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Abstract: Subjects with amyotrophic lateral sclerosis (ALS) consistently experience decreasing quality
of life because of this distinctive disease. Thus, a practical brain-computer interface (BCI) application
can effectively help subjects with ALS to participate in communication or entertainment. In this
study, a fuzzy tracking and control algorithm is proposed for developing a BCI remote control system.
To represent the characteristics of the measured electroencephalography (EEG) signals after visual
stimulation, a fast Fourier transform is applied to extract the EEG features. A self-developed fuzzy
tracking algorithm quickly traces the changes of EEG signals. The accuracy and stability of a BCI
system can be greatly improved by using a fuzzy control algorithm. Fifteen subjects were asked to
attend a performance test of this BCI system. The canonical correlation analysis (CCA) was adopted
to compare the proposed approach, and the average recognition rates are 96.97% and 94.49% for
proposed approach and CCA, respectively. The experimental results showed that the proposed
approach is preferable to CCA. Overall, the proposed fuzzy tracking and control algorithm applied
in the BCI system can profoundly help subjects with ALS to control air swimmer drone vehicles for
entertainment purposes.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) attacks the motor neurons. Numerous ALS patients around
the world report that ALS seriously reduces the quality of their lives. ALS critically reduces their
motor abilities; they experience difficulties in performing daily activities, such as participating in
entertainment activities. Therefore, in recent years, an extensive range of high technology assistive
devices have been developed to fulfill the needs of these individuals. These assistive devices can help
these patients perform daily activities such as eating, communicating, and moving from place to place.
Although assistance in performing daily activities is essential, the psychological effects of nonessential
patient activities such as entertainment should also be considered. Therefore, the development of a
brain-computer interface (BCI) application for entertainment is worthwhile for subjects with ALS.

A BCI is used to give commands to a computer or other device through electroencephalography
(EEG) measurements taken from sensors on a human scalp. A BCI is not necessary for the
implementation of any sensor into the brain, so it can easily be applied to subjects with motor neuron
disease [1]. This technology can effectively and easily help subjects with ALS to communicate with the
outside world [2]. A BCI can be developed using P300 waves, motor imagery, event-related potential,
visual evoked potential, and steady-state visual evoked potential (SSVEP) [3–9]. A P300-based BCI is
operated by asking the user to select a row and a column from a command matrix [4]. BCI applications
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can integrate several methods, such as P300 and SSVEP [5,6]. A suitable BCI for subjects with ALS
may enable those subjects to operate various devices, including entertainment devices.

SSVEP technology has been utilized in BCI applications by using visual stimuli to induce human
brain waves and trigger brain potentials [3]. Several boxes with different flickering frequencies can be
used as stimuli for SSVEP applications [7]. Other researchers have used several boxes that flickered
at the same frequency but with different phases as stimuli for an SSVEP application [8]. The light
source that was used as a stimulus also varied. Some research has used liquid-crystal display (LCD)
monitors as stimuli, and other research has used LEDs as stimuli. A SSVEP-based BCI is one of the
easiest interfaces to implement for subjects with ALS.

Several studies have been proposed to develop BCI applications for entertainment. A BCI
application was designed to help people with severe disabilities play tennis games on a computer [10].
The use of consumer-grade equipment rather than research lab-grade equipment for BCI gaming
applications can improve public awareness of BCI technology. SSVEP technology can be adopted
to provide excellent control when applied in a tactical video game [11]. Another SSVEP-based BCI
application was used to control an avatar in a maze game. Four commands triggered by responses
to stimuli, namely up, down, left, and right, controlled the movement of an avatar in a maze [12].
Phase-tagging SSVEP has been implemented to control spacecraft movement to avoid obstacles.
Two stimuli with 180◦ phase differences and frequencies in the 3–5 Hz range were used to produce
inputs for controlling left or right movements [13].

