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Abstract: During the last decade, a variety of agricultural drought indices have been developed
using soil moisture (SM), or any of its surrogates, as the primary drought indicator. In this study,
a comprehensive study of four innovative SM-based indices, the Soil Water Deficit Index (SWDI),
the Soil Moisture Agricultural Drought Index (SMADI), the Soil Moisture Deficit Index (SMDI) and
the Soil Wetness Deficit Index (SWetDI), is conducted over a large semi-arid crop region in northwest
Spain. The indices were computed on a weekly basis from June 2010 to December 2016 using 1-km
satellite SM estimations from Soil Moisture and Ocean Salinity (SMOS) and/or Moderate Resolution
Imaging Spectroradiometer (MODIS) data. The temporal dynamics of the indices were compared
to two well-known agricultural drought indices, the atmospheric water deficit (AWD) and the crop
moisture index (CMI), to analyze the levels of similarity, correlation, seasonality and number of
weeks with drought. In addition, the spatial distribution and intensities of the indices were assessed
under dry and wet SM conditions at the beginning of the growing season. The results showed that
the SWDI and SMADI were the appropriate indices for developing an efficient drought monitoring
system, with higher significant correlation coefficients (R ≈ 0.5–0.8) when comparing with the AWD
and CMI, whereas lower values (R ≤ 0.3) were obtained for the SMDI and SWetDI.
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1. Introduction

Drought is a complex natural hazard that can affect all climates and produce devastating
environmental, economic and social impacts, such as damage to wildlife habitat, diminishment of crop
growth or mass migration. While these drought effects have been well documented [1,2], there is not
a single and precise definition of drought. It varies among climatic zones and is context-dependent.
For this reason, drought assessments rely on the duration, severity and impact area. Droughts
are usually classified into four types according to meteorological, agricultural, hydrological and
socio-economic criteria [3–10].

Among a wide variety of drought indices, most are climate-based, such as the Standardized
Precipitation Index (SPI). The SPI is a meteorological index that compares the precipitation with
its multiyear average [11]. The Palmer Drought Severity Index (PDSI) is also a commonly used
meteorological index, empirically derived from temperature and precipitation data. The PDSI evaluates
the prolonged abnormally wet or dry periods using a two-layer soil model [12]. The PDSI is an
effective long-term index, but it does not consider different climate types [13]. To improve this issue,
a self-calibrating PDSI (sc-PDSI) was proposed [14]. The Atmospheric Water Deficit (AWD) is also
a meteorological index that uses the simple water balance between evapotranspiration (ET) and
precipitation [15,16].
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To avoid the PDSI limitations [17], the Crop Moisture Index (CMI) was developed. It is an
agricultural index that is computed from ET deficits and moisture excess, based on the soil water
holding capacity and a subset of calculations required to obtain the PDSI [18]. As an advantage,
the CMI responds faster than the PDSI to changing conditions [19]. The two-layer soil model used
by Palmer for the PDSI also computes, as an intermediate parameter, the moisture anomaly index
(Z-index). The Palmer Z-index is a short-term agricultural index that measures the surface moisture
anomaly of the current month without considering antecedent conditions [12,20].

Similar to the PDSI, the Palmer Hydrological Drought Index (PHDI) has been developed.
The PHDI uses the same two-layer soil model as the PDSI, but it applies a stricter criterion for
determining the ends of drought or wet spells, which results in a longer-term index [12]. In addition,
the Soil Water Supply Index (SWSI) was developed as a more appropriate indicator of water availability
than the PDSI, especially in regions where rainfall is not the main source of water. Thus, the SWSI is
a hydrological index based on the probability distributions of snow runoff, precipitation, reservoir
supply, and streamflow on the total surface water resources of the basin [21].

In the literature, there are several drought indicators, i.e., variables or parameters used to describe
drought conditions, such as precipitation, temperature, ET, soil moisture (SM) and streamflow [22].
It can be assumed that SM is the governing variable for agricultural drought since this type of drought
is considered to begin when the SM availability to plants drops to such a level that it adversely affects
the crop yield [7,9]. In addition, SM constrains soil evaporation and plant transpiration in several
regions of the world, and it is a storage component for precipitation and radiation anomalies [23].
The soil profile acts as a filter between incoming water and processes that remove water from the
hydrological system [24]. Therefore, the SM of the root-zone reflects antecedent conditions and
recent precipitation and indicates potential and available water storage [25]. A variety of SM-based
agricultural drought indices have been developed over the last decade using SM simulations from
models, in situ SM measurements or remotely sensed SM observations.

Some agricultural drought indices have been derived from the probability distributions fitted
to a modeled SM. The Variable Infiltration Capacity (VIC) drought index was obtained from the
modeled SM through the VIC land surface model [26]. Later, the Soil Moisture Deficit Index (SMDI)
was developed from SM anomalies. In this case, the SM was obtained from the Soil Water Assessment
Tool (SWAT) hydrological model [27]. The Normalized Soil Moisture (NSM) index was proposed
using the SM simulated by the Tiled European Centre for Medium-Range Weather Forecasts (ECMWF)
Scheme for Surface Exchanges over Land (TESSEL) model [28]. More recently, the Standardized Soil
moisture Index (SSI) and the Multivariate Standardized Drought Index (MDSI) were developed from
the modeled SM based on a one-layer water-budget model [29].

All of the previous agricultural drought indices were estimated from hydrological modeling
instead of direct root-zone SM measurements. In this regard, the Water Deficit Index (WDI) was
introduced as an appropriate way to express SM in terms relative to available water content [30].
Later, the Soil Moisture Index (SMI) was developed from in situ SM data provided by the Automated
Weather Data Network (AWDN) and estimated field capacity (FC) and wilting point (WP) water
contents [31,32]. Similarly, the Soil Water Deficit Index (SWDI), which is based on the WDI, was
proposed using in situ SM data provided by the Soil Moisture Measurements Stations Network of the
University of Salamanca (REMEDHUS), and the FC and WP were calculated from water retention
curves [33].

During the last decade, surface SM estimations from remote sensing observations have
experienced great progress [34–36]. Currently, there are two L-band missions in orbit that are
specifically devoted to measuring global surface SM [37–40]. The first mission was launched in
November 2009 and is the Soil Moisture and Ocean Salinity (SMOS) satellite from the European
Space Agency (ESA) [41]. The second mission was launched in January 2015 and is the Soil Moisture
Active Passive (SMAP) satellite from the National Aeronautics and Space Administration (NASA) [42].
In addition, the ESA’s Climate Change Initiative (CCI) generated an SM database using data from
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passive and active microwave satellite sensors from 1978 to 2015 [43]. These advances allow for the
use of satellite surface SM observations for long-term drought monitoring [44].

Preliminary research was performed to analyze the feasibility of using surface SMOS SM data to
determine anomalous SM conditions [45]. In this line, the SWDI was applied to SMOS SM data using
different methods to estimate FC and WP water contents [46]. The SMOS SM data have also been
employed to derive the Soil Moisture Agricultural Drought Index (SMADI) together with the land
surface temperature (LST) and the Normalized Difference Vegetation Index (NDVI) from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor [47,48]. The historical CCI SM data were
used to compute the Empirical Standardized Soil Moisture Index (ESSMI) [49]. Alternatively, the Soil
Wetness Deficit Index (SWetDI) was developed from the Soil Wetness Index (SWetI) anomaly [50].
In this case, the SWetI played the role of the SM data instead of surface SM observations. The SWetI
can be obtained from MODIS LST and NDVI using the LST−NDVI triangle concept to estimate the dry
and wet edges [51] following previous interpretations of the LST-NDVI space [52,53]. The quantitative
determination of these edges is key for an accurate estimation of ET or SM [54,55]. In addition,
the Centre Aval de Traitement des Données SMOS (CATDS) provides the SMOS Drought Index (SDI)
at 25 km spatial resolution by including SMOS and MODIS observations into a hydrological model at
the root-zone [56].

In drought studies, and particularly in agricultural drought monitoring, the spatial resolution
of the data is paramount for the efficient management of drought risks and impacts and water
irrigation planning. However, both SMOS and SMAP SM radiometer observations have coarse
spatial resolutions (~40 km) that are suitable for global-scale applications [34] but are limited for local
and regional drought assessments. During the last several years, there has been a growing interest
in developing techniques to enhance the spatial resolution of SMOS and SMAP SM observations.
For SMOS, pixel disaggregation approaches are usually based on the synergy of passive microwave
and optical visible/infrared (VIS/IR) observations [57–62]. Currently, the SMOS Barcelona Expert
Centre (BEC) Level 4 (L4) SM maps at 1 km spatial resolution over the Iberian Peninsula are freely
distributed (http://bec.icm.csic.es). The downscaling algorithm is based in the LST-NDVI space and
integrates SMOS, MODIS and Era Retrospective Analysis (ERA)-Interim data [59,63,64]. An improved
downscaling algorithm to obtain those SM maps at 1 km with no size or location limitations is being
developed [65].

The goal of this study was to obtain a comprehensive understanding of the spatiotemporal
behavior of four innovative agricultural drought indices. To do so, the temporal and spatial
performances of the indices were evaluated. This is of special interest in rainfed agro-ecosystems
worldwide where the shortages of available water for plant growth directly affect agricultural activities,
and these shortages can even induce social and economic conflicts, especially in developing countries.
The SM-based indices that were analyzed are SWDI, SMADI, SMDI and SWetDI. All of them use
SM (or a surrogate of it) as the main drought indicator. These two facts highlight the novelty of
this study: first, the use of the SM variable, which is relatively new in drought studies; and, second,
the agricultural drought perspective instead of the more common meteorological approach. The indices
were computed over northwest Spain in the Castilla y León region on a weekly basis from June 2010 to
December 2016 using the SMOS BEC L4 SM and/or MODIS reflectance and LST data at 1 km spatial
resolution. In the case of SWDI, two different approaches to estimate the FC and WP were separately
assessed. The temporal dynamics of the indices were compared to two well-known agricultural
drought indices: the AWD and the CMI. The spatial distribution of each index and its intensity were
assessed by comparing the estimated drought index maps under dry and wet SM conditions at the
beginning of the growing season. This research could help enlighten the choice of the more appropriate
drought index for developing an accurate agricultural drought monitoring system.

http://bec.icm.csic.es
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2. Data and Methods

2.1. In Situ Data

Meteorological data from the Soil Moisture Measurement Stations Network of the University of
Salamanca (REMEDHUS) [66]; Inforiego (www.inforiego.org), which is managed by the Agriculture
Technological Institute of Castilla y León (ITACYL); and the Spanish Meteorological Agency (AEMet,
www.aemet.es) weather station networks were used in this work. These three networks are in the
Castilla y León region (northwest Spain), which is one of the largest agricultural regions in the
European Union (Figure 1, top right). The study area is a large plain that is approximately 65,000 km2

with an average altitude of 800 m above sea level and is surrounded by mountains to the north, south
and east. The area has a continental semi-arid Mediterranean climate with a mean annual temperature
of 11.8 ◦C and mean annual precipitation of 450 mm [67]. The principal land use is agriculture,
including cereals (73.5%), industrial crops (13%), forages (8%), legumes (4.5%), tubers (0.7%) and
vegetables (0.3%) [68]. A land uses map at a spatial resolution of 25 m from the ITACYL map service
(http://mcsncyl.itacyl.es/en/descarga) is displayed in Figure 1, where the different crops and natural
areas were grouped into seven categories (agricultural, artificial, rocky/bare, pasture, scrubland, forest
and water bodies).

