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Abstract: Several recent works have shown that aggregating local descriptors to generate global
image representation results in great efficiency for retrieval and classification tasks. The most popular
method following this approach is VLAD (Vector of Locally Aggregated Descriptors). We present
a novel image presentation called Distribution Entropy Boosted VLAD (EVLAD), which extends
the original vector of locally aggregated descriptors. The original VLAD adopts only residuals
to depict the distribution information of every visual word and neglects other statistical clues,
so its discriminative power is limited. To address this issue, this paper proposes the use of the
distribution entropy of each cluster as supplementary information to enhance the search accuracy.
To fuse two feature sources organically, two fusion methods after a new normalization stage meeting
power law are also investigated, which generate identically sized and double-sized vectors as the
original VLAD. We validate our approach in image retrieval and image classification experiments.
Experimental results demonstrate the effectiveness of our algorithm.
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1. Introduction

In recent decades, with the development of the Internet and mobile computing platforms, huge
amounts of digital images and videos have emerged every day, leading to many large visual databases.
How to search for similar results to a query image in these large databases with high search accuracy,
high efficiency and low memory usage is the main challenge in the image retrieval research field.

To search for images in a large database and obtain candidates of the same object or location,
most of which include occlusions and clutter, the first issue is how to represent the images, which
leads to the image feature problem. Image features depict the information contained in the image; an
ideal image feature should have a high degree of robustness and distinctiveness. This means that the
feature should be as stable as possible if the visual content is generated from the same object or scene.
In contrast, different visual content should produce distinguishable features, regardless of how similar
their appearances might be. Under this constraint, local invariant features, such as SIFT (Scale Invariant
Feature Transform) [1], SURF (Speeded Up Robust Features) [2], ORB (ORiented Brief) [3], and FREAK
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(Fast Retina KeyPoint) [4], which are distinctive and robust in many visual transformations, are widely
adopted in applications such as object recognition [5] and location recognition [6].

There are three constraints to be considered in large-scale image retrieval applications: search
accuracy, efficiency and memory usage [7]. If local invariant features are the only image representation,
because the number of local features inside a single image could be huge (greater than 1000), cross
matching these local features between the query and the database could lead to long computation time.
As a result, local features may not always provide effective representation in large-scale image retrieval.
A reasonable solution is to build global representation based on local features. Bag of Words (BoW) is
the most widely adopted global representation for this purpose [8]. BoW builds a high-dimensional
sparse histogram as a global feature for an image. There are three reasons for the success of BoW [9]
representations: they are based on local invariant features, they can be compared with standard
distances, and they can rely on an inverted list to boost their retrieval efficiency. Nevertheless, BoW
has some drawbacks [10]. One of the most critical is the tradeoff between quantization error and search
accuracy. In a quantization-based method, high search accuracy relies on a huge vocabulary to reduce
the quantization error and improve the distinctiveness of the global features. However, this might
result in high-dimensional sparse vectors. Although the inverted index mechanism [8] and hierarchical
clustering methods, such as vocabulary tree [5], can improve memory usage and index efficiency, the
encoding consumption cannot be improved effectively. Recently, MDPV (Metric Distance Permutation
Vocabulary) uses permutations of metric distances to create compact visual words to attain time and
space efficiency of vocabulary construction [11]. Moreover, BoW adopts a simple counting method for
each cluster to build the final representation. It fails to depict the elaborate details of each cluster, and
it loses the distinctiveness of the original local features after the clustering step. Therefore, geometric
verification is always leveraged as a post-processing step after BoW search to further improve the
search accuracy [6].

There are other global vector generation schemes that share a similar working flow to BoW,
such as Vector quantization [8], sparse coding [12], soft assignment [13], and locality-constrained
linear coding [14]. Based on sets of local descriptors, e.g., a codebook or dictionary is trained from
a training set. With this dictionary, the set of local features of each image is encoded to new vectors
and finally aggregated into a global vector. Some studies have shown that aggregated vector-based
encoding methods provide excellent performance in visual recognition [7,8,12,14,15]. These image
representations are also produced from local features, yet by relying on a small codebook, they utilize
an alternative aggregation stage to replace the BoW histogram. Their main merit is that they can
be reduced to very compact vectors by dimension reduction while preserving high search accuracy.
Moreover, small codebooks greatly reduce encoding time and provide another possibility to embed
codebooks into mobile ends to generate global representation.

Among these aggregated vector encoding methods, VLAD (Vector of Locally Aggregated
Descriptors) [7] is a type of efficient encoding method. First, a training set is employed to generate
a codebook by the K-means algorithm. Each local feature is assigned to its closest visual word.
Unlike BoW, which simply counts the features assigned to each word, VLAD accumulates the residual
vectors of all local features assigned to the same visual word. The final VLAD vector is generated
by concatenating all residual vectors of the whole codebook. VLAD can be efficiently computed,
and its effectiveness has been demonstrated in several tasks, such as instance retrieval [16], scene
recognition [17], and action recognition [3].

However, there are two crucial issues to be tackled:

(1) VLAD converts the feature description from a local image patch to a cluster. However, residuals
can provide only partial cluster distribution information. As shown in Figure 1, the two
clusters share identical residual vectors, whereas it can be clearly found that clusters’ dispersion
degrees differ significantly. More statistical information must be introduced to provide a more
discriminatory representation.
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(2) When facing the large-scale image database retrieval task, search time and memory consumption
must be considered. An obvious advantage of aggregation-based image representations, such as
VLAD or Fisher Vector, is that they use only a small vocabulary but achieve a great performance
improvement. Furthermore, for web-scale search applications, a small vocabulary has a good
advantage in terms of search time and memory usage. However, this could introduce a large
quantization error during the encoding step and reduce the distinctiveness of the final VLAD.
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Figure 1. The demonstration of VLAD shortcoming. The point sets are quantized into two clusters.
C1 and C2 are the centers of the clusters. C1 and C2 have identical residuals but possess different
distribution entropies; it can be observed that the points of C2 are distributed differently to those of C1.