In general, most fuzzy recognition algorithms contain three processes: fuzzification, inference
rules, and defuzzification. In fuzzy recognition algorithms, fuzzy sets and fuzzy logic are used for
heuristic quantification of the meanings of linguistic variables, linguistic values, and linguistic rules that
are specified by experts. The concept of a fuzzy set can be introduced by first defining a “membership
function.” Fuzzy sets are used to quantify the information in the rule-base, and the inference mechanism
operates on fuzzy sets to produce fuzzy sets; hence, the fuzzification process converts numeric inputs
into fuzzy sets. The inference mechanism has two basic tasks: (1) determining the extent to which each
rule is relevant to the current situation, as characterized by the inputs; and (2) drawing conclusions by
using the current inputs and the information in the rule-base. The defuzzification process generates
the output of fuzzy inference, which is a crisp value for a controlled system. The fuzzy recognition
algorithm is simple and fast; thus, it is suitable for a real-time SSVEP-based BCI system.

EEG signals are small, varying, and complex, so accurately recognizing EEG features is extremely
difficult. Fuzzy sets can easily be installed in single-chip microprocessors. Single-chip fuzzy inference
systems have been widely used in numerous applications, especially for real-time systems [14]. Lou and
Loparo combined wavelet methods and fuzzy algorithms to implement a bearing fault detection
system [15]. An adaptive neurofuzzy inference system (ANFIS) was used to classify breast mass [16].
Güler and Übeyli used ANFIS to detect electrocardiographic (ECG) changes in patients with partial
epilepsy [17] and classify EEG signals [18]. However, an ANFIS must collect a training database for
parameter estimation of a neural network. The performance of an ANFIS would be degraded when
its user’s EEG data is not collected. Achieving real-time recognition for a BCI-based application is
essential, as is adapting the system so that it can quickly fit a new user.

In this study, a fuzzy tracking and control algorithm is proposed for helping subjects with ALS
use a BCI remote control system. For accurate representation of EEG signal characteristics, a fast
Fourier transform (FFT) was applied to extract the power spectrum, which involves the features for
recognition. To quickly track the changes of EEG signal characteristics, a fuzzy tracking algorithm
was developed. To improve the accuracy and stability of this BCI system, a fuzzy control algorithm
is proposed. To help subjects with ALS operate remote-controlled devices, a BCI-based air swimmer
drone vehicle was developed.

The remainder of this paper is organized as follows. Section 2 describes the fuzzy tracking and
control algorithms and discusses visual stimulation and signal acquisition. Section 3 presents the results
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of a series of experiments and evaluates the performance of our approach. Finally, conclusions are
drawn in Section 4, and possible improvements for the future development of this work are discussed.

2. Methods

A block diagram of the proposed system is shown in Figure 1. First, the subject sits on a chair in
front of an LCD screen and focuses on the flickering boxes that appear on the screen. Second, the EEG
signals are acquired using electrodes placed on the occipital region of the subject’s head. Third,
the preprocessing step of the EEG signal removes noise from the signal. Fourth, the features of the
EEG signal are extracted by using FFT to derive the energy of each stimulus frequency. Finally, a fuzzy
tracking and control algorithm is applied to recognize the appropriate response, which is used to
control the air swimmer drone vehicle. A detailed description is provided in the following subsections.
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Figure 1. Brain-computer interface (BCI) remote control system architecture.

2.1. Visual Stimulation and Feature Extraction

To elicit SSVEP, an LCD monitor displayed visual stimulation in the form of flickering boxes,
and the BCI layout of the visual stimulation is shown in Figure 2. The subject was asked to sit at a
distance of 55 cm from the monitor, measured from the subject's nasion to the BCI screen. For an
LCD monitor, the refresh rate was typically 60 Hz; thus, the flickering boxes could flicker in a limited
range of frequencies [19]. With such a refresh rate, it was possible to simulate different frequencies by
displaying appropriate numbers of frames. Rendering an order of frames can generate a flickering box
with a desired frequency. According to clinical experience, a visual stimulation ranging from 15–25 Hz
can easily evoke an epileptic syndrome. Therefore, the selected frequencies were lower than 10 Hz in
this study. The five orders of frames and corresponding frequencies that were used as stimuli are listed
in Table 1. For an order of frames, the numbers 1 and 0 were used to represent a frame with an image
and a black box, respectively. The duty cycle was therefore not always equal to 0.5, as the number of
frames in one period is an odd number.Appl. Sci. 2016, 6, x  4 of 11 
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Table 1. Frequencies for a screen with a refresh rate of 60 Hz.