In this study, the meteorological variables (i.e., air temperature, relative humidity, precipitation,
solar radiation and wind speed) measured by a REMEDHUS weather station (Villamor) and 22
Inforiego agro-meteorological stations were used from June 2010 to December 2016. In the case of
AEMet, long-term temperature and precipitation data provided by 6 stations from 1985 to 2016 were
used. In addition, a soil database of the Duero River basin with information on sand, clay, silt and
organic matter (MO) contents, provided by the ITACYL (http://suelos.itacyl.es/) was used to obtain
soil texture and organic content maps and to derive specific pedotransfer functions (PTFs) for this
region. The ITACYL database consists of approximately ten thousand punctual soil samples.

Remote Sens. 2017, 9, 1168  4 of 27 

 

Technological Institute of Castilla y León (ITACYL); and the Spanish Meteorological Agency (AEMet, 
www.aemet.es) weather station networks were used in this work. These three networks are in the 
Castilla y León region (northwest Spain), which is one of the largest agricultural regions in the 
European Union (Figure 1, top right). The study area is a large plain that is approximately 65,000 km2 
with an average altitude of 800 m above sea level and is surrounded by mountains to the north, south 
and east. The area has a continental semi-arid Mediterranean climate with a mean annual 
temperature of 11.8 °C and mean annual precipitation of 450 mm [67]. The principal land use is 
agriculture, including cereals (73.5%), industrial crops (13%), forages (8%), legumes (4.5%), tubers 
(0.7%) and vegetables (0.3%) [68]. A land uses map at a spatial resolution of 25 m from the ITACYL 
map service (http://mcsncyl.itacyl.es/en/descarga) is displayed in Figure 1, where the different crops 
and natural areas were grouped into seven categories (agricultural, artificial, rocky/bare, pasture, 
scrubland, forest and water bodies).  

In this study, the meteorological variables (i.e., air temperature, relative humidity, precipitation, 
solar radiation and wind speed) measured by a REMEDHUS weather station (Villamor) and 22 
Inforiego agro-meteorological stations were used from June 2010 to December 2016. In the case of 
AEMet, long-term temperature and precipitation data provided by 6 stations from 1985 to 2016 were 
used. In addition, a soil database of the Duero River basin with information on sand, clay, silt and 
organic matter (MO) contents, provided by the ITACYL (http://suelos.itacyl.es/) was used to obtain 
soil texture and organic content maps and to derive specific pedotransfer functions (PTFs) for this 
region. The ITACYL database consists of approximately ten thousand punctual soil samples.  

 
Figure 1. Land uses map showing the location of the Spanish Meteorological Agency (AEMet), 
Inforiego and Soil Moisture Measurement Stations Network of the University of Salamanca 
(REMEDHUS) stations used in this study. The digital elevation model is also included.  

2.2. Satellite Data 

The SMOS BEC L4 SM v.3 maps from June 2010 to December 2016 at 1 km spatial resolution 
were used. They were obtained using a downscaling algorithm, which was applied separately for 

Figure 1. Land uses map showing the location of the Spanish Meteorological Agency (AEMet), Inforiego
and Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS)
stations used in this study. The digital elevation model is also included.

www.inforiego.org
www.aemet.es
http://mcsncyl.itacyl.es/en/descarga
http://suelos.itacyl.es/


Remote Sens. 2017, 9, 1168 5 of 27

2.2. Satellite Data

The SMOS BEC L4 SM v.3 maps from June 2010 to December 2016 at 1 km spatial resolution were
used. They were obtained using a downscaling algorithm, which was applied separately for both
daily SMOS ascending (6:00 a.m.) and descending (6:00 p.m.) orbits. This algorithm combines daily
SMOS brightness temperature (Level 1C v.620) and SM (Level 2 v.620) data, 16-day Terra MODIS NDVI
(MOD13A2) data and daily ERA-Interim LST data [59,63,64].

The most recent daily Aqua MODIS surface reflectance (SR) data in bands B1 (~660 nm) and B2
(~860 nm) at 500 m spatial resolution (MYD09GA v.6) and MODIS LST data at 1 km spatial resolution
(MYD11A1 v.6) from June 2010 to December 2016 were employed in this study. Aqua was used instead of
Terra because the Aqua day-time LST (at 1:30 p.m. of acquisition local time) is closer to the daily maximum
LST and was more correlated to the SM than the Terra day-time LST (at 10:30 a.m.) [63,69]. The SR is
already corrected for atmospheric conditions such as gases, aerosols and Rayleigh scattering. The nominal
accuracy of the LST is 1 ◦C under clear sky conditions. Both products are projected to a tile-based sinusoidal
grid. Four tiles covering the study area (h17v04, h17v05, h18v04 and h18v05) were selected.

2.3. Data Processing

To analyze the drought events and patterns of different agricultural drought indices over the
Castilla y León region, the agricultural areas were delimited. In this region, crop areas generally occur
in the central part, out of the mountains. Thus, the first step consisted of applying an agricultural
mask to the entire region based on the digital elevation model (DEM) from the ITACYL map service
(Figure 1). This DEM was resampled from the 25-m grid to a regular 1-km grid in the World Geodetic
System (WGS)-84 datum. The agricultural mask preserves areas with altitudes lower than 1100 m.
Hence, drought indices were only estimated at this spatial domain, and all daily input data needed to
compute the indices were previously filtered.

In addition, the soil data were also filtered to discard samples over forested regions, and the
soil samples with MO contents higher than 4% were removed. The remaining 9951 samples were
interpolated using the inverse distance weighting to the regular 1-km grid in WGS-84 and then filtered
with the agricultural mask. The resulting maps of sand, clay, silt and MO contents at 1 km over the
agricultural areas were used (Figure 2).
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The SMOS BEC L4 SM v.3 maps were first clipped to select a rectangular area of the Castilla y
León region (39.85◦N–43.35◦N; 7.35◦W–1.65◦W) and resampled to the regular 1-km grid in WGS-84.
Later, the ascending and descending maps were averaged to obtain a unique map for each day, and
then the daily maps were filtered with the agricultural mask. Finally, these daily maps were weekly
averaged. The pixels with less than four SM measurements within the week were discarded.

Regarding the MODIS products, for each day, the four tiles of MODIS SR and LST were mosaicked
and clipped to select the rectangular area over the Castilla y León region. These maps were resampled
from the sinusoidal grid to the regular grid in WGS84 at their original spatial resolutions (SR at 500 m
and LST at 1 km) using the automated batch processing of the MODIS Reprojection Tool (MRT) [70].
The SR in bands B1 and B2 was filtered using their corresponding state (internal cloud algorithm,
MOD35 snow/ice and internal snow mask) and quality assurance flags (highest quality at B1 and B2).
Then, the daily MODIS NDVI at 500 m was computed as follows:

NDVI =
SRB2 − SRB1

SRB2 + SRB1
(1)

where SRB1 and SRB2 correspond to the surface reflectance at bands B1 and B2, respectively. NDVI
pixels at 500 m were upscaled to the same regular 1-km grid of the LST using a simple average.
Both daily LST and NDVI at 1 km were filtered with the agricultural mask. Finally, the LST and NDVI
maps were weekly averaged.

2.4. Estimation of Drought Indices

2.4.1. Atmospheric Water Deficit (AWD)

The daily ET was estimated by the Penman–Monteith method [71], and the measured precipitation
from the Inforiego and Villamor stations (see locations in Figure 1) were used. The AWD was proposed
as a 7-day running sum of ET minus a 7-day running sum of precipitation [16]. In this study, the weekly
AWD was reversely calculated as:

AWDi = Pi − ETi (2)

where Pi corresponds to the sum of precipitation and ETi denotes the sum of evapotranspiration for
the current week i.

2.4.2. Crop Moisture Index (CMI)

The daily air temperature and precipitation from 6 AEMet stations over the Castilla y León
region (see locations in Figure 1) from 1985 to 2016 were employed to compute the weekly CMI using
the sc-PDSI tool [72]. The particular inputs required for each station were: (i) the mean monthly
(and weekly) air temperature for each of the 12 months (52 weeks) of the year; (ii) the accumulated
monthly (and weekly) precipitation for each of the 12 months (52 weeks) of the year; (iii) the mean
monthly (and weekly) air temperature over all the years; and (iv) the total available water (TAW).

The TAW in the root-zone was computed with the following equation [71]:

TAW = 1000 × (FC − WP)× zr (3)

where FC and WP are the soil water content at field capacity and wilting point, respectively, and zr

stands for the effective rooting depth. To estimate the TAW, an effective root length of 1 m was taken
into account, in agreement with the maximum effective rooting depth for the most common cereals in
the area (wheat, barley and oats) [71].
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The soil water parameters (FC and WP) were estimated from the sand, clay and MO maps at 1 km
(see maps in Figure 2) using the value of the pixel covering each AEMet station and the PTFs proposed
by Rawls et al. [73]:

FCRawls = 0.2576 − 0.0020 × S + 0.0036 × C + 0.0299 × MO (4)

WPRawls = 0.0260 + 0.0050 × C + 0.0158 × MO (5)

where S is sand, C is clay, and MO corresponds to the organic matter contents (all in percentages).

2.4.3. Soil Water Deficit Index (SWDI)

Considering that only a fraction of the soil water content is available for plant growth (available
water content, AWC), the SWDI characterizes the agricultural drought directly from the SM referred
to as the AWC, which is the difference between the FC and WP. The weekly SWDI was computed
as [33,46]:

SWDIi =

(
SMi − FC

AWC

)
× 10 (6)

where SMi is the SMOS BEC L4 SM at 1 km for the current week i.
The SWDI was formulated to obtain a range of values with agricultural meaning. Its interpretation

is related to the p factor of readily available water (RAW), which is the average fraction of TAW that
can be depleted from the root-zone before moisture stress occurs [71].

To analyze the impact of different PTFs on the SWDI estimation, two different expressions
for the same soil water parameters were used. Firstly, the FC and WP were estimated using
Equations (4) and (5), respectively. Alternatively, a multiple regression analysis was performed
using the soil water parameters as the dependent variables and the soil database (sand, clay, silt and
organic matter contents) as the independent variables to obtain specific PTFs for the Castilla y León
region. The best PTFs that were obtained, in terms of coefficient of determination and bias, were
as follows:

FCCYL = 0.41 − 0.004 × S + 0.01 × MO (7)

WPCYL = 0.002 + 0.005 × C + 0.015 × MO (8)

Therefore, two possible SWDI approaches were estimated: (i) the SWDIRawls, which employed
the PTFs of Rawls et al. in Equations (4) and (5); and (ii) the SWDICYL, which used the specific PTFs
for the Castilla and León region in Equations (7) and (8).