In this paper, we aim to boost the aggregated vector with more detailed distribution information
for every cluster. To this end, we utilize distribution entropy as the main method. As we know, in the
information processing field, entropy can describe the dispersion degree. As shown in Figure 1, we
adopt distribution entropy as a complementary clue to the original residual vector to build a more
thorough descriptor of each cluster. In this manner, even for those clusters sharing similar residual
vectors, as in C1 and C2 in Figure 1, the entropy part can still differentiate them.

We initially focus on employing distribution entropy inside each single cluster to boost the original
VLAD. The distribution entropy vector is then generated in each cluster. We investigate the effective
fusion mechanism to combine the entropy vector and residual vector. We propose compact fusion and
extended fusion, which fuse these two vectors in each cluster or in the full representation accordingly.
We evaluate these two fused patterns in experiments, and the results indicate that extended fusion
generating the double length representations could always attain a better mAP, whereas compact
fusion that builds the same size vector as the original VLAD provides lower memory cost and a
moderate performance improvement.

Subsequently, we aim to further improve the performance of the distribution entropy boosted
vector. Although there are many add-ons to improve the original VLAD, to the best of our knowledge,
there is no method that adopts distribution entropy as a complementary clue. However, entropy
boosted VLAD can be easily used in those improved VLAD algorithms. We apply these improvements
to the entropy-boosted VLAD vector and evaluate their performance. Finally, we choose appropriate
add-ons to improve the performance of the entropy boosted VLAD.
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An example of image retrieval using the distribution entropy boosted mechanism is shown in
Figure 2.

Our main contributions are as follows:

(1) Analyze how the descriptor distribution entropy can affect the original VLAD descriptor.
For further improvement of the search accuracy, we have proposed the application of a novel
normalization stage meeting power law to enhance the distinctiveness of the distribution entropy
representation, which is called difference normalization.

(2) To fuse the distribution entropy and the original VLAD vector, we investigate two fusion
mechanisms. One is concatenation, which will produce a double-length vector as the original
VLAD. The other is a weighted combination, which will generate a vector of the same length as
the original VLAD.

(3) We survey the state-of-the-art improved VLAD algorithms and evaluate numerous existing
studies and new extensions. We compare our proposed method to these algorithms and draw a
conclusion that the distribution entropy boosted VLAD obtains performance competitive with
the state-of-the-art among several challenging datasets.
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Figure 2. Examples of images retrieved from (a) Holiday, (b) UKB and (c) Oxford datasets. For each
query (left), results obtained by the original VLAD (the first row) and distribution entropy boosted
VLAD (the second row) are demonstrated. The green border indicates that the retrieval result meets
the ground truth.
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The rest of this paper is organized as follows. We first review related work on global representation
in large-scale image retrieval in Section 2. We then introduce how to build the distribution entropy
boosted VLAD representation and discuss the motivations in Section 3. To validate the effectiveness of
our proposed method, detailed experiments and main results are provided in Section 4. Finally, we
summarize the paper with conclusive remarks in Section 5.

2. Related Works

In this section, we will introduce the typical VLAD framework and some other popular
improvements to the original VLAD. There are three main steps involved in the process of transforming
an image into a fixed-length (always a short length, such as 128-D) VLAD representation: (1) local
feature extraction; (2) global vector generation; and (3) dimensionality reduction. In some specific
applications, such as large-scale image retrieval, the short length vectors are further quantized into
compact codes by LSH (Locality-Sensitive Hashing) [18] and SH (Spectral Hashing) [19], but this stage
will not be discussed in our work.

2.1. VLAD Review

The vector of locally aggregated descriptors (VLAD) is an encoding technique that produces a
fixed-length vector representation V from a set X = {x1, . . . , xn} of n local D-dimensional descriptors,
e.g., SIFTs [1], extracted from a given image [7]. Similar to BoW [8], a visual dictionary C = {µ1, . . . , µk}
is learned offline. It is formally used as a quantization function assigning any input local descriptors to
its nearest centroid (visual word) as

q : RD → C ⊂ RD (1)

x 7→ q(x) = arg min
µ∈C

||x− µ||

where the norm operator ||·|| refers to the L2 normalization [7].
VLAD departs from BoW in terms of how this visual dictionary is used. For each quantization

index i ∈ [1, . . . , K], a D-dimensional sub-vector vi is obtained by accumulating the residual vectors;
i.e., the difference between the descriptor x and the centroid µi is

vi = ∑
x:q(x)=µi

(x− µi) (2)

The concatenation V = [v1, . . . , vk] is a K× D-dimensional vector.

2.2. Local Features

Local invariant features [1–4], which are often distinctive and robust in many visual
transformations, are widely adopted in applications such as object recognition [5] and location
recognition [6]. Systems based on local features are more robust to geometric transformations and
typically exhibit better performance compared with systems based on global features such as GIST [20].
SIFT has shown excellent performance and is the common choice of local feature algorithms for many
systems. Although the original VLAD adopts SIFT descriptors as local features, in many improved
VLAD systems, PCA-SIFT and RootSIFT [21] are employed as local feature descriptors to obtain better
performance [7,16,22–24]. In [25], improved SURF and SURF descriptors with color clues are also
investigated to ameliorate the quality of the search results.
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2.3. Vectorization

After local features are generated, each image can be represented by a set of D-dimensional
feature vectors, where D denotes the dimension of the local feature descriptor (e.g., for SIFT, D is 128).
To make a large-scale search tractable, an aggregation method is usually employed to generate a single,
fixed-length vector representation for each image. BoW [8] has been the most popular method to
generate a fixed-length global vector representation based on a set of local features. In recent years,
some new representations that encode higher-order distribution statistics of each visual word have
been used to build the image vector representation [7,8,12,14,15]. The relationship between Fisher
vectors [15] and VLAD [7] is discussed in [15]. Jegou et al. [7] have indicated that VLAD can be
considered as a simplified version of a Fisher vector. Although a full-size Fisher vector obtains better
performance than VLAD, the short vector representation generated by PCA of VLAD performs equally
well as or even better than the Fisher vector [7]. Considering its efficient computation, VLAD is a
common choice in many large-scale image retrieval systems.

