a client,
whose name is Alexandre Grozel:

Figure 12. Overview of the service and its subtypes.

Figure 13 details five object properties which are assigned to a service object, which are
described below:

‚ perform: Which service is performed (e.g., a maintenance)?
‚ performed_by: By whom is the service performed (e.g., a technician)?
‚ performed_for: For whom is the service performed (e.g., a private client)?
‚ performed_in: Where is the service location (e.g., a maintenance centre)?
‚ performed_on: On which product is the service performed (e.g., a battery or a structure)?

Sensors 2016, 16, 1053 16 of 26

 Battery exchange: Battery exchange, i.e., swapping, is an alternative to recharging and concerns
swapping a drained or nearly drained battery with a fully-charged battery, which is operated in
battery exchange stations.

 Battery recycling: This service concerns the recycling of old batteries either after swapping or
after complete change.

 Software update: A software update is offered to the client, at a relevant moment, by the car
manufacturer. Since it is not mandatory, the client can choose whether to install it or not.

Figure 12. Overview of the service and its subtypes.

Figure 13 details five object properties which are assigned to a service object, which are described
below:

 perform: Which service is performed (e.g., a maintenance)?
 performed_by: By whom is the service performed (e.g., a technician)?
 performed_for: For whom is the service performed (e.g., a private client)?
 performed_in: Where is the service location (e.g., a maintenance centre)?
 performed_on: On which product is the service performed (e.g., a battery or a structure)?

Figure 13. Objects properties of the service.

In this case study, the class ontology and individuals are created manually with the help of the
Protégé editor. Afterward, the OWL ontology is transferred to the Sesame environment for the
purpose of being used as a SINA repository. Using IoT message passing, the instance data can be
progressively incremented, which was tested with some selected message passing, e.g., maintenance
records or battery wear level. As for the data retrieval, it is also possible to launch SPARQL queries
directly into the ontology base or to verify the data instances with the help of the Protégé SPARQL
query tab, which is discussed in the following subsection.

4.2. Data Retrieval Example

The following SPARQL query is used for the purpose of retrieving all of the services of a client,
whose name is Alexandre Grozel:

Figure 13. Objects properties of the service.

In this case study, the class ontology and individuals are created manually with the help of the
Protégé editor. Afterward, the OWL ontology is transferred to the Sesame environment for the purpose
of being used as a SINA repository. Using IoT message passing, the instance data can be progressively
incremented, which was tested with some selected message passing, e.g., maintenance records or
battery wear level. As for the data retrieval, it is also possible to launch SPARQL queries directly into
the ontology base or to verify the data instances with the help of the Protégé SPARQL query tab, which
is discussed in the following subsection.

4.2. Data Retrieval Example

The following SPARQL query is used for the purpose of retrieving all of the services of a client,
whose name is Alexandre Grozel:

Sensors 2016, 16, 1053 17 of 26

SELECT ?service_performed ?service_date
WHERE{
?who a tes:private.
?who tes:private_name ?private_name.
?service_performed tes:performed_for ?who.
?service_performed tes:service_date ?service_date.
FILTER (?private_name="alexandre grozel"ˆˆxsd:string)

}
ORDER BY ?service_date

The output searched by Protégé is displayed in Figure 14.

Sensors 2016, 16, 1053 17 of 26

SELECT ?service_performed ?service_date

WHERE{

?who a tes:private.

 ?who tes:private_name ?private_name.

 ?service_performed tes:performed_for ?who.

 ?service_performed tes:service_date ?service_date.

 FILTER (?private_name="alexandre grozel"^^xsd:string)

}

ORDER BY ?service_date

The output searched by Protégé is displayed in Figure 14.

Figure 14. Services used by the client “Alexandre Grozel”.

Provided that the services are identified, the following query is used for the purpose of finding
the characteristics of the “battery_exchange_11” service.

SELECT ?service_performed ?service_date ?battery_exchange_old_battery

?battery_exchange_new_battery ?center ?technician

WHERE{

?service_performed a tes:battery_exchange.

?service_performed tes:performed_for ?private.

?private tes:private_name ?private_name.

?service_performed tes:service_date ?service_date.

?service_performed tes:battery_exchange_old_battery ?battery_exchange_old_battery.

?service_performed tes:battery_exchange_new_battery ?battery_exchange_new_battery.

?service_performed tes:performed_by ?technician.

?service_performed tes:performed_in ?center.

FILTER (?private_name="alexandre grozel"^^xsd:string)

}

The output produced by Protégé is given in Figure 15.

Figure 15. Output produced by Protégé according to the query description.

The key point here is that data providers of retrieved information might be heterogeneous in
terms of time, location and their roles. Each actor or service business can generate a spot of data and
send it to the SINA O-DF endpoint, so that the content information can be integrated into PSLO RDF
databases. The inferred result can also be referenced or combined with any other information on
customers or car design, which are often selected as factors to be examined in view of product
redesign or new service creation.

Figure 16 illustrates another view of the whole PSLO ontology: (a) illustrates PSLO composed of
the physical product ontology with services and the service lifecycle; (b) shows some examples of the
data properties used in the upper ontology, as well as the domain-specific ontology of product-
service, which are currently integrated.

Figure 14. Services used by the client “Alexandre Grozel”.

Provided that the services are identified, the following query is used for the purpose of finding
the characteristics of the “battery_exchange_11” service.

SELECT ?service_performed ?service_date ?battery_exchange_old_battery
?battery_exchange_new_battery ?center ?technician
WHERE{
?service_performed a tes:battery_exchange.
?service_performed tes:performed_for ?private.
?private tes:private_name ?private_name.
?service_performed tes:service_date ?service_date.
?service_performed tes:battery_exchange_old_battery ?battery_exchange_old_battery.
?service_performed tes:battery_exchange_new_battery ?battery_exchange_new_battery.
?service_performed tes:performed_by ?technician.
?service_performed tes:performed_in ?center.
FILTER (?private_name="alexandre grozel"ˆˆxsd:string)

The output produced by Protégé is given in Figure 15.