The Number of Frames Period (ms) Frequency (Hz) Simulated Signal

6 100.00 10.00 111000
7 116.67 8.57 1111000
8 133.33 7.50 11110000
9 150.00 6.67 111110000
10 166.67 6.00 1111100000

When the visual stimulation elicited signals in the visual cortex of the brain, EEG signals were
simultaneously read from the occipital region of the subject's head by using a NuAmps EEG amplifier
supplied by the Neuroscan Company. The EEG signals were then acquired from the Oz channel with
reference and ground electrodes placed at A1 and A2. When an EEG signal x was acquired, a power
spectrum sequence X with N frames was estimated by using the Hamming window and FFT. For the
kth frame, X(k), a triangular window centered at fc Hz was then applied to calculate the band energy
for each stimulus with a flicker frequency of fc Hz; it was treated as an input feature for the fuzzy
tracking and control algorithm.

2.2. Fuzzy Tracking and Control Algorithm

The block diagram of the fuzzy tracking and control algorithm is shown in Figure 3. For the kth
frame, X(k), the prediction error ek of a fuzzy algorithm was estimated as

ek = X(k)− τk-1, (1)

where τk-1 is the threshold at the k-1 frame. The initial threshold value, τ0, is a predefined value; it can
be estimated by using the average power energy of first M-frames.
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Because the Mamdani inference model [20] combines the sets and rules for fast and simple
calculation, it was selected with linguistic rules for defining the relation between the input and the
output. The fuzzy set A (Figure 4) and B (Figure 5) were used in the fuzzification and defuzzification
processes. The input range of fuzzifier and the output range of defuzzifier were from −Rf to Rf and
−Rd to Rd, respectively. Considering the performance and stability of a recognition algorithm in a
microprocessor, the number of fuzzy sets was five [21]. The linguistic parameters of these five fuzzy
sets were negative large (LN), negative small (SN), zero (ZE), positive small (SP), and positive large
(LP). According to the fuzzy set calculations, the fuzzy inference rules were as follows.

If ek ∈ LN then ẽk ∈ LN,
if ek ∈ SN then ẽk ∈ SN,
if ek ∈ ZE then ẽk ∈ ZE,
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if ek ∈ SP then ẽk ∈ SP,

and

if ek ∈ LP then ẽk ∈ LP,

where ek and ẽk are the input variable of fuzzy sets A and the output variable of fuzzy sets B,
respectively.Appl. Sci. 2016, 6, x  5 of 11 
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A defuzzification process was then used to obtain a finite number as an output. In this
study, using the center of gravity method [20], the output variable, e′k, of fuzzy threshold could
be calculated following

e′k =

n
∑

i=1
Si (ek) Bi (ẽk)

n
∑

i=1
Si (ek)

, (2)

where Si is the membership grade of the ith premise in the inference rule, and Bi is the central value of
the ith conclusion in the inference rule. The threshold value was then updated by

τk = e′k + τk−1. (3)

Finally, the output of the control signal was 1 if X (k) ≥ τk−1; otherwise, the output of the control
signal was 0.

3. Results and Discussion

In this study, the EEG signals were recorded at a sample rate of 1k Hz and a bit resolution
of 22 bits. A second-order Butterworth band-pass filter was used to remove the signals with frequencies
lower than 4 Hz and higher than 60 Hz. The window size of the Hamming window was 1000 points,
which was then applied to obtain a sequence of trials. Subsequently, the power energies for each visual
stimulus were estimated using an FFT with 4096 points and triangular windows with 2-Hz bandwidths.

3.1. Performance of the Fuzzy Tracking and Control Algorithm

This subsection reports that fifteen healthy subjects (11 males and four females) aged between 21
and 23 were asked to participate for evaluating the fuzzy tracking and control algorithm. To collect
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the training data, we developed a visual stimulation procedure comprised of five sets of stimulation
sequences. Each set of stimulation sequence consisted of three stimulation frequencies that were
randomly generated from the five given frequencies (6 Hz, 6.67 Hz, 10.00 Hz, 8.57 Hz, and 7.50 Hz).
Each set of stimulation sequence consisting of three stimulation frequencies followed the following
procedure: Each set began with a five-second countdown delay followed by a series of a ten-second
visual stimulation and ten seconds of rest. Afterwards, one minute of compulsory rest time was
provided for the subject after every set of stimulation sequence. The acquired EEG signals during every
ten-second visual stimulation were then blocked into ten non-overlapping frames, and the duration of
each frame was one second.