2.4. Dimension Reduction

Three constraints must be considered in a large-scale image retrieval system: search accuracy,
efficiency, and memory usage [7]. When working with the last two issues, compact representation
is intuitively studied. Compression and binary coding techniques are usually employed to generate
compact binary code. In this paper, we do not consider the binary coding stage. Following the usual
frame, after the fixed-length global image representation is generated, it will be further compressed
into a low-dimensional vector by a dimensionality reduction method, such as PCA.

2.5. Normalization

Burstiness means that some artificially large components in the image descriptor vector can
significantly reduce the contribution of other important dimensions [26]. To work with the problem of
visual burstiness, some types of normalization are often applied in the operation of VLAD.

2.5.1. Residual Normalization

To address the fact that individual local descriptors contribute unequally to the VLAD
representation, residual normalization [22] is proposed to normalize the residual before it is summed
to the cluster residual:

vi = ∑
x:q(x)=µi

x− µi
||x− µi||

(3)

2.5.2. Intra Normalization

In the following study, intra normalization [16] is further proposed to address the visual burstiness.
Intra normalization fully suppresses bursts, whereas power normalization [7] attempts to discount the
effect of visual burstiness. In this method, the sum of residuals is L2 normalized within each VLAD
block (cluster), as shown below:

vi = vi\||vi|| (4)

2.5.3. Power Normalization

After the vector quantization stage, the original VLAD vector must be power normalized [7] and
then L2 normalized [7].

Power normalization [7] discounts the influence of large components that usually result from
visual burstiness. To alleviate the burstiness problem of visual descriptors, BoW discounts large values
by element-wise square-rooting the BoW vectors and renormalizing them [26]. VLAD adopts a similar
method called power normalization processing to every element of the K× D descriptor followed by
L2-normalization [7].
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Specifically, a component-wise nonlinearity operation is applied as:

vj =
∣∣vj

∣∣α × sign(vj) (5)

where the quantity is a parameter such that α ≤ 1; and vj refers to every component of the concatenated
residual vector.

2.5.4. L2 Normalization

L2 normalization makes the representation invariant to the number of features extracted from
each image [7].

V = V\||V|| (6)

2.6. Vocabulary Adaptation

Aiming at handling the problem of vocabulary sensitivity, which means that the performance
varies with different vocabulary training datasets, a vocabulary adaptation mechanism is investigated
in [16]. Specifically, the mean of all local descriptors in the whole dataset assigned to one visual word
is defined as the adapted cluster center. Because descriptors assigned to the same visual word for one
vocabulary have a higher probability of being assigned to the same visual word for another vocabulary,
adopting the mean of all descriptors assigned to one visual word as the adapted center can greatly
offset the impact of changing the training datasets.

2.7. Local Coordinate System (LCS)

In [7], it was shown that SIFT descriptors after PCA operation, together with power normalization
(where the normalization factor is set as 0.2) [7], can improve the performance of Fisher and VLAD.
The reason might be that the first eigenvector captures the main bursty patterns. The impact of power
normalization [7] is magnified by a proper choice of the basis on which it is performed. In [22], by not
relying on the global operation in the whole descriptor space, but by adapting the coordinate system for
each visual word, the performance of VLAD is further boosted. This method must keep a pre-trained
PCA rotation matrix for each visual word, so the residuals inside each Voronoi cell would be:

vi = ∑
x:q(x)=µi

RLCS ∗
x− µi

||x− µi||
(7)

2.8. Hierarchical VLAD

The crucial issue for a clustering-based global descriptor is the size of the codebook; a large size
might achieve high search accuracy but lead to high quantization time and high memory cost for a
large-scale search database. Aggregated vectors improve this issue by adopting a small codebook.
To maintain the search accuracy, these methods attempt to embed high-order statistical information of
every clustered descriptor. For example, VLAD uses multidimensional residuals as cluster descriptors
and then concentrates all residuals to build the final global image representation. To reduce the
quantization error produced by the small codebooks, Liu et al. [23] and Liu et al. [24] propose leveraging
multiple clustering methods and dividing local features into finer clusters. Liu et al. [23] proposed
HVLAD to construct a hidden layer vocabulary of each original visual word by re-clustering the
SIFT descriptors that lie in the same original visual word. Liu et al. [24] proposed FVLAD to form
the hidden layer vocabulary using the residuals generated in the original visual word computation.
Wang et al. [27] proposed to build up a tree-structured hierarchical quantization to accelerate the
VLAD computation with a large vocabulary.
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Nevertheless, residuals can depict only the distance between the data point and cluster center;
other distribution information, such as the distribution shape and skewness, are ignored. To this end,
Peng et al. proposed a boosting mechanism to add more high-order statistical information to the
original VLAD, which is named H-VLAD* [10]. However, to obtain high search accuracy, HVLAD*
must build a vector two or three times the length of the original VLAD. This might introduce a longer
search time when facing a large-scale image database.

3. Proposed Method

In this section, we will discuss our scheme and our motivations. After the entropy boosted VLAD
representation is generated, we further discuss the normalization effect and fusion of the residual
vector and entropy vector.

3.1. Distribution Entropy Boosted VLAD

From a conventional point of view, entropy is a basic thermodynamic concept that measures the
number of specific realizations. Shannon redefined the entropy concept as a measure of unpredictability
of information content [28], which can be described as:

Es = −
k

∑
i=1

piln(pi) (8)

where P = {pi} is the probability of the system in each possible state i. If entropy is used to describe a
data distribution, the more disperse the distribution is, the greater the entropy, and vice versa.

VLAD accumulates residuals to describe each cluster’s distribution. Residuals that provide the
summarized distance to the cluster center would yield only a one-dimensional distribution description.
It is not rare that two clusters with different degrees of dispersion will share the same residual, as
shown in Figure 1. The reason might be that VLAD summarizes all residuals to the cluster center,
and if some of the descriptors are distributed symmetrically, the residuals offset mutually, which
makes distinctiveness of the residual vector limited. Therefore, in this paper, we investigate to add
distribution entropy as a kind of complementary clue to residuals to build improved VLAD descriptors.