Sensors 2016, 16, 1053 17 of 26

SELECT ?service_performed ?service_date

WHERE{

?who a tes:private.

 ?who tes:private_name ?private_name.

 ?service_performed tes:performed_for ?who.

 ?service_performed tes:service_date ?service_date.

 FILTER (?private_name="alexandre grozel"^^xsd:string)

}

ORDER BY ?service_date

The output searched by Protégé is displayed in Figure 14.

Figure 14. Services used by the client “Alexandre Grozel”.

Provided that the services are identified, the following query is used for the purpose of finding
the characteristics of the “battery_exchange_11” service.

SELECT ?service_performed ?service_date ?battery_exchange_old_battery

?battery_exchange_new_battery ?center ?technician

WHERE{

?service_performed a tes:battery_exchange.

?service_performed tes:performed_for ?private.

?private tes:private_name ?private_name.

?service_performed tes:service_date ?service_date.

?service_performed tes:battery_exchange_old_battery ?battery_exchange_old_battery.

?service_performed tes:battery_exchange_new_battery ?battery_exchange_new_battery.

?service_performed tes:performed_by ?technician.

?service_performed tes:performed_in ?center.

FILTER (?private_name="alexandre grozel"^^xsd:string)

}

The output produced by Protégé is given in Figure 15.

Figure 15. Output produced by Protégé according to the query description.

The key point here is that data providers of retrieved information might be heterogeneous in
terms of time, location and their roles. Each actor or service business can generate a spot of data and
send it to the SINA O-DF endpoint, so that the content information can be integrated into PSLO RDF
databases. The inferred result can also be referenced or combined with any other information on
customers or car design, which are often selected as factors to be examined in view of product
redesign or new service creation.

Figure 16 illustrates another view of the whole PSLO ontology: (a) illustrates PSLO composed of
the physical product ontology with services and the service lifecycle; (b) shows some examples of the
data properties used in the upper ontology, as well as the domain-specific ontology of product-
service, which are currently integrated.

Figure 15. Output produced by Protégé according to the query description.

The key point here is that data providers of retrieved information might be heterogeneous in
terms of time, location and their roles. Each actor or service business can generate a spot of data and

Sensors 2016, 16, 1053 18 of 26

send it to the SINA O-DF endpoint, so that the content information can be integrated into PSLO RDF
databases. The inferred result can also be referenced or combined with any other information on
customers or car design, which are often selected as factors to be examined in view of product redesign
or new service creation.

Figure 16 illustrates another view of the whole PSLO ontology: (a) illustrates PSLO composed of
the physical product ontology with services and the service lifecycle; (b) shows some examples of the
data properties used in the upper ontology, as well as the domain-specific ontology of product-service,
which are currently integrated.Sensors 2016, 16, 1053 18 of 26

(a) (b)

Figure 16. PSLO with the domain-specific ontology of the electric car service.

5. Discussion

In this section, we evaluate the results while answering the following questions:

 How does the framework enhance information extraction in the context of the product-service
lifecycle?

 What are the benefits from the extension of PLM SOM in view of modelling integrated PSLO?
 What are the limitations to be improved?

5.1. How Does the Framework Enhance Information Extraction in the Context of Product-Service Lifecycle?

For the sake of demonstration, here is a simple example of ontological rules that show how
inference-based information extraction can occur in PSLO. The example situation happens at a car
manufacturer’s site. According to a production strategy, a car company wants to find the functional
weakness or point of improvement of a battery type. In order to better service customers in the near
future, the company is planning to accompany a new service type integrated with the car on which
the new battery will be installed. In the context of the service design and promotion, the manufacturer
wants to establish the potential customer group by finding all cars on which the old batteries are
installed and used and then to find current customers of the cars so that they are informed of the new
service by direct communication.

A series of processes for information extraction should be achieved on the PSLO ontology,
following the sub-procedures presented below.

 Define a new inferred class ‘Battery_Drawback’: as for the category of batteries to examine, we
assume that the manufacturer wants to retrieve all of the batteries manufactured before a given

Figure 16. PSLO with the domain-specific ontology of the electric car service.

5. Discussion

In this section, we evaluate the results while answering the following questions:

‚ How does the framework enhance information extraction in the context of the product-service lifecycle?
‚ What are the benefits from the extension of PLM SOM in view of modelling integrated PSLO?
‚ What are the limitations to be improved?

5.1. How Does the Framework Enhance Information Extraction in the Context of Product-Service Lifecycle?

For the sake of demonstration, here is a simple example of ontological rules that show how
inference-based information extraction can occur in PSLO. The example situation happens at a car
manufacturer’s site. According to a production strategy, a car company wants to find the functional
weakness or point of improvement of a battery type. In order to better service customers in the near

Sensors 2016, 16, 1053 19 of 26

future, the company is planning to accompany a new service type integrated with the car on which the
new battery will be installed. In the context of the service design and promotion, the manufacturer
wants to establish the potential customer group by finding all cars on which the old batteries are
installed and used and then to find current customers of the cars so that they are informed of the new
service by direct communication.

A series of processes for information extraction should be achieved on the PSLO ontology,
following the sub-procedures presented below.

‚ Define a new inferred class ‘Battery_Drawback’: as for the category of batteries to examine, we
assume that the manufacturer wants to retrieve all of the batteries manufactured before a given
date (24 September 2011, for example) for which the battery wear level has been marked as below
70 (which might be an imaginary thread value for functional check).

‚ Find all of the cars on which those batteries were installed.
‚ Find all of the customers who had used, or have been using, the car, as well as the service offering

associated with the car, if applicable.
‚ Define a new inferred class ‘Future_Contact’ as a potential service user group, while categorizing

those customers into the future group of service clients, and save them in the knowledge base.

Such an idea was mainly inspired from the product function improvement described in [45]. Figure 17
shows rules modelled in the Protégé rule tab that correspond to the above-mentioned processes.