Because the membership functions of fuzzification and defuzzification can greatly affect the
accuracy, validating the factors of membership functions such as their shapes and the ranges is crucial.
For fuzzy-based approaches, the triangular function, trapezoidal function, generalized bell curve
function, symmetric Gaussian function, and a two-sided version of the Gaussian are widely used [22].
Therefore, these five functions were selected as the membership functions and denoted as TriaMF,
TrapMF, GbellMF, GaussMF, and Gauss2MF, respectively. The range of each membership function in
fuzzification and defuzzification was examined from 5 to 50, and the results are shown in Figure 6.
The results show that the recognition rates converged when the range of the membership function was
greater than 20 for each membership function. When the range of the membership function did not
suffice to model the features, the recognition rates were seriously degraded.
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The optimal recognition rates for the five membership functions are shown in Table 2. The results
indicate that the recognition rates for different membership functions were similar. The computational
time of the proposed approach was not affected by the RD or the RF, but it was greatly affected
by membership functions with different levels of complexity. Since TrapMF, GbellMF, GaussMF,
and Gauss2MF are second-order polynomial equations; their computational complexity are similar.
However, the computational complexity of TraiMF was lower than those of the other membership
functions. The difference between the optimal recognition rate (GaussMF) and the pessimal recognition
rate (TriaMF) was only 0.6%; such a level of error can be ignored in numerous applications. Therefore,
the TriaMF was very suitable for real-time applications and was selected in this study.

Table 2. Optimal recognition rates for different membership functions.

TriaMF TrapMF GbellMF GaussMF Gauss2MF

Recognition rate (%) 97.02 97.56 97.64 97.69 97.51
The output range of defuzzification 20.75 27.5 27.5 34.25 27.5

The input range of fuzzification 30 40 40 50 40

3.2. Comparison with CCA

For comparison with the proposed approach, the CCA was selected as the baseline system [23].
For the mth stimulus frequency fm, a preconstructed reference signal set was formed using a series of
sin-cosine waves, which can be written as follows:

ym =


sin (2π fmt)
cos (2π fmt)

...
sin (2πH fmt)
cos (2πH fmt)

, (4)

where t = 1
F , 2

F , · · · , P
F . H, P, and F are the number of harmonics, the number of points for an input

signal, and the sampling rate, respectively. The number of harmonics, H, was 4 in this experiment. The
experimental results of the fifteen subjects are shown in Figure 7. The recognition rates were 94.49%
and 96.97% for the baseline and the fuzzy approach, respectively. The recognition rate of the proposed
approach for each subject was clearly higher than that of baseline. To examine the experimental results,
a Wilconxon's signed-rank test was adopted, and the two-tailed test p-value was approximately 0.002.
Thus, at a signification level of 0.01, the results we obtained surely indicate that the recognition rate of
the proposed approach is higher than that of CCA. Therefore, the proposed approach is an excellent
solution for correctly recognizing the frequency response of the visual stimulation.
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To analyze the effects of the visual stimulus frequency, the experimental results for different
stimulus frequencies are shown in Figure 8. The results indicate that, when the stimulus frequency
increased, the recognition rates were slightly degraded. To determine the cause, the normalized
amplitude at the stimulus frequency, which reflects the SNR of the SSVEP, can be calculated as follows:

P =
|FFT (x)|

∑
x
|FFT (x)| , (5)

where x is the preprocessed EEG data and FFT(x) is the fast Fourier transform of x. ∑
x
|FFT (x)| denotes

summing over the total frequency points of the spectrum; thus, the sum of the amplitude spectrum is
normalized to one [24]. The results for one subject are shown in Figure 9. The peak of the stimulus
frequency can be clearly identified for that subject. However, the SNR of the peak value for a high
stimulus frequency is lower than that for a low stimulus frequency. Therefore, if the stimulus frequency
is increased, the performance is degraded. For the proposed approach, the adverse effects can be
reduced by automatically adapting the threshold for making the decision.