After the quantization stage in the original VLAD algorithm, every SIFT descriptor is assigned to
a cluster center (visual word) µi. Here, we introduce the distribution entropy in each cluster as follows.

First, a set of SIFT descriptors Xi = {xi1, . . . , xin} is assigned to µi, and the distribution entropy is
built on these descriptors.

Then, a distribution histogram is first built on the j-th dimension of Xi as

hj
i = [h1

i,j, . . . , hB
i,j] (9)

where B denotes the bin amount, and the histogram is in equal-interval. In the experiments, we set B
equal to 150.

The probability density can be further computed as:

pb
i,j = hb

i,j/ ∑ hj
i (10)

where 1 ≤ b ≤ B.
Finally, we obtain the distribution entropy on the j-th dimension of cluster µi as

ej
i = −

B

∑
b=1

pb
i,jln(pb

i,j) (11)

The above distribution entropy gives the dispersive degree of the SIFT descriptor located inside
each cluster. Large entropy means that the distribution of the descriptor is dispersed; otherwise, the
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distribution is concentrated. Because entropy is a statistical feature of data distribution, there might be
some clusters with similar entropy degrees. Therefore, adopting entropy as a separate distribution
feature of every cluster might lose some distinctiveness. This is why we leverage distribution entropy
as a type of complementary feature to residuals to give a comprehensive distribution description of
every cluster.

By concatenating the distribution entropy of all clusters, entropy features can be represented as
E = [e1, . . . , ek].

3.2. Normalization

When we extend VLAD with distribution entropy, the first issue need to address is how to
fuse the two types of vectors. As discussed above, the accumulated residual vector should reduce
burstiness by an appropriate normalization operation, such as residual normalization [22], intra
normalization [16] and power normalization [7]. For distribution entropy, most of the value is in the
scope [0, 6]. Zero denotes that all SIFT descriptors are located in the same bin within a cluster, so the
aggregation degree is high. It is also necessary to note that as a statistical feature, many entropies are
very close. If we perform L2 normalization [7] directly on the original entropy vector, their differences
will be nearly lost after normalization. Therefore, we must propose an appropriate manner to enhance
the distinctiveness of entropy. Inspired by power normalization [7] in alleviating burstiness, we
utilize a reverse method to improve the discrimination of distribution entropy, named difference
normalization. Difference normalization first magnifies the difference among entropies by a simple
exponential function, and then, power normalization [7] and L2 normalization [7] will be handled
sequentially. In the experiment, we set ε equal to 0.1.

ei = |exp (ei)|ε (12)

3.3. Fusion

We use the distribution entropy as a type of complementary clue to the original VLAD.
From the distribution entropy computation, the same dimensionality entropy vector is generated

together with the computation of the residual vector. To fuse these two types of vectors, we investigated
two fusion mechanisms: compact fusion and extended fusion.

The simplest way to combine two vectors is to concatenate them. In this paper, we call this
extended fusion, in which the residual vector and entropy vector will be combined after these two
vectors are fully generated. However, concatenation could build a double-length vector (2 × K × D) as
the original VLAD vector. We name this vector the extended entropy boosted VLAD (EEVLAD).

We introduce another fusion method, named compact fusion. Specifically, compact fusion occurs
in the processing of each visual word. Accumulated residual vi and distribution entropy ei can be
computed for each visual word µi. We employ a type of arithmetic combination given by

vei =
vi + γ ∗ ei

||vi + γ ∗ ei||
(13)

In the experiment, we set γ equal to 0.1.
In compact fusion, vei has the same dimensionality as the accumulated residual vi or distribution

entropy ei. After concatenating the vei of all clusters, a K × D dimensionality vector is generated.
We name this vector compact entropy-boosted VLAD (CEVLAD).

We provide the whole algorithm below (Algorithm 1):
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Algorithm 1. Computing distribution entropy boosted VLAD descriptors EEVLAD and CEVLAD
from a set of descriptors X = {x1, . . . , xn}. The set C = {µ1, . . . , µk} of centroids is learned on a
training set using K-means

% Accumulate descriptor residual
For t = 1, . . . ,n

i = arg min
j

||xt − µj||

vi = vi + xt − µi

% Apply power normalization and intra-normalization for vi
For i = 1, . . . ,K

vi = sign(vi)|vi|α

vi = vi/||vi||

V = [v1, . . . , vK]

% Build the distribution entropy for every cluster
For i = 1, . . . , K

Xi = {xt|i = arg min
j

||xt − µj||}

% Compute the distribution entropy for the j-dimension of µi

For j = 1, . . . , D

hi,j = hist(Xj
i , B)

pb
i,j = hb

i,j/ ∑ hj
i

ej
i = −

B
∑

b=1
pb

i,jln(pb
i,j)

% Apply difference normalization for e

ej
i =

∣∣∣exp(ej
i)
∣∣∣ε

% Apply compact fusion to generate CEVLAD
For i = 1, . . . , K

cvei = (vi + γ·ei)/||vi + γ·ei||

CEV = [cve1, . . . , cveK]

% Apply L2 normalization for CEV
CEV = CEV/||CEV||
% Apply extended fusion to generate EEVLAD
E = [e1, . . . , eK]

% Apply L2 normalization for E
E = E/||E||
% Apply L2 normalization for V
V = V/||V||
EEV = [V; E]
% Apply L2 normalization for EEV
EEV = EEV/||EEV||
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4. Experiment

4.1. Datasets

Experiments are conducted on the following widely used benchmark collections for
image retrieval.

INRIA Holidays (http://lear.inrialpes.fr/~jegou/data.php) [29] is a dataset comprising 1491
high-resolution personal holiday photos of different locations and objects, 500 of which are used
as queries. The collection includes a large variety of scene types (natural, manmade, water and fire
effects). The search quality is measured by mAP, with the query removed from the ranked list.