Sensors 2016, 16, 1053 19 of 26

date (24 September 2011, for example) for which the battery wear level has been marked as below
70 (which might be an imaginary thread value for functional check).

 Find all of the cars on which those batteries were installed.
 Find all of the customers who had used, or have been using, the car, as well as the service offering

associated with the car, if applicable.
 Define a new inferred class ‘Future_Contact’ as a potential service user group, while

categorizing those customers into the future group of service clients, and save them in the
knowledge base.

Such an idea was mainly inspired from the product function improvement described in [45].
Figure 17 shows rules modelled in the Protégé rule tab that correspond to the above-mentioned
processes.

Figure 17. Protégé rule tab containing the inference queries.

It is also possible to find other interesting data, which are also listed below.

 Find all of the services associated with this battery
 Find product the design documents of the battery: for the purpose of retrieving the design

information during the beginning-of-life of the product

We used the Pellet [39] reasoner installed on Protégé, which returns the results as illustrated in
Figures 18 and 19. The reasoning result is different from a query result in that the inference engine is
continuously running in real time. As soon as new data are entered into the system, new results are
retrieved. Thanks to the rules, the Battery_Drawback class now includes inferred instances according
to the data available. If the data are incrementally added, the inferred instances change accordingly
(Figure 18).

Figure 18. ‘Battery_Drawback’ inference example.

As we can observe in Figure 18, new information is visible under the form of Protégé inferred
instances being marked in yellow-filled lines. Similarly, Figure 19 displays the inferred client
instances, which are extracted recursively based on the results of Battery_Drawback.

One of the useful functions with the inference procedure is the possibility to learn the reasoning
processes behind the extracted information. Figure 20 shows the explanation of reasoning about the
‘private_15’ client, i.e., the battery wear level of that client was under the given level value (less than

Figure 17. Protégé rule tab containing the inference queries.

It is also possible to find other interesting data, which are also listed below.

‚ Find all of the services associated with this battery
‚ Find product the design documents of the battery: for the purpose of retrieving the design

information during the beginning-of-life of the product

We used the Pellet [39] reasoner installed on Protégé, which returns the results as illustrated in
Figures 18 and 19. The reasoning result is different from a query result in that the inference engine is
continuously running in real time. As soon as new data are entered into the system, new results are
retrieved. Thanks to the rules, the Battery_Drawback class now includes inferred instances according
to the data available. If the data are incrementally added, the inferred instances change accordingly
(Figure 18).

As we can observe in Figure 18, new information is visible under the form of Protégé inferred
instances being marked in yellow-filled lines. Similarly, Figure 19 displays the inferred client instances,
which are extracted recursively based on the results of Battery_Drawback.

One of the useful functions with the inference procedure is the possibility to learn the reasoning
processes behind the extracted information. Figure 20 shows the explanation of reasoning about the
‘private_15’ client, i.e., the battery wear level of that client was under the given level value (less than
70), whereas the manufacturing data of that car was before the given date constraint. Concerning
the inferred knowledge, Protégé allows us to verify the reason of the inference data. For example,
by clicking the customer ‘private_15’ element on the ‘?’ button, users can see the explanation of the
inference processes.

Sensors 2016, 16, 1053 20 of 26

Sensors 2016, 16, 1053 19 of 26

date (24 September 2011, for example) for which the battery wear level has been marked as below
70 (which might be an imaginary thread value for functional check).

 Find all of the cars on which those batteries were installed.
 Find all of the customers who had used, or have been using, the car, as well as the service offering

associated with the car, if applicable.
 Define a new inferred class ‘Future_Contact’ as a potential service user group, while

categorizing those customers into the future group of service clients, and save them in the
knowledge base.

Such an idea was mainly inspired from the product function improvement described in [45].
Figure 17 shows rules modelled in the Protégé rule tab that correspond to the above-mentioned
processes.

Figure 17. Protégé rule tab containing the inference queries.

It is also possible to find other interesting data, which are also listed below.

 Find all of the services associated with this battery
 Find product the design documents of the battery: for the purpose of retrieving the design

information during the beginning-of-life of the product

We used the Pellet [39] reasoner installed on Protégé, which returns the results as illustrated in
Figures 18 and 19. The reasoning result is different from a query result in that the inference engine is
continuously running in real time. As soon as new data are entered into the system, new results are
retrieved. Thanks to the rules, the Battery_Drawback class now includes inferred instances according
to the data available. If the data are incrementally added, the inferred instances change accordingly
(Figure 18).

Figure 18. ‘Battery_Drawback’ inference example.

As we can observe in Figure 18, new information is visible under the form of Protégé inferred
instances being marked in yellow-filled lines. Similarly, Figure 19 displays the inferred client
instances, which are extracted recursively based on the results of Battery_Drawback.

One of the useful functions with the inference procedure is the possibility to learn the reasoning
processes behind the extracted information. Figure 20 shows the explanation of reasoning about the
‘private_15’ client, i.e., the battery wear level of that client was under the given level value (less than

Figure 18. ‘Battery_Drawback’ inference example.

Sensors 2016, 16, 1053 20 of 26

70), whereas the manufacturing data of that car was before the given date constraint. Concerning the
inferred knowledge, Protégé allows us to verify the reason of the inference data. For example, by
clicking the customer ‘private_15’ element on the ‘?’ button, users can see the explanation of the
inference processes.

Figure 19. Inferred knowledge on the customer to contact in the near future.

Figure 20. Tracking the reason for the inferred results.

5.2. What Are the Benefits from the Extension of PLM SOM in View of Modelling Integrated PSLO?

Firstly, the existing PLM SOM integrates not only a class-level ontology model, but also instance
data, which were already validated by the authors [2,3] with the help of an appropriate inference
engine. Therefore, the validity of ontology model, as well as its instance data was checked for logical
consistency, upon which the other part of the PSLO model could be safely built.