Appl. Sci. 2016, 6, x  8 of 11 

amplitude at the stimulus frequency, which reflects the SNR of the SSVEP, can be calculated as 
follows: 

( )
( )

x

FFT x
P

FFT x
=


,

 (5) 

where x is the preprocessed EEG data and FFT(x) is the fast Fourier transform of x. ( )
x

FFT x  

denotes summing over the total frequency points of the spectrum; thus, the sum of the amplitude 
spectrum is normalized to one [24]. The results for one subject are shown in Figure 9. The peak of the 
stimulus frequency can be clearly identified for that subject. However, the SNR of the peak value for 
a high stimulus frequency is lower than that for a low stimulus frequency. Therefore, if the stimulus 
frequency is increased, the performance is degraded. For the proposed approach, the adverse effects 
can be reduced by automatically adapting the threshold for making the decision. 

 
Figure 8. Experimental results for different stimulus signals. 

 
Figure 9. Electroencephalography (EEG) amplitude spectra corresponding to five different stimulus 
frequencies. 

3.3. Real-Time Application 

In this subsection, the fuzzy tracking and control algorithm was applied to control an air 
swimmer drone vehicle for subjects with ALS in entertainment. The air swimmer drone vehicle 
(Figure 10) could be controlled to swim through the air with incredibly smooth and life-like 
swimming motions. The BCI layout (Figure 2) was displayed on a 19-inch LCD monitor (4:3), and the 
average distance between two centers of two adjacent flickering boxes was 13.22 cm. The range of the 
input triangle membership function was 40, and the range of the output triangle membership 
function was 28. An example of stimulus frequency response for a subject is shown in Figure 11a. In 
this example, a subject was asked to control the air swimmer drone vehicle with a sequence of 

80
82
84
86
88
90
92
94
96
98

100

6.00 6.66 7.50 8.57 10.00

R
ec

og
ni

tio
n 

R
at

e (
%

)

Frequency of stimulus signal (Hz)

Baseline

Fuzzy approach

0 5 10 15
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Frequency (Hz)

N
or

m
al

iz
ed

 a
m

pl
itu

de
 s

pe
ct

ra

 

 

  6.00Hz
  6.66Hz
  7.50Hz
  8.57Hz
10.00Hz

Figure 8. Experimental results for different stimulus signals.

Appl. Sci. 2016, 6, x  8 of 11 

amplitude at the stimulus frequency, which reflects the SNR of the SSVEP, can be calculated as 
follows: 

( )
( )

x

FFT x
P

FFT x
=


,

 (5) 

where x is the preprocessed EEG data and FFT(x) is the fast Fourier transform of x. ( )
x

FFT x  

denotes summing over the total frequency points of the spectrum; thus, the sum of the amplitude 
spectrum is normalized to one [24]. The results for one subject are shown in Figure 9. The peak of the 
stimulus frequency can be clearly identified for that subject. However, the SNR of the peak value for 
a high stimulus frequency is lower than that for a low stimulus frequency. Therefore, if the stimulus 
frequency is increased, the performance is degraded. For the proposed approach, the adverse effects 
can be reduced by automatically adapting the threshold for making the decision. 

 
Figure 8. Experimental results for different stimulus signals. 

 
Figure 9. Electroencephalography (EEG) amplitude spectra corresponding to five different stimulus 
frequencies. 

3.3. Real-Time Application 

In this subsection, the fuzzy tracking and control algorithm was applied to control an air 
swimmer drone vehicle for subjects with ALS in entertainment. The air swimmer drone vehicle 
(Figure 10) could be controlled to swim through the air with incredibly smooth and life-like 
swimming motions. The BCI layout (Figure 2) was displayed on a 19-inch LCD monitor (4:3), and the 
average distance between two centers of two adjacent flickering boxes was 13.22 cm. The range of the 
input triangle membership function was 40, and the range of the output triangle membership 
function was 28. An example of stimulus frequency response for a subject is shown in Figure 11a. In 
this example, a subject was asked to control the air swimmer drone vehicle with a sequence of 

80
82
84
86
88
90
92
94
96
98

100

6.00 6.66 7.50 8.57 10.00

R
ec

og
ni

tio
n 

R
at

e (
%

)

Frequency of stimulus signal (Hz)

Baseline

Fuzzy approach

0 5 10 15
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Frequency (Hz)

N
or

m
al

iz
ed

 a
m

pl
itu

de
 s

pe
ct

ra

 

 

  6.00Hz
  6.66Hz
  7.50Hz
  8.57Hz
10.00Hz

Figure 9. Electroencephalography (EEG) amplitude spectra corresponding to five different
stimulus frequencies.