UKBench (http://www.vis.uky.edu/~stewe/ukbench/) [5] with ground truth contains
10,200 images in groups of four that belong together. All images are 640 × 480 pixels. The database is
queried with every image in the test set, and the quality measures are based on the performance of the
other three images in the block, named the N-S score.

Oxford 5k Buildings (http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/) [6] contains
5062 images downloaded from Flickr and is often referred to as Oxford 5k. There are 55 queries
specified by an image and a rectangular region of interest. The accuracy is measured by mAP.

4.1.1. Training Sets

For Holiday and UKBench, we use Flickr 60k [29] as a vocabulary training set, and for Oxford 5k,
we use Paris [30] datasets as vocabulary training sets.

Because we adopt PCA-SIFT as a type of comparative local feature, we adopt Flickr 60k as PCA
training sets. For other PCA dimensional reduction, we utilize subsets of Flickr 1M [29] as PCA
training sets.

4.1.2. Large-Scale Image Retrieval

We use Holiday to evaluate the performance of large-scale image retrieval. We add 1 million
images collected from Flickr, referred to as Flickr 1M [29], to the original Holiday dataset.

In the experiments, we employ the original VLAD (http://people.rennes.inria.fr/Herve.Jegou/
projects/aggregating.html) [7] implementation as baseline.

4.2. Evaluation

4.2.1. Full-Size Representation Comparison

We evaluate the original VLAD and some improved versions of VLAD representations for
performance comparison. We compare their performance in terms of mAP score on Holidays and
Oxford 5k and N-S score on UKBench. Among all improvements, power normalization [7] and intra
normalization [16] are the most popular choices. Therefore, in our experiment, we adopt these two
add-ons to the original VLAD, denoted as VLAD*. Specifically, in each block (visual word) computation,
we apply power normalization [7] first (α is set to 0.1), followed by intra normalization [16].
Finally, after every cluster’s residual vector is concatenated, L2 normalization [7] is applied again.
Moreover, to validate that distribution entropy can boost the performance of VLAD in any variant;
we combine the entropy vector with the original VLAD with an extended fusion pattern, denoted as
EVLAD. We also test the effectiveness of compact fusion and extended fusion on VLAD*, denoted as
CEVLAD and EEVLAD, respectively.

To thoroughly validate and fully enhance the performance of our method, we apply other
improvements to the original VLAD and distribution entropy boosted VLAD, such as residual
normalization (RN) [22], vocabulary adaptation [16] and local coordinate system (LCS) [22]. We make
5 types of new variants combining these improvements, named Methods 1–5, as shown in Table 1.

http://lear.inrialpes.fr/~jegou/data.php
http://www.vis.uky.edu/~stewe/ukbench/
http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://people.rennes.inria.fr/Herve.Jegou/projects/aggregating.html
http://people.rennes.inria.fr/Herve.Jegou/projects/aggregating.html
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Table 1. Comparative Methods of standard VLAD and with modifications as Residual Normalization
(RN), Local coordinate system (LCS), and Vocabulary adaptation (Adaptation).

Method RN Adaptation LCS

1 No No No
2 Yes No No
3 Yes Yes No
4 Yes No Yes
5 Yes Yes Yes

Because VLAD is a type of quantization-based image presentation, the final representation
originates from the local feature descriptor. SIFT is the most widely applied local feature. We evaluate
our method on the original SIFT with two variant SIFT algorithms, RootSIFT [21] and PCA-SIFT.

We report the performance of these five methods on Holiday, Oxford and UKBench in Tables 2–4,
5–7, and 8–10 respectively. The effects of different local descriptors are listed in Tables 2–10. All results
are generated under K = 64. We also record the performance improvement of every improved VLAD
to the original VLAD in the brackets.

Table 2. SIFT descriptor results of image retrieval task on Holiday, and performance improvements are
recorded in the brackets for improved VLAD representations. (Bold numbers mean best performance)

Method VLAD EVLAD VLAD* EEVLAD CEVLAD

1 0.528 0.544 (30.3%) 0.551 (43.6%) 0.572 (8.33%) 0.558 (5.69%)
2 0.529 0.543 (26.5%) 0.562 (6.24%) 0.58 (9.64%) 0.572 (8.13%)
3 0.529 0.549 (37.8%) 0.571 (7.94%) 0.594 (12.3%) 0.583 (10.2%)
4 0.529 0.543 (26.5%) 0.611 (15.5%) 0.619 (17%) 0.616 (16.4%)
5 0.539 0.562 (42.7%) 0.652 (21%) 0.655 (22%) 0.654 (21.3%)

Table 3. RootSIFT descriptor results of image retrieval task on Holiday, and performance
improvements are recorded in the brackets for improved VLAD representations. (Bold numbers
mean best performance)

Method VLAD EVLAD VLAD* EEVLAD CEVLAD

1 0.562 0.564 (0.36%) 0.567 (0.89%) 0.59 (4.98%) 0.575 (2.31%)
2 0.566 0.566 (2.13%) 0.576 (1.77%) 0.592 (4.59%) 0.587 (3.71%)
3 0.563 0.575 (2.13%) 0.594 (5.51%) 0.607 (7.82%) 0.605 (7.46%)
4 0.561 0.567 (1.07) 0.64 (14.08%) 0.648 (15.51%) 0.648 (15.51%)
5 0.563 0.575 (2.13%) 0.663 (17.76%) 0.678 (20.4%) 0.676 (20.07%)

Table 4. PCA-SIFT descriptor results of image retrieval task on Holiday, and performance
improvements are recorded in the brackets for improved VLAD representations. (Bold numbers
mean best performance)

Method VLAD EVLAD VLAD* EEVLAD CEVLAD

1 0.528 0.534 (1.14%) 0.549 (3.98%) 0.557 (5.49%) 0.553 (4.73%)
2 0.522 0.527 (0.96%) 0.56 (7.28%) 0.57 (9.20%) 0.566 (8.43%)
3 0.526 0.537 (2.09%) 0.576 (9.51%) 0.578 (9.89%) 0.577 (9.70%)
4 0.522 0.527 (0.96%) 0.559 (7.09%) 0.567 (8.62%) 0.562 (7.66%)
5 0.526 0.537 (2.09%) 0.589 (11.98%) 0.591 (12.36%) 0.590 (12.36%)