Secondly, the origin of the product data in PLM SOM was collected from a physical product
sensor in the context of the former project. Therefore, the data semantics at the level of product
information represented well the real-world product model. Even though the product category was
not an electric car, we could build a reasonable electric car model while adding fictive part objects,
which were specific to the case study, e.g., an electric battery object. Subsequently, while generating
a specific ontology driven from the upper ontology, the extended model could remain homogeneous
in terms of product type at its lower level object semantics.

Finally, the existing PLM SOM was rather a vertically-closed ontology model considering only
the physical product and the MOL product data, which was one of the shortcomings of the existing
approaches that we discussed in Section 2. Consequently, throughout the research, we wanted to
show how to break such vertical silos thanks to the integration of the product service ontology while
including actors and services. The horizontal coordination was achieved while implementing

Figure 19. Inferred knowledge on the customer to contact in the near future.

Sensors 2016, 16, 1053 20 of 26

70), whereas the manufacturing data of that car was before the given date constraint. Concerning the
inferred knowledge, Protégé allows us to verify the reason of the inference data. For example, by
clicking the customer ‘private_15’ element on the ‘?’ button, users can see the explanation of the
inference processes.

Figure 19. Inferred knowledge on the customer to contact in the near future.

Figure 20. Tracking the reason for the inferred results.

5.2. What Are the Benefits from the Extension of PLM SOM in View of Modelling Integrated PSLO?

Firstly, the existing PLM SOM integrates not only a class-level ontology model, but also instance
data, which were already validated by the authors [2,3] with the help of an appropriate inference
engine. Therefore, the validity of ontology model, as well as its instance data was checked for logical
consistency, upon which the other part of the PSLO model could be safely built.

Secondly, the origin of the product data in PLM SOM was collected from a physical product
sensor in the context of the former project. Therefore, the data semantics at the level of product
information represented well the real-world product model. Even though the product category was
not an electric car, we could build a reasonable electric car model while adding fictive part objects,
which were specific to the case study, e.g., an electric battery object. Subsequently, while generating
a specific ontology driven from the upper ontology, the extended model could remain homogeneous
in terms of product type at its lower level object semantics.

Finally, the existing PLM SOM was rather a vertically-closed ontology model considering only
the physical product and the MOL product data, which was one of the shortcomings of the existing
approaches that we discussed in Section 2. Consequently, throughout the research, we wanted to
show how to break such vertical silos thanks to the integration of the product service ontology while
including actors and services. The horizontal coordination was achieved while implementing

Figure 20. Tracking the reason for the inferred results.

5.2. What Are the Benefits from the Extension of PLM SOM in View of Modelling Integrated PSLO?

Firstly, the existing PLM SOM integrates not only a class-level ontology model, but also instance
data, which were already validated by the authors [2,3] with the help of an appropriate inference

Sensors 2016, 16, 1053 21 of 26

engine. Therefore, the validity of ontology model, as well as its instance data was checked for logical
consistency, upon which the other part of the PSLO model could be safely built.

Secondly, the origin of the product data in PLM SOM was collected from a physical product sensor
in the context of the former project. Therefore, the data semantics at the level of product information
represented well the real-world product model. Even though the product category was not an electric
car, we could build a reasonable electric car model while adding fictive part objects, which were
specific to the case study, e.g., an electric battery object. Subsequently, while generating a specific
ontology driven from the upper ontology, the extended model could remain homogeneous in terms of
product type at its lower level object semantics.

Finally, the existing PLM SOM was rather a vertically-closed ontology model considering only
the physical product and the MOL product data, which was one of the shortcomings of the existing
approaches that we discussed in Section 2. Consequently, throughout the research, we wanted to
show how to break such vertical silos thanks to the integration of the product service ontology while
including actors and services. The horizontal coordination was achieved while implementing semantic
links between ‘car’ and ‘Product_MOL’ ((c) on Figure 5), ‘service’ and ‘Field_Data’ (f), or field data
collection (‘Field_Data_of_P_P_Engine’) from one of the structure parts (d), for instance, as illustrated
on Section 3.3, Figure 5.

5.3. What Are the Limitations to Be Improved?

Despite the demonstrated interests, there are still open issues that must be solved in the near
future so that the development of the product-service ontology may become mature as soon as possible.
Some discussions in [13,40] are summarized below:

‚ Semantics for each term should be defined properly to avoid ambiguity between stakeholders,
including not only researchers, but also industries: For the moment, the community demonstrated
very few efforts in standardization. The same authors envision that the terminologies proposed
within the domain of PS and PSS will increase exponentially in the forthcoming years. A common
vocabulary in PSS should be established rapidly in order for a semantic approach to be widely
accepted as a sharable way of dealing with cross-domain product-service lifecycle management.

‚ A common software platform and methodology needs to be developed to update the ontology in
a progressive way. Current IoT-related open platforms and data communication standards might
be valuable to enable such a common platform.

‚ A PSS ontology should be intuitive so that it could be easily and appropriately implemented in
industries: we need joint work efforts with the domain specialists and research results from the
PSS design and methodologies: A more flexible and modular approach will fit better rather than
sticking to a conventional approach to a hard-wired closed platform.

As we described in Section 2.2, there are three views of ‘ontologies’ that are commonly accepted: as
models of reality; as models of information; and compendia of controlled terms. Our PSLO framework
provides mainly the models of the information of the product-service lifecycle and, most importantly,
the compendia of controlled terms, which clearly annotate the world of product-services, data and
actors. From our perspectives, the PSLO ontology will be useful with the definition of the common
vocabulary of product-services and PSS.

6. Conclusions

In this paper, we presented a conceptual framework for closed loop lifecycle knowledge sharing,
which is enabled by an ontology and semantic modelling approach, on the one hand, and standard
IoT message transfer, on the other hand. The semantic modelling approach and IoT standard both
play an important role in the context of CL2M achieving complementary objectives. IoT standards at
the message layer are important for describing a data transfer scheme, whereas an ontology language,
such as OWL2, allows us to model the domain knowledge, as well as to infer knowledge.