2.4.4. Soil Moisture Agricultural Drought Index (SMADI)

Three condition indices are needed to compute the SMADI: (i) the Soil Moisture Condition Index
(SMCI), (ii) the Modified Temperature Condition Index (MTCI), and (iii) the Vegetation Condition
Index (VCI). They were calculated for each week using the following expressions [47]:

SMCIi =
SMmax − SMi

SMmax − SMmin
(9)

MTCIi =
LSTi − LSTmin

LSTmax − LSTmin
(10)

VCIi =
NDVIi − NDVImin

NDVImax − NDVImin
(11)

where SMi is the SMOS BEC L4 SM at 1 km, LSTi corresponds to the MODIS LST at 1 km, and NDVIi
denotes the MODIS NDVI at 1 km, all of them for the current week i. The subscripts max and min
denote the maximum and minimum values of the pixel for the entire study period, respectively.
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Then, the weekly SMADI was computed as [47,48]:

SMADIi = SMCIi ×
MTCIi
VCIi+1

(12)

where SMCIi is the SMCI of the current week i, MTCIi stands for the MTCI of week i, and VCIi+1

corresponds to the ensuing week i + 1.

2.4.5. Soil Moisture Deficit Index (SMDI)

The first step to calculate the SMDI was to obtain the SMOS soil moisture deficit data (SDSMOS,
in percentage), which were estimated for each week i and year k as a weekly SM anomaly with respect
to the median value, using the following conditional expressions [27]:

SDSMOS,k,i =
SMk,i − SMmedian,i

SMmedian,i − SMmin,i
× 100 if SMk,i ≤ SMmedian,i (13)

SDSMOS,k,i =
SMk,i − SMmedian,i

SMmax,i − SMmedian,i
× 100 if SMk,i > SMmedian,i (14)

where SMk,i is the SMOS BEC L4 SM for the current week i (1 to 52) and year k (2010 to 2016), and the
SMmedian,i, SMmax,i and SMmin,i stand for the long-term median, maximum and minimum values of
the current week i during the entire study period, respectively.

Then, the weekly SMDI was computed as [27]:

SMDIi = 0.5 × SMDIi−1 +
SDSMOS,i

50
(15)

where SMDIi−1 is the SMDI of the previous week i − 1 and SDSMOS,i corresponds to the SDSMOS of the
current week i. When data were not available from the previous week, the nearest antecedent value of
SMDI was chosen. The SMDI was initialized as SMDI1 = SD1/50.

2.4.6. Soil Wetness Deficit Index (SWetDI)

Instead of using SM observations, the SWetDI used a parameter, the Soil Wetness Index (SWetI),
which mimics the role of SM. The weekly SWetI was estimated as [51]:

SWetIi,n =
Tmax,i,n − Tsi,n

Tmax,i,n − Tmin,i,n
(16)

where Tsi,n is the MODIS LST at 1 km for week i and pixel n, and Tmax,i,n and Tmin,i,n correspond to the
maximum and minimum values of observed MODIS LST at 1 km for each n-th MODIS NDVI at 1 km
and week i. These values were derived weekly from the daily observations of the LST-NDVI space
at the agricultural domain (Figure 3) using linear relations between LST and NDVI on the dry and
wet edges:

Tmax,n = a × NDVIn + b, dry edge (17)

Tmin,n = c × NDVIn + d, wet edge (18)

where a and c are the slopes, and b and d are the offsets of the diagonal lines on the dry and wet edges,
respectively. These coefficients were computed for each week using robust linear regressions [74] by
applying an iterative algorithm similar to a previous study [54].
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The MODIS soil moisture deficit (SDMODIS, in percentage) has a similar expression as the previous
SDSMOS but uses the SWetDI anomaly. It was estimated for each week i and month j as a monthly
SWetI anomaly with respect to the mean value by the following expression [50]:

SDMODIS,j,i =
SWetIj,i − SWetImean,j

SWetImax − SWetImin
× 100 (19)

where SWetIj,i stands for the SWetI of the current week i (1–52) and month j (1–12), SWetImedian,j is
the long-term mean SWetI for month j, and SWetImax and SWetImin correspond the maximum and
minimum SWetI for the entire study period, respectively.Remote Sens. 2017, 9, 1168  9 of 27 
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The weekly SWetDI was estimated, similar to the SMDI, as [50]:

SWetnessDIi = 0.5 × SWetnessDIi−1 +
SDMODIS,i

50
(20)

where SWetnessDIi−1 is the SWetDI of the previous week i − 1 and SDMODIS,i corresponds to the
SDMODIS of the current week i. When data were not available from the previous week, the nearest
antecedent value of SWetDI was chosen. The SWetDI was also initialized as SWetDI1 = SD1/50.

2.5. Comparison Strategy

In this study, weekly comparisons were made because one week is the time interval commonly
used by farmers for irrigation schedules [15]. Therefore, weekly maps of the drought indices
(SWDIRawls, SWDICYL, SMADI, SMDI and SWetDI) were estimated over the agricultural areas of
the Castilla y León region. The time-series of the pixels overlapping each in situ station were extracted
and compared with the AWD time-series computed at the Inforiego and Villamor stations and the CMI
time-series computed at the AEMet stations. For these comparisons, Pearson’s correlation coefficient
(R) was applied. It is obvious that in situ and satellite observations have different spatial resolution,
but this validation strategy has been widely used in literature, where moderate and even low resolution
satellite drought indices were compared to punctual data-based drought indices [46–48,75–79]. Besides,
after an additional test (results not shown) consisting of computing again the correlation between
the SMDI and SWetDI with AWD and CMI, after discarding the first six months of the time-series,
it was verified that the value of initialization in the SMDI and SWetDI does not affect results and
neither conclusions obtained from this study. The number of weeks when drought occurred was also
computed for each drought index. The occurrence of drought depends on the established thresholds
of each index according to their categories (Table 1). In this study, all intensities of drought (mild,
moderate, severe and extreme) were considered to calculate the number of drought weeks.
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The occurrence of drought of each index was assessed by several categorical statistics referred to
an observed event (Table 2): (i) the probability of detection (POD); (ii) the probability of false detection
(POFD); (iii) the false alarm ratio (FAR); and (iv) the frequency bias (FB). These statistics are widely
used for weather forecast verification in which the forecast is compared with an observed event or
reference at four possible cases based on the A, B, C and D values of a contingency table [80,81]. In this
study, the AWD and the CMI were assumed to be the observed events. Thus, A corresponds to the
hits, i.e., the weeks when both the reference and the index indicate drought. B denotes the false alarms,
which are the weeks when the index indicates drought but the reference indicates no drought. C stands
for the misses, which are the weeks when the reference indicates drought but the index indicates
no drought. D denotes the correct negatives, i.e., the weeks when both the reference and the index
indicate no drought.

Table 1. Categories of each drought index.

AWD CMI SWDI SMADI SMDI SWetDI

Dynamic Range −∞ to +∞ −∞ to +∞ −∞ to +∞ 0 to +∞ −4 to +4 −4 to+ 4
No drought 0 or more 0 or more 0 or more 0 to 1 0 or more 0 or more

Drought

Mild

less than 0

−2 to −0.01 −2 to −0.01 1.01 to 2 −1 to −0.01 −1 to −0.01
Moderate −3 to −2.01 −5 to −2.01 2.01 to 3 −2 to −1.01 −2 to −1.01

Severe less than −3 −10 to −5.01 3.01 to 4 −3 to −2.01 −3 to −2.01
Extreme - less than −10 more than 4 −4 to −3.01 −4 to −3.01

According to this contingency table, the POD denotes what fraction of the observed drought
weeks was correctly estimated. The POFD computes what fraction of the observed no drought weeks
was incorrectly estimated as drought. The FAR measures what fraction of the estimated drought
weeks did not occur. The FB expresses the systematic differences between the reference and the
index using the frequency of the number of drought weeks. All equations used to calculate these
categorical statistics, as well as their dynamic ranges and perfect scores, are included in Table 2 [82].
These statistics were displayed in boxplots, where the central mark indicates the median, the bottom
edge of the box displays the 25th percentile, and the top edge shows the 75th percentile of all stations.
The whiskers extend to the most extreme data points that were not considered outliers, and the outliers
are plotted individually using red crosses.

Table 2. Categorical statistics, equations, dynamic ranges and perfect scores.

Categorical Statistic Equation Dynamic Range Perfect Score

Probability of Detection (POD) POD = A
A+C 0 to 1 1

Probability of False Detection (POFD) POFD = B
B+D 0 to 1 0

False Alarm Ratio (FAR) FAR = B
A+B 0 to 1 0

Frequency Bias (FB) FB = A+B
A+C −∞ to +∞ 1

A = hits; B = false alarms; C = misses; and D = correct negatives

The last comparison assessed the spatial distribution of the estimated drought maps for each
index. Thus, the drought indices were spatially compared at two representative weeks of the
study period: (i) 8–14 April 2012; and (ii) 9–15 April 2013. For most crops of the Castilla y León
region, the plant growing season lasts from approximately April to October. The two selected weeks
correspond to the beginning of the growing season during two years with dry and wet SM conditions,
respectively. The meteorological drought was very intense in 2012 [83], and the SM content was very
low in this region. Conversely, in 2013, the amount of precipitation was higher than the long-term
mean. The second reason to choose these specific weeks relies on minimizing the presence of clouds.
Since optical VIS/IR data are affected by clouds, there are some gaps in the daily MODIS LST and
NDVI observations. However, as done for the other datasets, the daily MODIS maps were weekly
averaged, reducing these data gaps. The indices that could be affected by them were SMADI and
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SWetDI. Furthermore, the chosen weeks have almost the maximum spatial coverage, with only a few
pixels with no data. The SMOS BEC L4 SM data were not affected by this issue because its downscaling
algorithm employs a filled composite of 16-day NDVI at 1 km.

The flowchart in Figure 4 graphically displays all the data processing and the methodology
applied to compute the analyzed drought indices of this study.Remote Sens. 2017, 9, 1168  11 of 27 
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3. Results and Discussion

3.1. Time-Series Comparison

The weekly evolution of the AWD, the CMI and the drought indices at the two Inforiego and
AEMet stations is shown in Figures 5 and 6, respectively. VA01 and VA101 were selected as examples
from the Inforiego network because they correspond to the wettest and driest stations along the entire
study period, with the SM varying from 0.03 to 0.40 m3/m3 and from 0.02 to 0.27 m3/m3, respectively.
In the AEMet network, the same criterion was applied to select the Zamora and León stations, with
a SM variability from 0.03 to 0.39 m3/m3 and from 0.03 to 0.28 m3/m3, respectively. Although the
SMADI was defined in the opposite sense with respect to the other drought indices, for a better
comparison, its vertical axis was oriented downward.

It was clearly observed that the SWDIRawls, SWDICYL and SMADI displayed similar seasonal
cycles to the AWD and CMI (Figures 5a–f and 6a–f). In contrast, the SMDI and SWetDI did not exhibit
any seasonal patterns (Figures 5g–j and 6g–j). This result can be a consequence of using the SM deficit
obtained from the SM or SWetI anomalies instead of directly using the SM or SWetI for the calculation
of the two indices, since these anomalies remove the inherent seasonality of the original series of
SM or the SWetI. By definition, an agricultural drought index should reflect the available soil water
conditions for vegetation growth. This seasonal cycle was effectively captured by the AWD, CMI,
SWDI and SMADI, being a distinctive feature of these drought indices.
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The temporal evolution of the AWD and both SWDI approaches were nearly synchronized
(Figure 5a–d). The one-week lag observed between the AWD and the SWDI computed from the in situ
SM data at the root-zone in a previous study [33] was not observed when using the SMOS-derived
SWDI [46,78]. This is because the SMOS SM is representative of only the top 5 cm of the soil profile,
where soil water evaporation preferably occurs and water moves faster. Moreover, the SMOS SM data
have a quicker response to rainfall events and dry-downs than the in situ SM data, even at the same
soil layer [66,67].