For the Holiday dataset, Tables 2–4 indicate that adding distribution entropy to the residual
vector can obviously enhance the performance, either for original VLAD or for the improved VLAD*.
For instance, in Table 2, the results of original VLAD in Methods 1–5 are 0.528, 0.529, 0.529, 0.529, and
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0.539, respectively, while the results of distribution entropy boosted VLAD (EVLAD) in Methods 1–5
are 0.544, 0.543, 0.549, 0.543, and 0.562, respectively. The results of VLAD* in Methods 1–5 are
0.551, 0.562, 0.571, 0.611, and 0.652, respectively, whereas the results of EEVLAD in Methods 1–5
are 0.572, 0.58, 0.594, 0.619, 0.655, respectively; and the results of CEVLAD in Methods 1–5 are
0.558, 0.572, 0.583, 0.616, 0.654, respectively. Because VLAD* introduces power normalization [7] and
intra normalization [16], the performance of the residual vector has been promoted. Therefore, after
distribution entropy is applied to VLAD*, the mAP is significantly improved. Because extended fusion
generates a double-length vector EEVLAD compared with VLAD*, the performance of EEVLAD
is the best in every row. Compact fusion combines the residual vector and entropy vector inside
each block (visual word), thus producing a vector with the same dimensionality as VLAD or VLAD*.
Although the performance of CEVLAD is not as good as that of EEVLAD, it attains the best mAP in
K × D-dimensional vectors (such as VLAD, VLAD*, and CEVLAD).

Table 5. SIFT descriptor results of image retrieval task on Oxford, and performance improvements are
recorded in the brackets for improved VLAD representations. (Bold numbers mean best performance)

Method VLAD EVLAD VLAD* EEVLAD CEVLAD

1 0.389 0.395 (1.54%) 0.379 (−2.57%) 0.393 (1.03%) 0.396 (1.80%)
2 0.398 0.404 (1.51%) 0.380 (−4.52%) 0.398 (0.00%) 0.401 (0.75%)
3 0.398 0.405 (1.76%) 0.383 (−3.77%) 0.398 (0.00%) 0.400 (0.50%)
4 0.402 0.404 (0.50%) 0.471 (17.16%) 0.486 (20.90%) 0.478 (18.91%)
5 0.402 0.405 (0.75%) 0.472 (17.41%) 0.491 (22.14%) 0.481 (19.65%)

Table 6. RootSIFT descriptor results of image retrieval task on Oxford, and performance
improvements are recorded in the brackets for improved VLAD representations. (Bold numbers
mean best performance)

Method VLAD EVLAD VLAD* EEVLAD CEVLAD

1 0.385 0.389 (1.04%) 0.392 (1.82%) 0.396 (2.86%) 0.398 (3.38%)
2 0.396 0.398 (0.51%) 0.399 (0.76%) 0.402 (1.52%) 0.403 (1.77%)
3 0.400 0.403 (0.75%) 0.401 (0.25%) 0.406 (1.50%) 0.407 (1.75%)
4 0.396 0.398 (0.51%) 0.473 (19.44%) 0.486 (22.73%) 0.482 (21.72%)
5 0.400 0.403 (0.75%) 0.482 (20.5%) 0.496 (24%) 0.489 (22.25%)

Table 7. PCA-SIFT descriptor results of image retrieval task on Oxford, and performance
improvements are recorded in the brackets for improved VLAD representations. (Bold numbers
mean best performance)

Method VLAD EVLAD VLAD* EEVLAD CEVLAD

1 0.398 0.398 (0.00%) 0.412 (3.52%) 0.413 (3.77%) 0.416 (4.52%)
2 0.404 0.404 (0.00%) 0.416 (2.97%) 0.419 (3.71%) 0.423 (4.70%)
3 0.405 0.406 (0.25%) 0.42 (3.70%) 0.424 (4.69%) 0.427 (5.43%)
4 0.404 0.404 (0.00%) 0.43 (6.44%) 0.436 (7.92%) 0.436 (7.92%)
5 0.405 0.406 (0.25%) 0.436 (7.65%) 0.443 (9.38%) 0.438 (8.15%)

For the Oxford and UKBench datasets, the results also indicate that the distribution entropy can
improve the mAP for VLAD and VLAD* in every method. The slight difference in the Oxford database
is that when there is no LCS [22], the performance of CEVLAD is slightly better than that of EEVLAD.
We interpret this as compact fusion normalizes the fused vector inside each component (visual word);
thus, when the visual burstiness in some component is more severe, compact fusion might offset some
of the impact of this visual burstiness. This could also be proven. as in the first three rows of Table 5,
VLAD* performs even worse than the original VLAD. When distribution entropy is added into VLAD*,
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the performance is improved. However, when RN is jointly applied with LCS, EEVLAD is still better
than CEVLAD in the Oxford dataset, which happen in the last two rows in Table 6.

From the five methods under comparison, it can be learned that RN [22], Adaptation [16] and
LCS [22] can have only a limited effect on the original VLAD or EVLAD. However, for VLAD*, after
power normalization [7] and intra normalization [16] are applied, visual burstiness is greatly reduced.
Introducing RN with LCS can further improve the results.

It can also be learned from the sub-tables that local features have an impact on the performance of
the final representation. The experiment results indicate that RootSIFT attains the best mAP.

These experimental results indicate that RN with LCS can significantly enhance the performance
of VLAD*. Moreover, in most cases, adaptation [16] can yield a further improvement. Therefore, we
take Method 5 as our default algorithm for both EEVLAD and CEVLAD.

