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Abstract: Kaolinite (Kaol) was intercalated with dimethyl sulfoxide (DMSO) and subsequently
methanol (MeOH) to prepare intercalation compounds Kaol-DMSO and Kaol-MeOH. Kaol-MeOH
was used as an intermediate to synthesize Kaol-sodium dodecyl sulfate (SDS) intercalation compound
(Kaol-SDS) via displacement reaction. The ultrasonic exfoliation of Kaol-SDS produced a resultant
Kaol-SDS-U. The samples were characterized by X-ray diffraction (XRD), Fourier transformation
infrared spectroscopy (FTIR), thermal analysis, scanning electronic microscopy (SEM), transmission
electron microscopy (TEM) and particle size analysis. The results revealed that the intercalation of
sodium dodecyl sulfate into kaolinite layers caused an obvious increase of the basal spacing from
0.72–4.21 nm. The dehydroxylation temperature of Kaol-SDS was obviously lower than that of
original kaolinite. During the intercalation process of sodium dodecyl sulfate, a few kaolinite layers
were exfoliated and curled up from the edges of the kaolinite sheets. After sonication treatment, the
kaolinite layers were further transformed into nanoscrolls, and the exfoliated resultant Kaol-SDS-U
possessed a smaller particle size close to nanoscale.
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1. Introduction

Recently, rubber/layered silicate nanocomposites have attracted extensive interest both in industry
and academia due to the unique characteristics of nano-sized layered silicates, including their large
surface area, high surface reactivity and relatively low cost [1–4]. The layered silicates used in rubbers
can increase mechanical properties, improve thermal resistance and reduce gas permeability [2,5,6]. It is
well known that layered silicates with large aspect ratios added in rubber are more beneficial to increase
the tortuosity of the diffusive path for the gas molecule, providing excellent barrier properties [2,7,8].
However, the raw layered silicates have a disc-like structure with a low aspect ratio. Therefore, many
efforts have been made to increase the aspect ratio of layer silicates [9–13].

Kaolinite (Kaol), Al2Si2O5(OH)4, is a typical 1:1 layered dioctahedral aluminum silicate, which
has been widely used as a filler in rubber [6,14–17]. The layers of kaolinite are composed of SiO4

tetrahedral sheets linked to AlO2(OH)4 octahedral sheets. The adjacent layers are tightly held together
by hydrogen bonds between hydroxyl groups on the octahedral (aluminum) sheets and the tetrahedral
(silicon) sheets. In order to increase the accessible aspect ratio of kaolinite, many methods have been
used to exfoliate the stack layers of kaolinite, such as intercalation, mechanical exfoliation and assisted
sonication [18–21]. Among these exfoliation methods, intercalation has received considerable attention
because the intercalated molecules could not only weaken the hydrogen bonding, but also provide
space for kaolinite to be exfoliated [19,22,23]. Nevertheless, only a limited number of polar guest
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species can be intercalated directly into kaolinite, such as urea [24,25], potassium acetate [26–29] and
dimethyl sulfoxide [30,31]. Moreover, kaolinite would not be exfoliated even though these species
were intercalated into kaolinite layers due to the strong inner hydrogen bonds between the layers.

Actually, natural minerals have been widely used for the preparation of advanced
materials [32–46]. Much work has been done to demonstrate that various intercalated guest species
can be extended by the “displacement method”. Especially the methoxy-modified kaolinite shows
more versatility for further intercalation reactions. For example, Komori et al. reported that
kaolinite-alkylamines intercalation compounds were prepared by using the methanol-treated kaolinite
intercalation as an intermediate [47,48]. The results showed that the basal spacing increased up to
5.75 nm when octadecylamine was used. Matusik et al. prepared kaolinite intercalation compounds
with benzylalkylammonium chlorides [49,50]. They have reported that a methoxy-modified kaolinite
was used as a precursor, which had OCH3 methoxyl groups attached to the octahedral sheet.
Additionally, Gardolinski and Lagaly [51,52] reported that n-hexylamine, n-octadecylamine and
n-docosanamine were intercalated into the layers of kaolinite by the same method reported by Komori
and co-workers [47,48]. When n-docosanamine was used, the largest basal spacing of 6.42 nm was
obtained, and the platy layers transformed into nanoscrolls after the deintercalation performed with
toluene. Kuroda et al. also reported that some quaternary ammonium salts intercalated into the
interlayers of kaolinite using methoxy-modified kaolinite as an intermediate, and most of the exfoliated
kaolinite layers also transformed into nanoscrolls [19]. Liu et al. demonstrated kaolinite layers got
curled up into one-dimensional nanoscrolls automatically when they are exfoliated in methanol after
intercalation with alkyltrimethylammonium salts [53]. This depicted the morphological change of
kaolinite layers during intercalation and exfoliation.