Sensors 2016, 16, 1053 22 of 26

The case study demonstrated in this paper is a fictive example. However, the provided framework
can be used in a real-world case once the sensor data can be collected directly from products during
their lifecycle. The semantic database is implemented in Sesame APIs for further improvement and
extension. In the following subsections, the contribution of the work, research findings, as well as the
plan for future work are discussed.

6.1. Contribution of Our Approach to PLM and IoT and How It Complements Traditional Approaches

The main contribution of the conceptual framework is that it can act as an enabler of a synergy
effect driven from both domains, PLM and open IoT systems. The ontology model is the supporting
backbone of IoT data while providing PLM objectives with the inference capability.

The traditional PLM focused on the physical product data collection within a closed silo of
information management. In that regard, product-generated data are collected according to a
predefined objective. At least two limitations can be recognized: (i) firstly, the management purpose of
product lifecycle data can hardly be evolving in line with the consumer preferences or social context,
which are highly volatile and continuously evolving in today’s ICT environment; (ii) secondly, it is
very difficult or even impossible to establish horizontal data sharing among existing information
management systems.

In our experience, a semantic approach provides a promising solution to breaking such barriers
aiming to achieve knowledge management with more evolution and flexibility. If the framework meets
a real-world working example, the collected data might include heterogeneous information in terms of
semantic level and data providers. In other words, the data might include physical sensor-generated
data, as well as logically-inferred data and/or human-observed information. The condition to satisfy is
that all data should be annotated according to a given language rule described in RDF, and enveloped
within the O-DF format.

Referring to the discussion in Section 2.3, the purpose of using ontology in this work is to take
advantage of the first and second points: semantic interoperability to support the integration of data
between different sources. IoT data usually originate from a device or a human and refer to the
attributes of a phenomenon or an entity in the physical world. Thanks to the interoperability offered
by the ontology, the data can be combined with other data to create different abstractions of the
environment or they can be integrated into the data processing chain.

6.2. Research Findings

Based on our experience and the obtained results, here are some findings summarized below.

(1) The use of RDF/XML and OWL2 as the data content in O-MI/O-DF allows broadening the scope
of transferred information. The traditional sensor data transfer mainly concerned the product
state information assigned to attributes, e.g., temperature or state, or maintenance data, whereas
now, the IoT data can even include the object properties (i.e., semantic relations) between IoT or
even rule contents. Some such examples include: the battery “was detached from the car”, an
owner “purchased a car”, and so on. All information can be exchanged using the same message
envelope. It turned out that the semantic framework gives a chance to enlarge the knowledge
content available for enhanced PLM.

(2) The horizontal linking of data silos is realized while relevantly establishing object level relations.
Not only breaking the vertical silos, our approach makes it possible to achieve flexible evolution
in the whole PSS. This is due to the fact that the RDF data can transfer the new class before
gathering real IoT data or, inversely, new types of data can be transferred without specifically
mentioning the category. The knowledge inference is nonetheless possible by relevantly using
semantic rules in OWL2 and SPARQL.

(3) As far as the type of databases is concerned, an RDF database provides a convenient environment
for the purpose of populating semantically-annotated IoT data. Otherwise, an additional

Sensors 2016, 16, 1053 23 of 26

translation step is required in order to convert the semantic annotation into other serialization
formats usually accepted by O-MI/O-DF nodes. Another possible case concerns the IoT data
written in XML Schema, whereas the product-service ontology should receive those data for
knowledge inference. In this case, the necessary step requires data conversion from usual XML
Schema format data into the ontology-fitted RDF version.

6.3. What Is the Near Future Development?

The works in progress can be summarized into two types of activity: (i) improving technical
aspects of the framework and message communication layer; (ii) providing some rules at the level of
product-service upper ontology which might be applicable to the domain specific ontology.

On the one hand, the technical aspects include the improvement of the O-MI/O-DF parsing
function while accepting other types of script language, such as JSON or JSON-LD. For the moment,
the SINA agent takes exclusively the ‘InfoItem’ content in RDF/XML format while parsing the
internal block of an O-DF. This might be a restriction that hinders a wide adoption of the approach.
Another issue concerns the improvement of access functions on the Sesame repository. At the current
stage, a predefined PSLO ontology was directly transferred to the RDF database without filtering.
However, it might be more useful to provide several ontology domains that can be accessible by several
SINA agents.

On the other hand, more rule examples are being researched in order to enhance the knowledge
sharing between the product data and service MOL data, which was addressed through a
methodological approach in [8,46]. The work presented in [47] gives a good insight into a generic
framework for that purpose. In their work, the event semantic link was studied and reasoning rules
for the event semantic link network were suggested according to a generic definition of situations.
Such a rule set can allow intelligent reasoning of dynamic knowledge while tracing the evolution of
event generation.

6.4. Concluding Remarks

For the purpose of achieving a holistic approach to CL2M, the explicit integration of service
and maintenance activities is an important precondition of information extraction. Regarding this
aspect, we suggested an extended semantic model of product-service lifecycle ontology, which includes
services with physical products. In this paper, the methodology was applied to a specific case study.
However, the approach can be generalized in a more global context taking into account other types
of products and data. As we mentioned in Section 2.2, understanding a specific ontology requires
first of all understanding the context of the modelling objective and its expected use. The focus of our
product-service ontology was initially set with the aim of enhancing the information and knowledge
sharing among different phases of the lifecycle. The result can be applied to another context in case the
purpose of the ontology is approved as a similar context. The expected result will then materialize,
enabling product-service information exploitation and knowledge sharing in an open environment.

Acknowledgments: Our heartfelt thanks go to Kary Främling from Aalto University and Sylvain Kubler from
the University of Luxembourg for their helpful support in the understanding of the O-MI/O-DF concept and
continuous collaboration all through the development of the framework. We would like to thank all of the
members of the Open Group IoT Workgroup for their comments and interesting feedback during the framework
conception phase. The authors would like to thank the reviewers for their comments that helped improve the
manuscript. This work is partly supported by the EU Horizon2020 bIoTope Project (www.bIoTope-project.org)
under Grant Agreement Number 688203.