When comparing the CMI and both SWDI approaches, there were some drought breaks during
the dry periods when the CMI was zero, which were not detected by the SWDI or the other indices
(Figure 5a–d). This fact was previously observed, and it is related to small rainfall events that do not
have effective influences on the recharge of soil water [33,46,47].

The SMADI was delayed respect to the AWD at the onset of the drought events (Figure 5e,f).
There is a well-known time-lag effect in the occurrence of a drought and the changes in NDVI [75,84–87].
Previous studies revealed a delay of 20 days, 16–24 days or even one month between a rainfall event
and changes in NDVI [88–90]. This may suggest that the one-week delayed NDVI could be not
long enough for the SMADI computation. However, a lag of 10 days was found between the NDVI
anomalies and soil moisture in grasslands, croplands and shrublands [91], which is in agreement with
the one-week delayed used in this work.
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(SWDI)Rawls (a,b); SWDICYL (c,d); Soil Moisture Agricultural Drought Index (SMADI, e,f); Soil Moisture
Deficit Index (SMDI, g,h); or Soil Wetness Deficit Index (SWetDI, i,j), at the VA01 and VA101 stations.
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As expected, the SWDIRawls and SWDICYL had the same temporal evolution and only differed in
their absolute values and dynamic ranges (Figures 5a–d and 6a–d). These differences were produced by
the different PTFs used to estimate the soil water parameters. Both SWDI approaches estimated drought
in VA101 and León in almost the entire study period, especially the SWDIRawls (Figures 5 b,d and 6b,d).
This result indicated that the SWDI is very sensitive to the accuracy of the FC and WP, particularly
when the SM is very low. In addition, the accuracy of any method based on PTFs depends on the
robustness of the soil database, as previously found [46].
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(SWDI)Rawls (a,b); SWDICYL (c,d); Soil Moisture Agricultural Drought Index (SMADI, e,f); Soil Moisture
Deficit Index (SMDI, g,h); or Soil Wetness Deficit Index (SWetDI, i,j) at the Zamora and León stations.

The SMADI exhibited the smoothest temporal evolution, i.e., the signals of the other indices were
noisier than the signals of the SMADI, but there were few peaks with very high SMADI values at
particular weeks. It is highlighted that the SMADI displayed higher values in León than in Zamora
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since León is drier than Zamora in terms of SM (Figure 6e,f). Nevertheless, VA101 was drier than
VA01, and this effect was not observed. In contrast, the SMADI values were higher in VA01 than in
VA101, which means that the SMADI estimated a stronger drought in VA01 than in VA101 (Figure 6e,f).
This result can be explained by the integration of the LST and the NDVI additional information in
SMADI [47].

The SMDI showed the highest temporal variability with sudden events of drought, changing
from non-drought to drought and vice versa during very short time intervals, i.e., going upward and
downward between the maximum and minimum limits (Figures 5g,h and 6g,h). This result may be
due to the SMDI was originally developed from an SM time-series of 98 years [27], which was much
larger than the study period (6 and a half years). Since the period is much shorter, the SM deviation of a
given week with respect to its weekly median along the study period is expected to be higher. Despite
this, and considering the SMDI trend, most weeks of the SMDI displayed drought conditions in 2012.
This result agrees with the exceptional meteorological drought of 2012 [83]. The SMDI displayed no
drought in most weeks of 2013. No significant differences were observed between the SMDI at the
wettest or the driest stations.

The SWetDI had a very low dynamic range, usually from −1 to +1 and did not reach its minimum
or maximum limits (−4 to +4) in any week of the study period (Figures 5i,j and 6i,j). This variability of
the SWetDI was similar to that obtained in a previous study, where the SWetDI was calculated over
Iran, a region with an annual precipitation of 130 mm per year (much drier than the Castilla y León
region), and a variability ranging from −1.7 to +1.2 in a rainfed farmland location was displayed [50].
Nevertheless, the size of the observed scene and the different climates or land uses could have an
important impact on obtaining the dry and wet edges through the LST-NDVI space, as well as in the
estimation of SWetI. Furthermore, the SWetDI trend was not capable of capturing the drought event of
2012. As in the case of the SMDI, no significant differences were observed between the SWetDI at the
wettest or the driest stations. Similar results were obtained from the time-series of drought indices at
the other Inforiego and Villamor stations, or at the other AEMet stations (not shown).

3.2. Correlation Analysis

For each Inforiego and Villamor station, the correlation coefficients of the AWD and the drought
indices are shown in Table 3. Note that the correlation between the AWD and SWDIRawls was equal to
the correlation between the AWD and SWDICYL at all stations (R ≈ 0.68–0.80). This result indicates
that there was a very high agreement between the AWD and both SWDI approaches, regardless of
the PTFs used, and the SWDI adequately reproduced the soil water balance dynamics. The PTFs of
Rawls et al. [73] worked as well as the specific PTFs for the Castilla y León region when estimating the
soil water parameters. Therefore, it can be concluded that the SWDI can be calculated in any region
with available soil data by applying a suitable standard and adequately tested PTFs. The correlations
were similar to those obtained in previous research [46], where the AWD was compared with a
SMOS-derived SWDI (R = 0.83) using estimations of FC and WP from soil samples in a laboratory.

There was a negative correlation between the AWD and SMADI, which showed a large variation
among stations (R ≈ −0.19 to −0.83). Some stations (BU03, BU05, LE03, LE04, LE08, P06, SA102, VA06
and ZA02) showed a correlation weaker than −0.55. Although these stations are located over rainfed
cereals plots, they are surrounded by areas of irrigated crops. This fine-scale detail was hidden in
the scale of the remote sensing observations, which represent an integrated value over an area. Thus,
it is likely that the response of the irrigated crops was mixed with the response of the rainfed stations.
The correlations at the rest of the stations were R ≈ −0.60 to −0.83, which indicates a high agreement
between AWD and SMADI.

The correlation between the AWD and SMDI was very low in all stations (R ≤ 0.28). Similarly,
the correlation between the AWD and SWetDI was very low in all stations (R ≤ 0.15) after the
non-significant values were discarded (ρval > 0.05). Not surprisingly, this could be due to the absence
of the seasonal dynamics in both the SMDI and SWetDI time-series, as previously shown in Figure 5g–j.
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Another possible hypothesis about the poor results of SWetDI could be related to the physical
interpretation of the LST-NDVI triangle, because recent research has pointed out better results of
the LST-NDVI approach when decoupling the soil evaporation and vegetation transpiration [55].

Table 3. Pearson’s correlation coefficients (R) of weekly Atmospheric Water Deficit (AWD) and Soil
Water Deficit Index (SWDI)Rawls, SWDICYL, Soil Moisture Agricultural Drought Index (SMADI),
Soil Moisture Deficit Index (SMDI) or Soil Wetness Deficit Index (SWetDI) at the Inforiego and
Villamor stations.

Station SWDIRawls SWDICYL SMADI SMDI SWetDI

AV01 0.76 0.76 −0.71 0.18 0.02 *
BU03 0.78 0.78 −0.51 0.19 0.09 *
BU04 0.68 0.68 −0.62 0.19 0.15
BU05 0.76 0.76 −0.51 0.18 0.14
LE03 0.69 0.69 −0.41 0.20 0.15
LE04 0.71 0.71 −0.19 0.20 0.06 *
LE08 0.78 0.78 −0.50 0.28 0.14
P02 0.74 0.74 −0.55 0.20 0.11 *
P04 0.77 0.77 −0.60 0.25 0.11 *
P06 0.71 0.71 −0.40 0.24 0.05 *

SA101 0.74 0.74 −0.61 0.20 0.08 *
SA102 0.78 0.78 −0.53 0.19 0.08 *
SG02 0.74 0.74 −0.77 0.16 0.11 *
SO02 0.79 0.79 −0.62 0.17 0.13
VA01 0.80 0.80 −0.72 0.24 0.15
VA02 0.77 0.77 −0.64 0.20 0.09 *
VA05 0.80 0.80 −0.68 0.17 0.11 *
VA06 0.77 0.77 −0.29 0.23 0.09 *
VA08 0.78 0.78 −0.67 0.21 0.07 *
VA101 0.75 0.75 −0.83 0.14 0.00 *
ZA02 0.77 0.77 −0.19 0.19 0.06 *
ZA05 0.75 0.75 −0.67 0.22 0.13

VILLAMOR 0.79 0.79 −0.69 0.26 0.12 *

* Non-significant correlations (ρval > 0.05).

The correlation coefficients between the CMI and the other SM-based drought indices for each
AEMet station are shown in Table 4. As previously observed with the AWD, the same correlation was
obtained between the CMI and both SWDI approaches (R ≈ 0.48–0.70). This result is similar (R = 0.72)
to that obtained in a previous study [46]. Nevertheless, the agreement between the SWDI and CMI
was lower than the agreement with AWD, as previously found [46].

The correlation between the SMADI and CMI (R ≈ −0.32 to −0.69) was similar to the value
obtained in a previous study (R ≈ −0.71) [47]. This correlation between SMADI and CMI was also
weaker than the correlation with AWD. This may be because the CMI produced several near-zero
values, both at the beginning and at the end of the growing season [47]. The correlation between the
SMDI and CMI was weak (R ≈ 0.39–0.44), and the correlation between the CMI and SWetDI was very
weak (R ≤ 0.28). As in the case of AWD, this result could be related to the lack of temporal patterns in
both the SMDI and SWetDI time-series, as previously shown in Figure 6g–j.



Remote Sens. 2017, 9, 1168 16 of 27

Table 4. Pearson’s correlation coefficients (R) of weekly Crop Moisture Index (CMI) and Soil Water
Deficit Index (SWDI)Rawls, SWDICYL, Soil Moisture Agricultural Drought Index (SMADI), Soil Moisture
Deficit Index (SMDI) or Soil Wetness Deficit Index (SWetDI) for the Spanish Meteorological Agency
(AEMet) stations.

Station SWDIRawls SWDICYL SMADI SMDI SWetDI

BURGOS 0.60 0.60 −0.58 0.44 0.25
LEÓN 0.69 0.69 −0.61 0.39 0.19

SALAMANCA 0.66 0.66 −0.57 0.40 0.08 *
SORIA 0.48 0.48 −0.54 0.41 0.28

VALLADOLID 0.70 0.70 −0.32 0.42 0.07 *
ZAMORA 0.69 0.69 −0.69 0.44 0.13

* Non-significant correlations (ρval > 0.05).