3.3. Real-Time Application

In this subsection, the fuzzy tracking and control algorithm was applied to control an air swimmer
drone vehicle for subjects with ALS in entertainment. The air swimmer drone vehicle (Figure 10)
could be controlled to swim through the air with incredibly smooth and life-like swimming motions.
The BCI layout (Figure 2) was displayed on a 19-inch LCD monitor (4:3), and the average distance
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between two centers of two adjacent flickering boxes was 13.22 cm. The range of the input triangle
membership function was 40, and the range of the output triangle membership function was 28.
An example of stimulus frequency response for a subject is shown in Figure 11a. In this example,
a subject was asked to control the air swimmer drone vehicle with a sequence of stimulation frequencies
that correspond to the commands "dive" (6 Hz), "turn left" (7.5 Hz), "go forward" (8.57 Hz), "turn
right" (6.67 Hz), and "elevate" (10 Hz). The subject was requested to focus on a single command for a
duration of five seconds, and EEG data of the subject was acquired every second without any time
interval in between two adjacent trials. The corresponding recognition results are shown in Figure 11b.
The results revealed that the proposed approach can successfully convert the SSVEP EEG signals into
corresponding real-time control signals.
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To evaluate the proposed approach in a real-time application, five subjects with ALS (four males
and one female; age between 21 and 37) were asked to operate the air swimmer drone vehicle.
For each subject, the rate of progression was measured using a revised ALS functional rating scale
(ALSFRS-R) [25]. The scale of ALSFRS-R is composed of 12 items graded from 0 (complete loss of
function) to 4 (normal function), with a score range between 0 (unable to perform the tested functions)
and produces a score between 48 (normal function) and 0 (severe disability). The average ALSFRS-R
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score of five subjects was 29.8. The participants gave informed consent, and the study was approved
by Institutional Review Board of National Cheng Kung University Hospital.

Since the proposed application is to relax subjects with ALS by operating the air swimmer drone
vehicle, the entertainment value is more important than the recognition rate. Thus, to quantify the
entertainment value of the proposed system, the caregivers helped us to ask each subject to answer the
question "Is the system interesting?" Then, each subject was asked to provide a mean opinion score
(MOS) ranging from 5 (excellent) to 1 (unsatisfactory). The average MOS was 4.3. Thus, the subjects’
responses indicate that the proposed system can hold the interest of subjects with ALS.

4. Conclusions

In this work, a fuzzy tracking and control algorithm was successfully developed for a
single-channel SSVEP-based BCI system. The SSVEP can be successfully elicited by visual stimulation
on an LCD monitor with a 60-Hz refresh rate. A fuzzy tracking algorithm was able to identify the
changes of EEG signals accurately. Because the quality of EEG signals for a single-channel BCI system
is low, this fuzzy tracking algorithm can improve quality by tracking a previous status. Thus, the
recognition rate of the BCI system with the fuzzy tracking algorithm can be clearly improved when
compared with that of a CCA baseline system. For frequencies lower than 10 Hz, the recognition
curves for the CCA baseline and the proposed approach show that the recognition rates were degraded
when the stimulus frequency was increased because the SNR of the peak value for a high stimulus
frequency was lower than that of the low stimulus frequency. The proposed approach was successfully
implemented as a BCI-based interface to control an air swimmer drone vehicle, and users were
interested in this application. Fundamentally, this self-developed single-channel SSVEP-based BCI
system, with its fuzzy tracking and control algorithm, can be used by general subjects without
prior training. Because the computational complexity of the proposed approach is relatively simple,
this approach can be implemented as a standalone embedded BCI system in the near future with
numerous applications such as text input systems, neurogaming, and home appliance control. After
this single-channel SSVEP-based BCI system has finished its performance tests, a more convenient
and cheaper EEG acquisition device with dry electrodes could be adopted and integrated with visual
stimulators and a new standalone signal processing module.
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