Author Contributions: Min-Jung Yoo conceived of and developed the PSLO framework and is the main
contributor to the paper writing. Clément Grozel developed the case study example with a domain-specific
ontology of EV service. Dimitris Kiritsis supervised the whole work and is the director of the Information and
Communication Technology for Sustainable Manufacturing (ICT4SM) group within which the work was achieved.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2016, 16, 1053 24 of 26

Abbreviations

The following abbreviations are used in this manuscript:

CL2M Closed-Loop Lifecycle Management
PSS Product-Service System
IoT Internet of Things
URI Uniform Resource Identifier
PLM Product Lifecycle Management
BOL Beginning of Life
MOL Middle of Life
EOL End of Life
O-MI Open Messaging Interface
O-DF Open Data Format
SPARQL SPARQL (or Simple) Protocol And RDF Query Language
SPIN SPARQL Inferencing Notation

Appendix A. Example O-DF Message Structure

1. O-MI and O-DF message example: The following example shows how to push information using
O-MI, which contains O-DF message content. The dotted box area contains the O-DF message, whereas
the outside part concerns the O-MI message syntax.

Sensors 2016, 16, 1053 24 of 26

Appendix A. Example O-DF Message Structure

1. O-MI and O-DF message example: The following example shows how to push information using
O-MI, which contains O-DF message content. The dotted box area contains the O-DF message,
whereas the outside part concerns the O-MI message syntax.

2. O-DF, which includes RDF message content: information about an instance of the battery. The
dotted box contains the Semantic InfoNode Agent (SINA)-specific message.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY pslo "http://example.org/pslo.owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
]>
<Objects
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="odf.xsd">

<Object type="sina-rdf">
 <id>sina-ontology-ps</id>
 <InfoItem name="rdf-content">
 <description>the message content to be sent to a SINA</description>
 <value>
 <rdf:RDF xmlns="http//example.org/pslo#"
 xml:base="http://example.org/pslo"
 xmlns:Ontology1202459344="http://www.owlontologies.com/
 Ontology1202459344.owl#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:pslo="http://example.org/pslo.owl#" >
 <owl:Ontology rdf:about="http://example.org/pslo"/>

 <owl:NamedIndividual rdf:about="&pslo;battery_46">
 <rdf:type rdf:resource="&pslo;battery"/>
 <pslo:battery_date rdf:datatype="&xsd;dateTime">

2014-0312T00:00:00Z </pslo:battery_date>
 <pslo:battery_type rdf:datatype="&xsd;string">

60</pslo:battery_type>
 <pslo:battery_charge rdf:datatype="&xsd;integer">

80</pslo:battery_charge>
 <pslo:battery_wear rdf:datatype="&xsd;integer">

99</pslo:battery_wear>
 <pslo:compose rdf:resource="&pslo;car_1"/>
 </owl:NamedIndividual>

 </rdf:RDF>
</value>

 </InfoItem>
</Object>
</Objects>

2. O-DF, which includes RDF message content: information about an instance of the battery. The
dotted box contains the Semantic InfoNode Agent (SINA)-specific message.

Sensors 2016, 16, 1053 24 of 26

Appendix A. Example O-DF Message Structure

1. O-MI and O-DF message example: The following example shows how to push information using
O-MI, which contains O-DF message content. The dotted box area contains the O-DF message,
whereas the outside part concerns the O-MI message syntax.

2. O-DF, which includes RDF message content: information about an instance of the battery. The
dotted box contains the Semantic InfoNode Agent (SINA)-specific message.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY pslo "http://example.org/pslo.owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
]>
<Objects
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="odf.xsd">

<Object type="sina-rdf">
 <id>sina-ontology-ps</id>
 <InfoItem name="rdf-content">
 <description>the message content to be sent to a SINA</description>
 <value>
 <rdf:RDF xmlns="http//example.org/pslo#"
 xml:base="http://example.org/pslo"
 xmlns:Ontology1202459344="http://www.owlontologies.com/
 Ontology1202459344.owl#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:pslo="http://example.org/pslo.owl#" >
 <owl:Ontology rdf:about="http://example.org/pslo"/>

 <owl:NamedIndividual rdf:about="&pslo;battery_46">
 <rdf:type rdf:resource="&pslo;battery"/>
 <pslo:battery_date rdf:datatype="&xsd;dateTime">

2014-0312T00:00:00Z </pslo:battery_date>
 <pslo:battery_type rdf:datatype="&xsd;string">

60</pslo:battery_type>
 <pslo:battery_charge rdf:datatype="&xsd;integer">

80</pslo:battery_charge>
 <pslo:battery_wear rdf:datatype="&xsd;integer">

99</pslo:battery_wear>
 <pslo:compose rdf:resource="&pslo;car_1"/>
 </owl:NamedIndividual>

 </rdf:RDF>
</value>

 </InfoItem>
</Object>
</Objects>

Sensors 2016, 16, 1053 25 of 26

References

1. Kiritsis, D. Semantic technologies for engineering asset life cycle management. Int. J. Prod. Res. 2013.
[CrossRef]

2. Matsokis, A. An Ontology-Based Approach for Closed-Loop Product Lifecycle Management. Ph.D. Thesis,
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, 2010.

3. Matsokis, A.; Kiritsis, D. An ontology-based approach for production lifecycle management. Comput. Ind.
2010, 61, 787–797.

4. Wang, W.; Barnaghi, P. Semantic annotation and reasoning for sensor data. In Smart Sensing and Context;
Springer LNCS: Berlin, Germany; Heidelberg, Germany, 2009; Volume 5741, pp. 66–76.