3.3. Drought Weeks Captured

The number of drought weeks captured by each index is shown in Figure 7. Since each station
had a different number of weeks with available data along the study period, the comparison was made
using the percentage of the total number of weeks. On the one hand, the AWD identified between
75.2% and 88.4% of the drought weeks (Figure 6a). On the other hand, the CMI captured between
31.7% and 45.3% (Figure 6b). These results were similar to those obtained in a previous study in the
REMEDHUS area (June 2010–December 2014), where 73.1–84.6% and 32.7–57.7% of the drought weeks
per year were estimated by the AWD and CMI, respectively [46]. It was highlighted that the CMI
captured fewer drought events than the AWD. This fact can be linked to the unrealistic zero or near
zero values from the CMI under dry periods, as previously discussed.

The SWDIRawls captured between 88.9% and 100% of the drought weeks, and the SWDICYL

captured between 78.6% and 100%, except in SA101, SA102, SG02 and Salamanca (Figure 7a,b).
These results were higher than the 67.3–78.9% obtained by the SWDI computed from the root-zone SM
stations of REMEDHUS (2009–2013) and the estimated FC and WP from the water retention curves [33].
Similarly, they were also higher than the 59.6–71.2% obtained by the SWDI computed from the SMOS
L2 SM data and the specific PTFs derived over REMEDHUS (June 2010–December 2014) [46]. This may
be due to the larger region analyzed in this study, which includes a higher variability of soil textures
than the previous research about SWDI in REMEDHUS. Both SWDI approaches captured more drought
weeks than the AWD and the CMI, except in SA101, SA102, SG02 and Salamanca. At these stations, the
number of drought weeks identified by both SWDI approaches (from 63.6% to 81.8% for SWDIRawls
and from 27.9% to 68.0% for SWDICYL) was lower than at the other stations. This was explained by the
very coarse soil texture of SA101, SA102, SG02 and Salamanca, which resulted in a low estimation of
the FC value and, consequently, a high SWDI compared with the other stations (see Figures 1 and 2).

The number of drought weeks captured by both SWDI approaches was always higher than the
number captured by the AWD, CMI, SMADI, SMDI or SWetDI. This could be related to the dry bias
of the SMOS SM products, which was found in several validation exercises using a previous version
of the SMOS L2 SM data (v.551), and the subsequent SMOS BEC L3 SM (v.1) and L4 SM (v.2 and v.3)
products in several studies over REMEDHUS and Castilla y León regions [59,64]. Although this study
used a new version of the data (v.620), this dry bias is still present in some regions [37]. The SMOS dry
bias has a direct influence on the SWDI. In contrast, the SMADI uses normalized SM data, and the
SMDI and SWetDI use an SM anomaly with the bias removed. As previously stated, the SMOS is only
capable of retrieving the SM content of the soil top layer, which surely underestimates the root-zone
SM. In the near future, the availability of root-zone SM estimates [92,93] is expected to improve the
current estimation based on surface SM data for agricultural drought monitoring. Nevertheless, recent
research has shown the capability of using satellite surface SM estimations for drought monitoring,
e.g., using the surface SM observations from the Advanced Microwave Scanning Radiometer for Earth
(AMSR-E) observation system and SMAP, after applying a cumulative distribution function (CDF)
matching in situ surface SM data to remove the systematic bias and dynamic range differences [79,94].
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The SMADI captured from 27.7% to 69.3% of the drought weeks (Figure 7a,b). These results
were lower than those obtained by the AWD and both SWDI approaches but were similar to those
obtained by CMI, SMDI and SWetDI. A similar number of drought weeks was identified by the SMDI
and SWetDI, from 44.2% to 59.1% and from 41.7% to 56.5%, respectively (Figure 7a,b). This could be
explained because both indices use SM or SWetI anomalies, as previously discussed. These results
were also lower than those obtained by AWD and both SWDI approaches.Remote Sens. 2017, 9, 1168  17 of 27 
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Figure 7. Drought weeks (in percentage) captured by the Atmospheric Water Deficit (AWD) or the
Crop Moisture Index (CMI) and the Soil Water Deficit Index (SWDI)Rawls, SWDICYL, Soil Moisture
Agricultural Drought Index (SMADI), Soil Moisture Deficit Index (SMDI) and Soil Wetness Deficit
Index (SWetDI): at the Inforiego and Villamor stations (a); and at the Spanish Meteorological Agency
(AEMet) stations (b).

3.4. Categorical Statistical Analysis

The categorical statistics of the drought indices are shown in Figure 8. First, it is important to
mention that even though the AWD and CMI were considered the reference dataset, they should not be
considered as the absolute “ground-truth”. They were assumed to be benchmarks because they are a
good proxy of the soil water deficit (the AWD) and a widely used agricultural drought index (the CMI).
Therefore, the results inferred from the statistical analysis only showed the level of similarity of the
drought indices with respect to the AWD and CMI.

Considering the POD (Figure 8a,b), both SWDI approaches estimated a higher fraction of the AWD
and CMI drought events than the other indices (median values of 0.99 and 1 for SWDIRawls, 0.96 and
0.98 for SWDICYL, 0.57 and 0.78 for SMADI, 0.54 and 0.67 for SMDI, and 0.55 and 0.58 for SWetDI for
AWD and CMI, respectively). The SWDI results were in line with those of a recent study [78], where a
POD value of 0.98 was observed between SWDI and AWD. When analyzing the POFD (Figure 8c,d),
the SMADI displayed the lowest values (median values of 0.10 and 0.19 for the AWD and the CMI,
respectively), followed by the SMDI (0.35 and 0.36), the SWetDI (0.43 in both cases), the SWDICYL (0.76
and 0.88) and the SWDIRawls (0.92 and 0.97).
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The FAR of the AWD was lower than 0.20 for all indices (medians of 0.18 for SWDIRawls, 0.16 for
SWDICYL, 0.04 for SMADI, 0.13 for SMDI and 0.15 for SWetDI, Figure 8e), but the FAR of the CMI
was higher (medians of 0.55 for SWDIRawls, 0.54 for SWDICYL, 0.23 for SMADI, 0.41 for SMDI and 0.50
for SWetDI, Figure 8f). When analyzing the FB, both SWDI approaches slightly overestimated, while
the other indices underestimated the number of drought weeks with respect to the AWD (medians of
1.21 for SWDIRawls, 1.16 for SWDICYL, 0.59 for SMADI, 0.61 for SMDI and 0.64 for SWetDI, Figure 8g).
By contrast, all indices overestimated the number of drought weeks with respect to the CMI (medians
of 2.25 for SWDIRawls, 2.15 for SWDICYL, 1.03 for SMADI, 1.11 for SMDI and 1.15 for SWetDI, Figure 8h).
The FAR and the FB results agreed with those previously shown in Figure 7.Remote Sens. 2017, 9, 1168  18 of 27 
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and the FB exhibited higher values when the CMI was assumed as the reference, which is in line with 
results shown in Figure 7. Considering all categorical statistics, both SWDI approaches were similar 
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Figure 8. Probability of detection (POD, a,b); probability of false detection (POFD, c,d); false alarm
ratio (FAR, e,f); and frequency bias (FB, g,h) obtained from the Soil Water Deficit Index (SWDI)Rawls,
SWDICYL, Soil Moisture Agricultural Drought Index (SMADI), Soil Moisture Deficit Index (SMDI) or
Soil Wetness Deficit Index (SWetDI) at the Inforiego, Villamor and the Spanish Meteorological Agency
(AEMet) stations, assuming that the Atmospheric Water Deficit (AWD) and the Crop Moisture Index
(CMI), respectively, were the observed event or the reference.
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Both the POD and POFD referred to the AWD and the CMI were very similar, whereas the FAR
and the FB exhibited higher values when the CMI was assumed as the reference, which is in line with
results shown in Figure 7. Considering all categorical statistics, both SWDI approaches were similar to
the AWD. In contrast, the SMADI, the SMDI and the SWetDI were similar to the CMI.

3.5. Spatial Comparison

The SMOS BEC L4 SM and MODIS SWetI maps over the Castilla y León region at the two selected
weeks are shown in Figure 9. The week of 8–14 April 2012 was drier than 9–15 April 2013 (Figure 8a,b),
with values from 0.10 to 0.20 m3/m3. In addition, some parts of the northwest and the center were
drier than others (Figure 9a). These spatial features did not appear in the SWetI map of the same
week (Figure 9c). Although the purpose of the SWetI is to mimic the soil water content behavior, the
SWetI did not seem to reflect the same pattern as the SM in this week. The SM map of 9–15 April
2013 exhibited a high SM content and high variability (from 0.12 to 0.40 m3/m3) and showed that
the southeast part was wetter than the rest of the area (Figure 9b). It was clearly observed that the
spatial patterns of the SM during 9–15 April 2013 were similar to those of the SWetI of the same week
(Figure 9d). In this case, the SWetI and the SM maps seemed to capture similar information about the
soil water content.
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The maps of the agricultural drought indices over the Castilla y León region during the two
selected weeks are shown in Figure 10. To show a homogeneous legend, the drought intensity is
depicted with different colors according to the thresholds of each index. As mentioned earlier, a very
intense meteorological drought occurred in 2012 on the Iberian Peninsula [83].

During the week of 8–14 April 2012, the SWDIRawls displayed severe and extreme drought in the
north, whereas the south exhibited no drought to moderate drought conditions, except for small areas
of the west and south that showed severe and extreme drought conditions (Figure 10a). In the case of
SWDICYL, the spatial patterns were similar to those found with the SWDIRawls in the north. However,
no drought was estimated by the SWDICYL in most areas of the south (Figure 10c). These results agreed
with the spatial distribution of SM in the same week, as observed in Figure 9a. The difference between
the north and the south was related to the different soil textures of these areas, with lower sand content
in the north than in the south, as observed in Figure 2. Therefore, the SWDI seemed to be sensitive
to the different soil types, which agrees with its rationale and is in accordance with the definition of
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agricultural drought. The low values of both SWDI approaches in the south may be due to the different
water holding capacities of these soils, which can be inferred from the soil characteristics of this part of
the study area (Figure 2).
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The SMADI exhibited few scattered pixels with mild drought conditions in most areas during
8–14 April 2012 (Figure 10e). The drought intensity indicated by the SMADI was lower than that
displayed by both SWDI approaches. This could be because the MTCI/VCI term of the SMADI
modulates the soil water content through temperature and vegetation conditions. During this week,
there were not extreme LST values, as occurs during the summer seasons in this region. This fact may
reduce the SMADI drought intensity. In addition, there were some small zones where the SMADI
estimated severe and extreme drought, which corresponded to areas of irrigated crops. At this stage of
the growing season, these small zones only had bare soil. The absence of vegetation is characterized
by a very low NDVI, which could, in turn, produce very high SMADI values. In this case, these
high SMADI values were unrealistic and not associated with drought. This was because some factors
(e.g., fire, flooding, hail, pests, plant disease or land cover change) can produce a vegetation signal that
mimics drought conditions [95].