Table 8. SIFT descriptor results of image retrieval task on UKBench, and performance improvements are
recorded in the brackets for improved VLAD representations. (Bold numbers mean best performance)

Method VLAD EVLAD VLAD* EEVLAD CEVLAD

1 3.038 3.201 (5.37%) 3.224 (6.12%) 3.393 (11.69%) 3.276 (7.83%)
2 2.958 3.14 (6.15%) 3.265 (10.38%) 3.398 (14.87%) 3.282 (10.95%)
3 2.957 3.142 (6.26%) 3.225 (9.06%) 3.397 (14.88%) 3.284 (11.06%)
4 2.958 3.14 (6.15%) 3.391 (14.64%) 3.486 (17.85%) 3.436 (16.16%)
5 2.957 3.142 (6.26%) 3.394 (14.78%) 3.484 (17.82%) 3.434 (16.13%)

Table 9. RootSIFT descriptor results of image retrieval task on UKBench, and performance
improvements are recorded in the brackets for improved VLAD representations. (Bold numbers
mean best performance)

Method VLAD EVLAD VLAD* EEVLAD CEVLAD

1 2.941 3.127 (6.32%) 3.296 (12.07%) 3.408 (15.88%) 3.308 (12.48%)
2 2.907 3.105 (6.81%) 3.312 (13.93%) 3.415 (17.48%) 3.315 (14.04%)
3 2.905 3.103 (6.82%) 3.293 (13.36%) 3.415 (17.56%) 3.315 (14.11%)
4 2.907 3.105 (6.81%) 3.375 (16.10%) 3.453 (18.78%) 3.408 (17.23%)
5 2.905 3.103 (6.82%) 3.376 (16.21%) 3.451 (18.80%) 3.409 (17.35%)

Table 10. PCA-SIFT descriptor results of image retrieval task on UKBench, and performance
improvements are recorded in the brackets for improved VLAD representations. (Bold numbers
mean best performance)

Method VLAD EVLAD VLAD* EEVLAD CEVLAD

1 2.869 3.047 (6.20%) 3.233 (12.69%) 3.371 (17.50%) 3.252 (13.35%)
2 2.83 3.011 (6.40%) 3.25314.95% 3.39 (19.79%) 3.291 (16.29%)
3 2.828 3.012 (6.51%) 3.253 (15.03%) 3.388 (19.80%) 3.291 (16.37%)
4 2.83 3.011 (6.40%) 3.299 (16.57%) 3.407 (20.39%) 3.328 (17.60%)
5 2.828 3.012 (6.51%) 3.3 (16.69%) 3.406 (20.44%) 3.328 (17.68%)

4.2.2. Compact Size Representation Comparison

In this section, we demonstrate the performance comparison of our entropy boosted
VLAD representations and other improved VLAD representations after the dimensionality
reduction operation.

One of the merits of aggregated vectors is that they can be reduced to very compact vectors
by PCA while preserving search accuracy. In addition to the conventional PCA, some studies have
also investigated other methods to further increase the search accuracy, such as applying PCA and
whitening jointly [31], using L2 normalization before PCA projection [24], and appropriately leveraging
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the three steps of PCA [22]. We also attempt to make use of the whitening operation jointly with
PCA dimensionality reduction, whose results do not compete with those without a whitening stage.
Thus, we adopt only the PCA projection operation.

We compare the 128-D results of our extended EVLAD (EEVLAD) and compact EVLAD
(CEVLAD) with several latest variants of VLAD. For EEVLAD and CEVLAD, the performance
is derived from K = 256. We also conducted a type of improvement during the dimensionality
reduction process proposed in [31], which is named multivoc. Multivoc refers to the joint reduction
process of multiple vocabularies. Therefore, in multivoc improved dimensionality reduction, multiple
vocabularies are necessary. In our experiment, we utilize 4 vocabularies with K = 256 to generate the
results. We report the results in Table 11. Some results of improved VLAD are also presented in the
second row. The results of our method based on SIFT descriptors are shown in the third row, and the
results of our method based on RootSIFT [21] are shown in the fourth row. We also list the performance
without dimensionality reduction on the top of the third and fourth rows for evaluation.

In Table 11, it can be observed that our entropy boosted VLAD representation obtains the best
retrieval accuracy compared with other methods.

Table 11 indicates that distribution entropy boosted VLAD can yield an obvious performance
gain. In the Holiday dataset, the best mAP in the improved VLAD is 0.64 of HVLAD, which introduces
multi-assignment during the residual computation process. In distribution entropy boosted VLAD
computation, although we do not employ multi-assignment, the best mAP of the SIFT descriptor can
attain 0.635, which is close to 0.64. If we further add the multivoc [31] technique, the best mAP is
enhanced to 0.668. If RootSIFT [21] is substituted for SIFT, the best mAP can be significantly improved
to 0.681. Another phenomenon to be noted is that the results of CEVLAD after PCA can be better than
those of EEVLAD. For example, in the third row, CEVLAD after PCA achieves 0.635 mAP, whereas
EEVLAD attains 0.625. Although the original EEVLAD attains better mAP (0.693) than CEVLAD
(0.681), being a type of double-length vector compared with CEVLAD, EEVLAD might lose more
information during the PCA process than CEVLAD.

Similar findings could be obtained from the results of Oxford and UKBench.

Table 11. Comparison of 128-D results with the state of the art. (Bold numbers mean best performance)

Methods\Datasets K D’ Holidays (mAP) Oxford (mAP) UKBench (N-S)

VLAD [7] 64 128 0.510 - 3.15
VLAD + SSR [7] 64 128 0.557 0.287 3.35

Multivoc − VLAD [22] 4 × 256 128 0.614 - 3.36
VLAD + Intra + Adapt [16] - 128 0.625 0.448 -

HVLAD [23] 256 128 0.64 - 3.4
FVLAD [24] 256 128 0.622 - 3.43

SIFT

EEVLAD 256 65,536 0.693 0.532 3.458
EEVLAD 256 128 0.625 0.501 2.855

EEVLAD + Multivoc 4 × 256 128 0.668 0.536 3.073
CEVLAD 256 32,768 0.681 0.527 3.436
CEVLAD 256 128 0.635 0.499 2.82

CEVLAD + Multivoc 4 × 256 128 0.664 0.532 2.977

RootSIFT

EEVLAD 256 65,536 0.715 0.545 3.511
EEVLAD 256 128 0.62 0.528 3.017

EEVLAD + Multivoc 4 × 256 128 0.674 0.552 3.224
CEVLAD 256 32,768 0.698 0.538 3.475
CEVLAD 256 128 0.655 0.522 2.915

CEVLAD + Multivoc 4 × 256 128 0.681 0.538 3.093
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Dimensionality reduction can introduce some performance loss compared with the full-size
EEVLAD or CEVLAD vector. However, joint dimensionality reduction based on multiple vocabularies
can significantly improve the mAP. This indicates that PCA removes the correlation while preserving
the additional information from the different quantizations.