5. Compton, M.; Barnaghi, P.; Bermudez, L.; García-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.;
Henson, C.; Herzog, A.; et al. The SSN ontology of the W3C semantic sensor network incubator group. Web
Semant. Sci. Serv. Agents World Wide Web 2012, 17, 25–32. [CrossRef]

6. Romer, K.; Bimschas, D.; Kleine, O.; Mietz, R.; Truong, C.; Hasemann, H.; Kröller, A.; Pagel, M.;
Hauswirth, M.; Karnstedt, M.; et al. SPITFIRE: Toward a Semantic Web of Things. IEEE Commun. Mag. 2011,
11, 40–48.

7. Kley, F.; Lerch, C.; Dallinger, D. New business models for electric cars—A holistic approach. Energy Policy
2011, 30, 3392–3403. [CrossRef]

8. Nemoto, Y.; Akasaka, F.; Shimomura, Y. A framework for managing and utilizing Product-Service System
design knowledge. In Production Planning & Control; Taylor & Francis: Abingdon, UK, 2015.

9. Mont, O.K. Clarifying the concept of Product-Service System. J. Clean. Prod. 2002, 10, 237–245. [CrossRef]
10. Peruzzini, M.; Germani, M.; Marilungo, E. Product-service lifecycle management in manufacturing:

An industrial case study. In Proceedings of the International Conference on Product Lifecycle Management,
Yokohama, Japan, 7–9 July 2014.

11. Aurich, J.C.; Fuchs, C.; Wagenknecht, C. Life cycle oriented design of technical Product-Service Systems.
J. Clean. Prod. 2006, 14, 1480–1494. [CrossRef]

12. Gaiardelli, P.; Resta, B.; Martinez, V.; Pinto, R.; Albores, P. A classification model for product-service offerings.
J. Clean. Prod. 2014, 66, 507–519. [CrossRef]

13. Vijaykumar, G.; Roy, R.; Lelah, A.; Brissaud, D. A Review of Product-Service Systems Design Methodologies.
J. Eng. Des. 2012, 23, 635–659.

14. Sriram, R.D.; Bock, C.; Neuhaus, F.; Wallace, E.; Brady, M.; Musen, M.A.; Luciano, J.S. NIST Workshop on
Ontology Evaluation; NIST Interagency Internal Report (NISTIR 7774); National Institute of Standards and
Technology: Gaithersburg, MD, USA, 2007.

15. Gucer, V. 5 Things to Know about Semantic Technologies, IBM White Paper. Available online:
https://www.ibm.com/developerworks/community/blogs/5things/entry/5_things_to_know_about_
the_semantic_technologies?lang=en (accessed on 5 July 2016).

16. McGuinness, D.L.; Fikes, R.; Rice, J.; Wilder, S. An Environment for Merging and Testing Large Ontologies.
In Proceedings of the Seventh International Conference on Principles of Knowledge Representation and
Reasoning (KR2000), Breckenridge, CO, USA, 12–15 April 2000.

17. RDF. Resource Description Framework. Available online: https://www.w3.org/RDF/ (accessed on 30 March 2016).
18. RDFS. RDF Schema 1.1. Available online: https://www.w3.org/TR/rdf-schema/ (accessed on 30 March 2016).
19. OWL 2. Web Ontology Language. Available online: https://www.w3.org/TR/owl2-overview/ (accessed on

30 March 2016).
20. SPARQL. Query Language for RDF. Available online: http://www.w3.org/TR/rdf-sparql-query/

(accessed on 30 March 2016).
21. SWRL. Semantic Web Rule Language. Available online: http://www.w3.org/Submission/SWRL/

(accessed on 30 March 2016).
22. JESS. Rule Engine for the Java Platform. Available online: http://www.jessrules.com (accessed on 30 March 2014).
23. Yoo, M.-J.; Um, J.; Stroud, I.; El Kadiri, S.; Kiritsis, D. Integration of Design Intent during the Product Lifecycle

Management. In Proceedings of the International Conference Product Lifecycle Management, Yokohama,
Japan, 7–9 July 2014.

24. Kiritsis, D. Closed-Loop PLM for intelligent products in the era of the Internet-Of-Things. Comput.-Aided Des.
2011, 43, 479–501. [CrossRef]

http://dx.doi.org/10.1080/00207543.2012.761364
http://dx.doi.org/10.1016/j.websem.2012.05.003
http://dx.doi.org/10.1016/j.enpol.2011.03.036
http://dx.doi.org/10.1016/S0959-6526(01)00039-7
http://dx.doi.org/10.1016/j.jclepro.2006.01.019
http://dx.doi.org/10.1016/j.jclepro.2013.11.032
https://www.ibm.com/developerworks/community/blogs/5things/entry/5_things_to_know_about_the_semantic_technologies?lang=en
https://www.ibm.com/developerworks/community/blogs/5things/entry/5_things_to_know_about_the_semantic_technologies?lang=en
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/Submission/SWRL/
http://www.jessrules.com
http://dx.doi.org/10.1016/j.cad.2010.03.002

Sensors 2016, 16, 1053 26 of 26

25. PROMISE—PROduct Lifecycle Management and Information Tracking Using Smart Embedded Systems.
Research Deliverable 9.2. 2009. Available online: http://www.promise.no/downloadfile.php?i=
69adc1e107f7f7d035d7baf04342e1ca (accessed on 12 December 2014).

26. Barnaghi, P.; Wang, W.; Henson, C.; Taylor, K. Semantics for the Internet of Things: Early progress and back
to the future. Int. J. Semant. Web Inf. Syst. (IJSWIS) 2012, 8. [CrossRef]

27. Qualls, J.; Russomanno, D. Ontological Problem-Solving Framework for Dynamically configuring sensor
systems and algorithms. Sensors 2011, 11, 3177–3204. [CrossRef] [PubMed]

28. O-MI. Open Messaging Interface; The Open Group Standard for the Internet of Things; The Open Group, Open
Platform3 Forum: London, UK, 2016; ISBN:1-937218-60-7.

29. O-DF. Open Data Format; The Open Group Standard for the Internet of Things; The Open Group, Open
Platform3 Forum: London, UK, 2014; ISBN:1-937218-59-1.