During 8–14 April 2012, the SMDI showed extreme drought in the northwest, severe drought
in some parts of the north, and a varying pattern ranging from no drought to moderate drought in
other areas (Figure 10g). A similarity was observed between the spatial patterns of the SMDI and
both SWDI approaches. Nevertheless, the SMDI presented a lower drought intensity than the SWDI
and a higher drought intensity than the SMADI. The SMDI computation employed the weekly SM
anomaly data instead of the absolute SM information, and the variability of the SMDI was very high
from one week to the next. Due to that, the similarity between the SMDI and the SM maps during this
particular week (Figures 8a and 9g) could not be seen in other weeks, as occurs during 9–15 April 2013
(Figures 8b and 9h).

The SWetDI showed a range from no drought conditions to mild drought in all areas, and only a
few pixels with moderate drought occurred for the week of 8–14 April 2012 (Figure 10i). The SWetDI
exhibited a lower drought intensity than the SMDI and both SWDI approaches and a higher drought
intensity than the SMADI. Although the SWetDI used only a monthly anomaly, its spatial patterns
were very similar to those obtained with the SWetI, as shown in Figure 9b. However, the SWetI
estimation did not always capture the same soil water content information as the SM estimation,
as previously discussed.

During the week of 9–13 April 2013, the difference between the north and south areas was also
clearly observed with both SWDI approaches (Figure 10b,d). In addition, there were some areas with
severe and extreme drought in the north in both SWDI approaches. This could be related to the fine
texture of the soil in the north part of the study region. Although fine soils have more soil surface
water content, this water would not have been available to plants. In general, the SWDIRawls estimates
a higher drought intensity than the SWDICYL. The SMADI considered no drought in all areas of the
study region (Figure 9f). In this case, the unrealistically high SMADI values in bare soil zones did
not appear, probably because of the higher SM contents of this week compared that of 8–14 April
2012. No drought was also estimated by the SMDI over the entire region during 9–13 April 2013
(Figure 10f). In addition, the spatial patterns of the SMDI were not similar to those of the SM for this
particular week, as observed in Figure 8b. The SWetDI displayed no drought in the majority of the
region, but there were some areas of mild drought, especially in the northeast (Figure 10j).

4. Conclusions

During the last decade, the great importance of SM in agricultural drought monitoring led to
the development of a variety of agricultural drought indices that mainly use this variable as drought
indicator under different points of view. In this study, the performance of four innovative satellite
SM-based agricultural drought indices was evaluated over a large agricultural area in northwest
Spain. The indices were weekly estimated from June 2010 to December 2016 using the SMOS BEC
L4 SM and/or the MODIS SR and LST data at 1 km spatial resolution. In the case of the SWDI, two
approaches (SWDIRawls and SWDICYL) that were obtained from different PTFs were investigated
separately. A temporal analysis was conducted by comparing these indices with two well-known
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agricultural drought indices: the AWD and the CMI. In addition, the spatial patterns of the estimated
drought index maps were also compared under dry and wet SM conditions at the beginning of the
growing season.

The SWDIRawls, SWDICYL and SMADI adequately reproduced the seasonality of the AWD and
CMI. Conversely, this seasonality did not appear in the SMDI and SWetDI time series. On the one hand,
the length of the available SM data, or its surrogate, was considered in all SM-based drought indices
computed, except in the SWDI. This issue had a noticeable influence on the SMDI computation. On the
other hand, the size of the study area influenced the SWetI estimation and, consequently, the SWetDI
computation. Nevertheless, the SMDI trend was capable of capturing the very intense meteorological
drought of 2012, which was not captured by the SWetDI trend.

In general, the SWDIRawls worked equally well as the SWDICYL. Therefore, the SWDI could be
calculated in any region with available soil databases by applying suitable standards and adequately
tested PTFs. However, both SWDI approaches were sensitive to the accuracy of the FC and WP
estimations, which, in turn, were sensitive to the robustness of the soil database, especially when there
was a very low SM content. By contrast, the SMADI was not directly affected by very low SM, because
it includes additional LST and NDVI information.

In comparison with the AWD, both SWDI approaches obtained the highest correlation
(R ≈ 0.68–0.80), followed by SMADI (R ≈−0.60 to 0.83). At the same time, very low and non-significant
correlations were found with the SMDI (R ≤ 0.3) and the SWetDI, respectively. Similar results
were obtained when the drought indices were compared with the CMI (R ≈ 0.48–0.70 for both
SWDI approaches, R ≈ −0.32 to −0.69 for SMADI, R ≈ 0.39 to 0.44 for SMDI and R ≤ 0.28 for
SWetDI). Both SWDI approaches overestimated the drought weeks compared to the AWD and the
CMI. The SMADI, the SMDI and the SWetDI underestimated the drought weeks compared to the
AWD, whereas they overestimated the drought weeks compared to the CMI. In terms of similarity, the
SWDI agreed with the AWD, and the SMADI, SMDI and SWetDI agreed with the CMI.

When analyzing the estimated drought index maps, a spatial pattern with two distinctive
soil property areas was found in the SWDI maps, which displayed severe and extreme drought
in fine-textured soils. The SMADI only estimated a few scattered pixels with mild drought under very
low SM conditions, since its intensity was modulated by the temperature and vegetation conditions.
No distinctive patterns were observed in the SMDI and the SWetDI maps.

The estimation of the soil water content from the optical VIS/IR observations through the
LST-NDVI triangle does not always capture the same information as the passive microwave SM
estimations. Then, the use of the SM variable itself is recommended. In addition, the absolute SM
is preferred as agricultural drought indicator over the SM anomalies, since SM anomalies removed
the inherent seasonality of the soil water content. Therefore, the SWDI and the SMADI would be
good options for developing a feasible tool dedicated to water resource management and drought
monitoring in many cropland regions worldwide.

Acknowledgments: The study was supported by the Junta de Castilla y Léon through the project SA007U16,
the Spanish Ministry of Economy and Competitiveness with the project PROMISES: ESP2015-67549-C3 and the
European Regional Development Fund (ERDF). The Inforiego data were provided by the Agriculture Technological
Institute of Castilla y León (ITACYL). The climatic time-series from 1985 to 2016 were provided by the Spanish
Meteorological Agency (AEMet). The SMOS BEC L4 SM v.3 product was provided by the Barcelona Expert Centre
(BEC, http://cp34-bec.cmima.csic.es). The MODIS LSR and LST v.6 products were downloaded from the U.S.
Land Processes Distributed Active Archive Center (LP DAAC, https://lpdaac.usgs.gov).

Author Contributions: All authors contributed significantly to this research. The initial idea was conceived
by José Martínez Fernández and Nilda Sánchez. In addition to these authors, Miriam Pablos and
Ángel González Zamora contributed to the design and development of this study. The data processing was
performed by Miriam Pablos and Ángel González Zamora. The results were obtained by Miriam Pablos.
All authors equally contributed to the interpretation of the results and participated in the writing and approval of
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

http://cp34-bec.cmima.csic.es
https://lpdaac.usgs.gov


Remote Sens. 2017, 9, 1168 23 of 27

References

1. FAO. Drought Characteristics and Management in the Caribbean; Food and Agriculture Organization of the
United Nations (FAO): Rome, Italy, 2016; pp. 1–77.

2. FAO. Horn of Africa Cross-Border Drought Action Plan 2017; Food and Agriculture Organization of the United
Nations (FAO): Rome, Italy, 2017; pp. 1–12.

3. Dracup, J.A.; Lee, K.S.; Paulson, E.G. On the statistical characteristics of drought events. Water Resour. Res.
1980, 16, 289–296. [CrossRef]

4. Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int.
1985, 10, 111–120. [CrossRef]

5. Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions. In Drought: A Global Assessment;
Wilhite, D.A., Ed.; Routledge: London, UK, 2000; Volume I, pp. 3–8.

6. Heim, R.R.J. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am.
Meteorol. Soc. 2002, 83, 1149–1165.

7. Panu, U.S.; Sharma, T. Challenges in drought research: Some perspectives and future directions. Hydrol. Sci. J.
2002, 47, S19–S30. [CrossRef]

8. Quiring, S.M. Developing Objective Operational Definitions for Monitoring Drought. J. Appl.
Meteorol. Climatol. 2009, 48, 1217–1229. [CrossRef]

9. Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [CrossRef]
10. Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349.

[CrossRef]
11. McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales.

In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993.
12. Palmer, W.C. Meteorological Drought. In Research Paper No. 45; Connor, J.T., White, R.M., Eds.; U.S. Weather

Bureau: Washington, DC, USA, 1965.
13. Guttman, N.B.; Wallis, J.R.; Hosking, J.R.M. Spatial Comparability of the Palmer Drought Severity Index.

J. Am. Water Resour. Assoc. 1992, 28, 1111–1119. [CrossRef]
14. Wells, N.; Goddard, S.; Hayes, M.J. A Self-Calibrating Palmer Drought Severity Index. J. Clim. 2004, 17,

2335–2351. [CrossRef]
15. Purcell, L.C.; Sinclair, T.R.; McNew, R.W. Drought Avoidance Assessment for Summer Annual Crops Using

Long-Term Weather Data. Agron. J. 2003, 95, 1566–1576. [CrossRef]
16. Torres, G.M.; Lollato, R.P.; Ochsner, T.E. Comparison of Drought Probability Assessments Based on

Atmospheric Water Deficit and Soil Water Deficit. Agron. J. 2013, 105, 428–436. [CrossRef]
17. Alley, W.M. The Palmer Drought Severity Index: Limitations and Assumptions. J. Clim. Appl. Meteorol. 1984,

23, 1100–1109. [CrossRef]
18. Palmer, W.C. Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index.

Weatherwise 1968, 21, 156–161. [CrossRef]
19. Karamouz, M.; Nazif, S.; Falahi, M. Hydrology and Hydroclimatology: Principles and Applications; Taylor and

Francis Group, CRC Press: New York, NY, USA, 2012.
20. Karl, T.R. The sensitivity of the Palmer drought severity index and Palmer’s Z-index to their calibration

coefficients including potential evapotranspiration. J. Clim. Appl. Meteorol. 1986, 25, 77–86. [CrossRef]
21. Shafer, B.A.; Dezman, L.E. Development of a surface water supply index (SWSI) to assess the severity of

drought conditions in snowpack runoff areas. In Proceedings of the 50th Annual Western Snow Conference,
Reno, NV, USA, 19–23 April 1982.

22. Svoboda, M.; Fuchs, B. Handbook of Drought Indicators and Indices; National Drought Mitigation Center:
Lincoln, NE, USA, 2016.

23. Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J.
Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99,
125–161. [CrossRef]

24. Entekhabi, D.; Rodriguez-Iturbe, I.; Castelli, F. Mutual interaction of soil moisture state and atmospheric
processes. J. Hydrol. 1996, 184, 3–17. [CrossRef]

25. Keyantash, J.; Dracup, J.A. The Quantification of Drought: An Evaluation of Drought Indices. Bull. Am.
Meteorol. Soc. 2002, 83, 1167–1180.

http://dx.doi.org/10.1029/WR016i002p00289
http://dx.doi.org/10.1080/02508068508686328
http://dx.doi.org/10.1080/02626660209493019
http://dx.doi.org/10.1175/2009JAMC2088.1
http://dx.doi.org/10.1016/j.jhydrol.2010.07.012
http://dx.doi.org/10.1139/a11-013
http://dx.doi.org/10.1111/j.1752-1688.1992.tb04022.x
http://dx.doi.org/10.1175/1520-0442(2004)017&lt;2335:ASPDSI&gt;2.0.CO;2
http://dx.doi.org/10.2134/agronj2003.1566
http://dx.doi.org/10.2134/agronj2012.0295
http://dx.doi.org/10.1175/1520-0450(1984)023&lt;1100:TPDSIL&gt;2.0.CO;2
http://dx.doi.org/10.1080/00431672.1968.9932814
http://dx.doi.org/10.1175/1520-0450(1986)025&lt;0077:TSOTPD&gt;2.0.CO;2
http://dx.doi.org/10.1016/j.earscirev.2010.02.004
http://dx.doi.org/10.1016/0022-1694(95)02965-6


Remote Sens. 2017, 9, 1168 24 of 27

26. Sheffield, J.; Goteti, G.; Wen, F.; Wood, E.F. A simulated soil moisture based drought analysis for the United
States. J. Geophys. Res. Atmos. 2004, 109, D24. [CrossRef]

27. Narasimhan, B.; Srinivasan, R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and
Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol. 2005, 133,
69–88. [CrossRef]

28. Dutra, E.; Viterbo, P.; Miranda, P.M.A. ERA-40 reanalysis hydrological applications in the characterization of
regional drought. Geophys. Res. Lett. 2008, 35. [CrossRef]

29. Hao, Z.; AghaKouchak, A. Multivariate Standardized Drought Index: A parametric multi-index model. Adv.
Water Resour. 2013, 57, 12–18. [CrossRef]

30. Martínez-Fernández, J.; Ceballos, A.; Casado, S.; Morán, C.; Fernández, V. Runoff and soil moisture
relationships in a small forested basin in the Sistema Central ranges (Spain). In Geomorphological Processes
and Human Impacts in River Basins; Batalla, R.J., García, C., Eds.; International Association of Hidrological
Sciences (IAHS) Press: Wallingford, UK, 2005; pp. 31–36.

31. Sridhar, V.; Hubbard, K.G.; You, J.; Hunt, E.D. Development of the Soil Moisture Index to Quantify
Agricultural Drought and Its “User Friendliness” in Severity-Area-Duration Assessment. J. Hydrometeorol.
2008, 9, 660–676. [CrossRef]

32. Hunt, E.D.; Hubbard, K.G.; Wilhite, D.A.; Arkebauer, T.J.; Dutcher, A.L. The development and evaluation of
a soil moisture index. Int. J. Climatol. 2009, 29, 747–759. [CrossRef]

33. Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A. A soil water based index as a
suitable agricultural drought indicator. J. Hydrol. 2015, 522, 265–273. [CrossRef]

34. Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Njoku, E.G.;
Small, E.E.; Zreda, M.; et al. State of the Art in Large-Scale Soil Moisture Monitoring. Soil Sci. Soc. Am. J.
2013, 77, 1888–1919. [CrossRef]

35. Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status,
products & future trends. Phys. Chem. Earth Parts A/B/C 2015, 83–84, 36–56.

36. Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science.
Vadose Zone J. 2017, 16. [CrossRef]

37. Kerr, Y.H.; Al-Yaari, A.; Rodríguez-Fernández, N.; Parrens, M.; Molero, B.; Leroux, D.; Bircher, S.;
Mahmoodi, A.; Mialon, A.; Richaume, P.; et al. Overview of SMOS performance in terms of global soil
moisture monitoring after six years in operation. Remote Sens. Environ. 2016, 180, 40–63. [CrossRef]

38. Al Bitar, A.; Mialon, A.; Kerr, Y.H.; Cabot, F.; Richaume, P.; Jacquette, E.; Quesney, A.; Mahmoodi, A.; Tarot, S.;
Parrens, M.; et al. The global SMOS Level 3 daily soil moisture and brightness temperature maps. Earth Syst.
Sci. Data 2017, 9, 293–315. [CrossRef]

39. Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.J.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.;
Piepmeier, J.; et al. Assessment of the SMAP Passive Soil Moisture Product. IEEE Trans. Geosci. Remote Sens.
2016, 54, 4994–5007. [CrossRef]

40. Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.;
Dang, L.; Pashaian, L.; et al. Validation of SMAP surface soil moisture products with core validation
sites. Remote Sens. Environ. 2017, 191, 215–231. [CrossRef]

41. Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.;
Gruhier, C.; et al. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle.
Proc. IEEE 2010, 98, 666–687. [CrossRef]

42. Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.;
Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE
2010, 98, 704–716. [CrossRef]

43. Chung, D.; Dorigo, W.; De Jeu, R.; Kidd, R.; Wagner, W. Product Specification Document (PSD) D1.2.1 Version 1.9;
ESA Climate Change Initiative Phase II-Soil Moisture; Earth Observation Data Centre for Water Resources
Monitoring (EODC) GmbH: Vienna, Austria, 2017.

44. Nghiem, S.V.; Wardlow, B.D.; Allured, D.; Svoboda, M.D.; LeComte, D.; Rosencrans, M.; Chan, S.K.;
Neumann, G. Microwave Remote Sensing of Soil Moisture. In Remote Sensing of Drought: Innovative Monitoring
Approaches; Wardlow, B.D., Anderson, M.C., Verdin, J.P., Eds.; Taylor & Francis Group: Boca Raton, FL, USA,
2012; pp. 197–226.

http://dx.doi.org/10.1029/2004JD005182
http://dx.doi.org/10.1016/j.agrformet.2005.07.012
http://dx.doi.org/10.1029/2008GL035381
http://dx.doi.org/10.1016/j.advwatres.2013.03.009
http://dx.doi.org/10.1175/2007JHM892.1
http://dx.doi.org/10.1002/joc.1749
http://dx.doi.org/10.1016/j.jhydrol.2014.12.051
http://dx.doi.org/10.2136/sssaj2013.03.0093
http://dx.doi.org/10.2136/vzj2016.10.0105
http://dx.doi.org/10.1016/j.rse.2016.02.042
http://dx.doi.org/10.5194/essd-9-293-2017
http://dx.doi.org/10.1109/TGRS.2016.2561938
http://dx.doi.org/10.1016/j.rse.2017.01.021
http://dx.doi.org/10.1109/JPROC.2010.2043032
http://dx.doi.org/10.1109/JPROC.2010.2043918


Remote Sens. 2017, 9, 1168 25 of 27

45. Scaini, A.; Sánchez, N.; Vicente-Serrano, S.M.; Martínez-Fernández, J. SMOS-derived soil moisture anomalies
and drought indices: A comparative analysis using in situ measurements. Hydrol. Process. 2015, 29, 373–383.
[CrossRef]

46. Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Herrero-Jiménez, C.M. Satellite
soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index.
Remote Sens. Environ. 2016, 177, 277–286. [CrossRef]

47. Sánchez, N.; González-Zamora, A.; Piles, M.; Martínez-Fernández, J. A New Soil Moisture Agricultural
Drought Index (SMADI) Integrating MODIS and SMOS Products: A Case of Study over the Iberian Peninsula.
Remote Sens. 2016, 8, 287. [CrossRef]

48. Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Pablos, M. CCI Soil Moisture for Long-Term
Agricultural Drought Monitoring: A Case Study in Spain. In Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017.

49. Carrão, H.; Russo, S.; Sepulcre-Canto, G.; Barbosa, P. An empirical standardized soil moisture index for
agricultural drought assessment from remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 74–84.
[CrossRef]

50. Keshavarz, M.R.; Vazifedoust, M.; Alizadeh, A. Drought monitoring using a Soil Wetness Deficit Index
(SWDI) derived from MODIS satellite data. Agric. Water Manag. 2014, 132, 37–45. [CrossRef]

51. Mallick, K.; Bhattacharya, B.K.; Patel, N.K. Estimating volumetric surface moisture content for cropped
soils using a soil wetness index based on surface temperature and NDVI. Agric. For. Meteorol. 2009, 149,
1327–1342. [CrossRef]

52. Carlson, T. An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration and Soil
Moisture from Satellite Imagery. Sensors 2007, 7, 1612. [CrossRef]

53. Stisen, S.; Sandholt, I.; Nørgaard, A.; Fensholt, R.; Jensen, K.H. Combining the triangle method with thermal
inertia to estimate regional evapotranspiration—Applied to MSG-SEVIRI data in the Senegal River basin.
Remote Sens. Environ. 2008, 112, 1242–1255. [CrossRef]

54. Tang, R.; Li, Z.-L.; Tang, B. An application of the Ts–VI triangle method with enhanced edges determination
for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and
validation. Remote Sens. Environ. 2010, 114, 540–551. [CrossRef]

55. Tang, R.; Li, Z.L. An End-Member-Based Two-Source Approach for Estimating Land Surface
Evapotranspiration From Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5818–5832.
[CrossRef]

56. Al Bitar, A.; Kerr, Y.H.; Merlin, O.; Cabot, F.; Wigneron, J.P. Global Drought Index from SMOS Soil Moisture.
In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne,
Australia, 21–26 July 2013.

57. Piles, M.; Camps, A.; Vall-llossera, M.; Corbella, I.; Panciera, R.; Rudiger, C.; Kerr, Y.H.; Walker, J. Downscaling
SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data. IEEE Trans. Geosci. Remote Sens. 2011, 49,
3156–3166. [CrossRef]

58. Merlin, O.; Rudiger, C.; Al Bitar, A.; Richaume, P.; Walker, J.P.; Kerr, Y.H. Disaggregation of SMOS Soil
Moisture in Southeastern Australia. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1556–1571. [CrossRef]

59. Piles, M.; Sánchez, N.; Vall-llossera, M.; Camps, A.; Martínez-Fernández, J.; Martínez, J.; González-Gambau, V.
A Downscaling Approach for SMOS Land Observations: Evaluation of High-Resolution Soil Moisture Maps
Over the Iberian Peninsula. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3845–3857. [CrossRef]

60. Sánchez-Ruiz, S.; Piles, M.; Sánchez, N.; Martínez-Fernández, J.; Vall-llossera, M.; Camps, A. Combining
SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture
estimates. J. Hydrol. 2014, 516, 273–283. [CrossRef]

61. Merlin, O.; Malbéteau, Y.; Notfi, Y.; Bacon, S.; Khabba, S.E.R.; Jarlan, L. Performance Metrics for Soil Moisture
Downscaling Methods: Application to DISPATCH Data in Central Morocco. Remote Sens. 2015, 7, 3783–3807.
[CrossRef]

62. Piles, M.; Petropoulos, G.P.; Sánchez, N.; González-Zamora, A.; Ireland, G. Towards improved
spatio-temporal resolution soil moisture retrievals from the synergy of SMOS and MSG SEVIRI spaceborne
observations. Remote Sens. Environ. 2016, 180, 403–417. [CrossRef]

http://dx.doi.org/10.1002/hyp.10150
http://dx.doi.org/10.1016/j.rse.2016.02.064
http://dx.doi.org/10.3390/rs8040287
http://dx.doi.org/10.1016/j.jag.2015.06.011
http://dx.doi.org/10.1016/j.agwat.2013.10.004
http://dx.doi.org/10.1016/j.agrformet.2009.03.004
http://dx.doi.org/10.3390/s7081612
http://dx.doi.org/10.1016/j.rse.2007.08.013
http://dx.doi.org/10.1016/j.rse.2009.10.012
http://dx.doi.org/10.1109/TGRS.2017.2715361
http://dx.doi.org/10.1109/TGRS.2011.2120615
http://dx.doi.org/10.1109/TGRS.2011.2175000
http://dx.doi.org/10.1109/JSTARS.2014.2325398
http://dx.doi.org/10.1016/j.jhydrol.2013.12.047
http://dx.doi.org/10.3390/rs70403783
http://dx.doi.org/10.1016/j.rse.2016.02.048


Remote Sens. 2017, 9, 1168 26 of 27

63. Pablos, M.; Piles, M.; Sánchez, N.; Vall-llossera, M.; Martínez-Fernández, J.; Camps, A. Impact of day/night
time land surface temperature in soil moisture disaggregation algorithms. Eur. J. Remote Sens. 2016, 49,
899–916. [CrossRef]

64. BEC-Team. Quality Report: Validation of SMOS-BEC L4 High Resolution Soil Moisture Products v.3; Barcelona
Expert Centre (BEC): Barcelona, Spain, 2015.