4.2.3. Large-Scale Retrieval

To demonstrate the scalability of distribution entropy boosted VLAD in large-scale image retrieval,
we construct a similar image retrieval task in certain large datasets. We use Flickr 1M as a distractor to
the Holiday dataset (see Table 12). EEVLAD and CEVLAD are projected to 128-D compact vectors to
obtain the best search accuracy, and an exhaustive nearest-neighbor search is performed to find the
most relevant images. In the experiment, we use RootSIFT [21] as a local descriptor. Compared to the
best performance of other methods dealing with short vector image representation in large scale image
retrieval application that achieves 0.430 [23], our best method (0.472 mAP) obtains significant relative
improvement of 9.76%. In fact, even CEVLAD with multivoc (0.469 mAP) can attain an improvement
of 9.07%.

Table 12. Comparison of 128-D results in large-scale image retrieval on Holiday with Flickr 1M.

Methods mAP

VLAD with Intra Norm + Adaptation [16] 0.378
VLAD with Multivoc + SSR [31] 0.370
VLAD with LCS + RN [22] 0.392
HVLAD [23] 0.430
FVLAD [24] 0.376
EEVLAD 0.424
EEVLAD + Multivoc 0.472
CEVLAD 0.402
CEVLAD + Multivoc 0.469

4.3. Image Classification

To further validate our method, we conducted image classification experiments on the well-known
PASCAL VOC2007 dataset [32]. This challenging dataset is known as one of the most difficult image
classification tasks due to significant variations of appearance and poses even with occlusions. It is
composed of nearly 10,000 images with 20 different object categories. All images are divided into
training data, validation data and test data. The performance is evaluated by the standard PASCAL
protocol, which computes average precision (AP) based on the precision–recall curve. We report the
mean of AP (mAP) over 20 categories.

We use the public available image classification framework provided by the VLFeat toolbox
to conduct the image classification experiment. We densely extract local SIFT descriptors with a
spatial stride of 4 pixels at 5 scales, and the width of the SIFT spatial bin is fixed at 8 pixels; these
are default settings in the VLFeat toolbox (http://www.vlfeat.org/) (Version 0.9.20) [33]. We learn
the vocabulary with size K = 256 from a subset of 5K SIFT descriptors. The dimensionality of SIFT
descriptors is reduced to 64. All descriptors are whitened after PCA processing. The VLAD vector is
power normalized [7] and L2 normalized [7] in each block (cluster); after all blocks are concatenated,
the full vector is L2 renormalized [7]. The distributed entropy vector is normalized in a similar way.
All normalization factors are the same as in the previous experimental sections.

We report the classification results computed by EEVLAD and CEVLAD with SIFT and
RootSIFT [21], respectively. Because SIFT descriptors have been dimensionally reduced by the PCA
method in the beginning, we do not list PCA-SIFT separately. We also provide results of VLAD
for comparison. Table 13 indicates that both extended EVLAD and compact EVLAD can obviously
enhance the classification performance. As in the SIFT descriptor, compact EVLAD can improve the
performance from 0.5542 to 0.5626, whereas double-length EEVLAD can improve the original VLAD

http://www.vlfeat.org/
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to 0.5669. In the RootSIFT descriptor [21], the results are similar. Compact EVLAD can improve the
performance from 0.5601 to 0.5665, whereas extended EVLAD can obtain a much better performance
of 0.5714. The results show that the distribution entropy can boost the performance of the original
VLAD vector, so it is beneficial for image classification applications.

Table 13. Results of image classification task.

SIFT (mAP) (%) RootSIFT (mAP) (%)

VLAD 55.42 56.01
EEVLAD 56.69 57.14
CEVLAD 56.26 56.65

4.4. Complexity Analysis

The computation process of distribution entropy boosted VLAD representation is composed of
two main parts, the first one is the original VLAD part, and the second one is the distribution entropy
generation part. For both full-size EEVLAD and CEVLAD representations, the added computation
time is caused by the entropy generation part. It can be clearly seen from Algorithm 1 that the
computation complexity of entropy generation part is O (K × D × B).

In large-scale image retrieval and classification, both EEVLAD and CEVLAD are dimensionality
reduced to 128-D representation. Furthermore, the PCA projection matrix is trained on separated
datasets. Therefore, the searching time of EEVLAD and CEVLAD are the same. The only difference
between EEVLAD and CEVLAD is the generation time of full-size representations. However, for
online searching, it only impacts the query image, and will not have much impact in the whole
searching process.

5. Conclusions

In this paper, we have proposed the distribution entropy boosted VLAD approach, which
is a novel extension of VLAD. Because the original VLAD adopts only residuals to depict the
distribution information of every cluster and neglects other statistical clues, the final representation
is not sufficiently distinctive. Thus, our proposed approach utilizes distribution entropy as a type of
complementary clue to residuals for describing the dispersion degree of every cluster. For further
improvement of the search accuracy, we have proposed the application of a novel normalization stage
to enhance the distinctiveness of the distribution entropy representation, which is called difference
normalization. We also provide two size representations of distribution entropy boosted VLAD,
compact EVLAD (CEVLAD) and extended EVLAD (EEVLAD), considering the efficiency issue in
terms of computation and memory cost. Through extensive performance experiments on existing
publicly available datasets, we have shown that the proposed approach improves search accuracy
compared to other existing methods.

Adopting deep network feature into VLAD methods are proven to be very promising in both
image retrieval and image classification application by many works [34,35]. In the future, we will
explore leveraging convolutional neural networks feature as image features with EVLAD algorithm.
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