30. Främling, K.; Kubler, S.; Buda, A. Universal Messaging Standards for IoT from a Lifecycle Management
Perspective. IEEE Internet Things J. 2014, 1, 319–327. [CrossRef]

31. The Open Group (TOG). Available online: http://www.opengroup.org/ (accessed on 30 March 2016).
32. Internet of Things Workgroup, Open Group. Available online: http://www.opengroup.org/getinvolved/

workgroups/iot (accessed on 30 March 2016).
33. JSON. JavaScript Object Notation. Available online: http://www.json.org (accessed on 30 March 2016).
34. Kubler, S.; Yoo, M.-J.; Cassagnes, C.; Främling, K.; Kiritsis, D.; Skilton, M. Opportunity to Leverage

Information-as-an-Asset in the IoT—The road ahead. In Proceedings of the 3rd International Conference on
Internet of Things and Cloud (FiCloud), Rome, Italy, 24–26 August 2015.

35. Protégé Ontology Editor. Available online: http://protegewiki.stanford.edu/wiki/Main_Page (accessed on
30 March 2016).

36. Wuest, T.; Hribernik, K.; Thoben, K.D. Assessing servitisation potential of PLM data by applying the product
avatar concept. Prod. Plan. Control Manag. Oper. 2015. [CrossRef]

37. Yang, L.; Xing, K.; Lee, S.H. Framework for PSS from Service’ Perspective. In Proceedings of the International
multiconference of Engineers and Computer Scientists 2010, Hong Kong, China, 17–19 March 2010.

38. Cherubini, S.; Iasevoli, G.; Michelini, L. Product-Service Systems in the electric car industry: Critical success
factors in marketing. J. Clean. Prod. 2015, 97, 40–49. [CrossRef]

39. Pellet. Available online: https://www.w3.org/2001/sw/wiki/Pellet (accessed on 30 March 2016).
40. Vezzoli, C.; Ceschin, F.; Diehl, J.C.; Kohtala, C. New design challenges to widely implement Sustainable

Product-Service Systems. J. Clean. Prod. 2015, 97, 1–12. [CrossRef]
41. Dong, M.; Yang, D.; Su, L. Ontology-based service product configuration system modeling and development.

Expert Syst. Appl. 2011, 38, 11770–11786. [CrossRef]
42. Sesame. Available online: http://rdf4j.org (accessed on 30 March 2016).
43. Wooldridge, M. An Introduction to Multiagent Systems, 2nd ed.; Wiley: New York, NY, USA, 2009.
44. Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context Aware Computing for The Internet of

Things: A Survey. IEEE Commun. Surveys Tutor. 2014, 16, 414–454. [CrossRef]
45. Yagües-Gomà, M.; Olivella-Rosell, P.; Villafafila-Robles, R.; Sumper, A. Ageing of Electric Vehicle Battery

considering Mobility Needs for Urban Areas. In Proceedings of the International Conference on Renewable
Energies and Power Quality (ICPREPQ ’14), Cordoba, Spain, 8–10 April 2014.

46. Moon, S.K.; Simpson, T.W.; Shu, J.; Kumara, S.R.T. Service representation for capturing and reusing design
knowledge in product and service families using object-oriented concepts and an ontology. J. Eng. Des. 2009,
20, 413–431. [CrossRef]

47. Sun, Y.; Jara, A. An extensible and active semantic model of information organizing for the Internet of Things.
Pers. Ubiquitous Comput. 2015, 18, 1821–1833.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.promise.no/downloadfile.php?i =69adc1e107f7f7d035d7baf04342e1ca
http://www.promise.no/downloadfile.php?i =69adc1e107f7f7d035d7baf04342e1ca
http://dx.doi.org/10.4018/jswis.2012010101
http://dx.doi.org/10.3390/s110303177
http://www.ncbi.nlm.nih.gov/pubmed/22163793
http://dx.doi.org/10.1109/JIOT.2014.2332005
http://www.opengroup.org/
http://www.opengroup.org/getinvolved/workgroups/iot
http://www.opengroup.org/getinvolved/workgroups/iot
http://www.json.org
http://protegewiki.stanford.edu/wiki/Main_Page
http://dx.doi.org/10.1080/09537287.2015.1033494
http://dx.doi.org/10.1016/j.jclepro.2014.02.042
https://www.w3.org/2001/sw/wiki/Pellet
http://dx.doi.org/10.1016/j.jclepro.2015.02.061
http://dx.doi.org/10.1016/j.eswa.2011.03.064
http://rdf4j.org
http://dx.doi.org/10.1109/SURV.2013.042313.00197
http://dx.doi.org/10.1080/09544820903151723
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	State-of-the-Art and Methods
	Product, Service and Product-Service System
	Ontology and Semantic Modelling for Product-Lifecycle Management
	Internet of Things and Semantic Modelling Approach
	Open Messaging Interface/Open Data Format: The Open Group IoT Standards for Message Synchronization and Semantic Integration

	Semantic Framework for CL2M of Product-Service in IoT: Conceptual Architecture
	Service Upper Ontology and Service Lifecycle Ontology
	Service and Product-Service
	Semantic Info-Node Agent Architecture in an Executable Instance of Framework

	Electric Car and Battery Lifecycle: Case Study on Domain-Specific Ontology Creation
	Domain-Specific Ontology Model
	Car and Client Classes
	Actor Class
	Electric Car Services Class and Relations

	Data Retrieval Example

	Discussion
	How Does the Framework Enhance Information Extraction in the Context of Product-Service Lifecycle?
	What Are the Benefits from the Extension of PLM SOM in View of Modelling Integrated PSLO?
	What Are the Limitations to Be Improved?

	Conclusions
	Contribution of Our Approach to PLM and IoT and How It Complements Traditional Approaches
	Research Findings
	What Is the Near Future Development?
	Concluding Remarks

	Example O-DF Message Structure