65. Portal, G.; Vall-llossera, M.; Piles, M.; Camps, A.; Chaparro, D.; Pablos, M.; Rossato, L. A Two-Scale
Downscaling Approach for SMOS Using Adaptative Moving Windows. In Proceedings of the IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017.

66. Sánchez, N.; Martinez-Fernández, J.; Scaini, A.; Pérez-Gutiérrez, C. Validation of the SMOS L2 Soil Moisture
Data in the REMEDHUS Network (Spain). IEEE Trans. Geosci. Remote Sens. 2012, 50, 1602–1611. [CrossRef]

67. González-Zamora, A.; Sánchez, N.; Martínez-Fernández, J.; Gumuzzio, A.; Piles, M.; Olmedo, E. Long-term
SMOS soil moisture products: A comprehensive evaluation across scales and methods in the Duero Basin
(Spain). Phys. Chem. Earth Parts A/B/C 2015, 83–84, 123–136. [CrossRef]

68. Servicio de Estadística; Estudios y Planificación Agraria. La Agricultura y la Ganadería de Castilla y
León en Cifras; Junta de Castilla y León, Ed.; Consejería de Agricultura y Ganadería: Valladolid, Spain,
2012. Available online: http://www.jcyl.es/web/jcyl/AgriculturaGanaderia/es/Plantilla100DetalleFeed/
1246464862173/Publicacion/1284287241442/Redaccion (accessed on 13 November 2017).

69. Pablos, M.; Martínez-Fernández, J.; Piles, M.; Sánchez, N.; Vall-llossera, M.; Camps, A. Multi-Temporal
Evaluation of Soil Moisture and Land Surface Temperature Dynamics Using in Situ and Satellite Observations.
Remote Sens. 2016, 8, 587. [CrossRef]

70. LP-DAAC. MODIS Reprojection Tool User’s Manual Release 4.1; USGS Earth Resources Observation and Science
(EROS) Center: Sioux Falls, SD, USA, 2011.

71. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water
Requirements; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998.

72. Wells, N. PDSI Users Manual Version 2.0; National Agricultural Decision Support System (NADSS): Lincoln,
NE, USA, 2003.

73. Rawls, W.J.; Brakensiek, D.L.; Saxtonn, K.E. Estimation of Soil Water Properties. Trans. ASAE 1982, 25,
1316–1320. [CrossRef]

74. Dumouchel, W.; O’Brien, F. Integrating a Robust Option into a Multiple Regression Computing Environment.
In Computing and Graphics in Statistics; Buja, A., Tukey, P.A., Eds.; Springer New York, Inc.: New York, NY,
USA, 1991; pp. 41–48.

75. Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation
and drought indices. Remote Sens. Environ. 2003, 87, 85–98. [CrossRef]

76. Caccamo, G.; Chisholm, L.A.; Bradstock, R.A.; Puotinen, M.L. Assessing the sensitivity of MODIS to monitor
drought in high biomass ecosystems. Remote Sens. Environ. 2011, 115, 2626–2639. [CrossRef]

77. Sánchez, N.; González-Zamora, A.; Martínez-Fernández, J.; Piles, M.; Pablos, M.; Wardlow, B.; Tadesse, T.;
Svoboda, M.D. Preliminary Assessment of an Integrated SMOS and MODIS Application for Global
Agricultural Drought Monitoring. In Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017.

78. Paredes-Trejo, F.; Barbosa, H. Evaluation of the SMOS-Derived Soil Water Deficit Index as Agricultural
Drought Index in Northeast of Brazil. Water 2017, 9, 377. [CrossRef]

79. Mishra, A.; Vu, T.; Veettil, A.V.; Entekhabi, D. Drought monitoring with soil moisture active passive (SMAP)
measurements. J. Hydrol. 2017, 552, 620–632. [CrossRef]

80. McBride, J.L.; Ebert, E.E. Verification of Quantitative Precipitation Forecasts from Operational Numerical
Weather Prediction Models over Australia. Weather. Forecast. 2000, 15, 103–121. [CrossRef]

81. Toté, C.; Patricio, D.; Boogaard, H.; van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of Satellite
Rainfall Estimates for Drought and Flood Monitoring in Mozambique. Remote Sens. 2015, 7, 1758. [CrossRef]

82. Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Oxford, UK, 2011;
Volume 100, p. 704.

83. Trigo, R.M.; Añel, J.A.; Barriopedro, D.; García-Herrera, R.; Gimeno, L.; Nieto, R.; Castillo, R.; Allen, M.R.;
Massey, N. The record winter drought of 2011–12 in the Iberian Peninsula. Bull. Am. Meteorol. Soc. 2013,
94, S41.

http://dx.doi.org/10.5721/EuJRS20164947
http://dx.doi.org/10.1109/TGRS.2012.2186971
http://dx.doi.org/10.1016/j.pce.2015.05.009
http://www.jcyl.es/web/jcyl/AgriculturaGanaderia/es/Plantilla100DetalleFeed/12464648 62173/Publicacion/1284287241442/Redaccion
http://www.jcyl.es/web/jcyl/AgriculturaGanaderia/es/Plantilla100DetalleFeed/12464648 62173/Publicacion/1284287241442/Redaccion
http://dx.doi.org/10.3390/rs8070587
http://dx.doi.org/10.13031/2013.33720
http://dx.doi.org/10.1016/S0034-4257(03)00174-3
http://dx.doi.org/10.1016/j.rse.2011.05.018
http://dx.doi.org/10.3390/w9060377
http://dx.doi.org/10.1016/j.jhydrol.2017.07.033
http://dx.doi.org/10.1175/1520-0434(2000)015&lt;0103:VOQPFF&gt;2.0.CO;2
http://dx.doi.org/10.3390/rs70201758


Remote Sens. 2017, 9, 1168 27 of 27

84. Di, L.; Rundquist, D.C.; Han, L. Modelling relationships between NDVI and precipitation during vegetative
growth cycles. Int. J. Remote Sens. 1994, 15, 2121–2136. [CrossRef]

85. Nicholson, S.E.; Farrar, T.J. The influence of soil type on the relationships between NDVI, rainfall, and soil
moisture in semiarid Botswana. I. NDVI response to rainfall. Remote Sens. Environ. 1994, 50, 107–120.
[CrossRef]

86. Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological
variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [CrossRef]

87. Wang, J.; Price, K.P.; Rich, P.M. Spatial patterns of NDVI in response to precipitation and temperature in the
central Great Plains. Int. J. Remote Sens. 2001, 22, 3827–3844. [CrossRef]

88. Cheng, Q.; Zhou, Q.; Zhang, H.F.; Liu, F.G. Spatial disparity of NDVI response in vegetation growing season
to climate change in the Three-River Headwaters Region. Ecol. Environ. Sci. 2010, 19, 1284–1289.

89. Zhang, F.; Zhang, L.; Wang, X.; Hung, J. Detecting Agro-Droughts in Southwest of China Using MODIS
Satellite Data. J. Integr. Agric. 2013, 12, 159–168. [CrossRef]

90. Quiring, S.M.; Ganesh, S. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring
meteorological drought in Texas. Agric. For. Meteorol. 2010, 150, 330–339. [CrossRef]

91. Li, R.; Tsunekawa, A.; Tsubo, M. Index-based assessment of agricultural drought in a semi-arid region of
Inner Mongolia, China. J. Arid Land 2014, 6, 3–15. [CrossRef]

92. González-Zamora, A.; Sánchez, N.; Martínez-Fernández, J.; Wagner, W. Root-zone plant available water
estimation using the SMOS-derived soil water index. Adv. Water Resour. 2016, 96, 339–353. [CrossRef]

93. Reichle, R.H.; De Lannoy, G.J.M.; Liu, Q.; Ardizzone, J.V.; Colliander, A.; Conaty, A.; Crow, W.; Jackson, T.J.;
Jones, L.A.; Kimball, J.S.; et al. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture
Product Using In Situ Measurements. J. Hydrometeorol. 2017, 18, 2624–2645. [CrossRef]

94. Liu, D.; Mishra, A.K.; Yu, Z.; Yang, C.; Konapala, G.; Vu, T. Performance of SMAP, AMSR-E and LAI
for weekly agricultural drought forecasting over continental United States. J. Hydrol. 2017, 553, 88–104.
[CrossRef]

95. Sivakumar, M.V.K.; Stone, R.; Sntelhas, P.C.; Svoboda, M.D.; Omondi, P.; Sarkar, J.; Wardlow, B. Agricultural
Drought Indices: Summary and Recommendations, Agricultural Drought Indices. In Proceedings of the
WMO/UNISDR Expert Group Meeting on Agricultural Drought Indices, Murcia, Spain, 2–4 June 2010;
Sivakumar, M.V.K., Motha, R.P., Wilhite, D.A., Wook, D.A., Eds.; World Meteorological Organization (WMO):
Geneva, Switzerland, 2010; pp. 172–197.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/01431169408954231
http://dx.doi.org/10.1016/0034-4257(94)90038-8
http://dx.doi.org/10.2307/3235884
http://dx.doi.org/10.1080/01431160010007033
http://dx.doi.org/10.1016/S2095-3119(13)60216-6
http://dx.doi.org/10.1016/j.agrformet.2009.11.015
http://dx.doi.org/10.1007/s40333-013-0193-8
http://dx.doi.org/10.1016/j.advwatres.2016.08.001
http://dx.doi.org/10.1175/JHM-D-17-0063.1
http://dx.doi.org/10.1016/j.jhydrol.2017.07.049
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methods 
	In Situ Data 
	Satellite Data 
	Data Processing 
	Estimation of Drought Indices 
	Atmospheric Water Deficit (AWD) 
	Crop Moisture Index (CMI) 
	Soil Water Deficit Index (SWDI) 
	Soil Moisture Agricultural Drought Index (SMADI) 
	Soil Moisture Deficit Index (SMDI) 
	Soil Wetness Deficit Index (SWetDI) 

	Comparison Strategy 

	Results and Discussion 
	Time-Series Comparison 
	Correlation Analysis 
	Drought Weeks Captured 
	Categorical Statistical Analysis 
	Spatial Comparison 

	Conclusions 