The guest species mentioned above were defined as cationic intercalators, because they could
be ionized to produce cations. In the case of intercalation, after kaolinite stacking layers reacted
with cationic long chain intercalators, the layer-to-layer distance expanded, and the binding forces of
adjacent layers decreased significantly. The kaolinite layers were lastly exfoliated and curled up into
nanoscrolls. Therefore, it is not a good way to obtain kaolinite with a high aspect ratio. Based on the
literature described above, little attention has been paid to the intercalation of kaolinite with anionic
guest species. Sidheswaran et al. [54] firstly examined the preparation of intercalation compounds
of kaolinite by a one-step displacement method with the salts of long-chain fatty acids. The results
indicated that the expanded basal spacing of kaolinite was independent of the chain length of guest
species, because the basal spacing of kaolinite expanded from 0.7–1.1 nm. Wang et al. [55] recently
reported that the interlayer spacing of kaolinite was enlarged to 4.55~4.79 nm intercalated by sodium
stearate using the methoxy-modified kaolinite as the precursor.

In this work, as an important anionic surfactant, SDS was intercalated into kaolinite layers using
Kaol-MeOH as the initial material first. Afterwards, the Kaol-SDS was treated by the sonication method.
It was found that the morphology of most exfoliated kaolinite layers remained intact. The exfoliation
method may provide the possibility of preparing thin kaolinite flakes with large aspect ratios.

2. Materials and Methods

2.1. Materials

The kaolinite (Kaol) used in the present study with a Hinckley index of 1.31, obtained from
Zhangjiakou, China, was used as received. The chemical composition of purified kaolinite is listed
in Table 1. Dimethyl sulfoxide (DMSO) and methanol (MeOH) were obtained from Xilong Chemical
Co., Ltd., Beijing, China. Sodium dodecyl sulfate (SDS) was provided by Sinopharm Chemical Regent
Co., Ltd., Beijing, China. Hydrochloric acid (HCl) was purchased from Beijing Chemical Plant (Beijing,
China). All reagents were of analytical-grade purity (>99.0%) and used as received.



Minerals 2018, 8, 112 3 of 11

Table 1. Chemical composition of kaolinite (Kaol) obtained from Zhangjiakou.

Composition SiO2 Al2O3 Fe2O3 TiO2 MgO CaO Na2O K2O P2O5 LOI

Content (mass %) 44.64 38.05 0.22 1.13 0.06 0.11 0.27 <0.10 0.13 15.06

LOI: loss on ignition.

2.2. Preparation

To prepare the methoxy-modified Kaol (Kaol-MeOH), the DMSO intercalated Kaol (denoted as
Kaol-DMSO) was prepared according to the previous reports [30,31]. Afterwards, preintercalates were
mixed with methanol and stirred for 10 days at room temperature. The solution was replaced by
fresh methanol every day. Then, the precipitates were centrifuged and closed in a sealed vessel to
prevent methanol evaporation. To prepare the SDS intercalated Kaol, 1 g of wet Kaol-MeOH was
dispersed in 20 mL of 1.0 mol/L sodium dodecyl sulfate (SDS) aqueous solutions. The pH value of the
mixture was adjusted to 2 with 1.0 M HCl solution and stirred at 60 ◦C for 72 h. Then, the solid in the
mixture was collected by centrifugation and washed thoroughly with distilled water. The successfully
prepared kaolinite-sodium dodecyl sulfate intercalation compound was denoted Kaol-SDS. At last,
1 g Kaol-SDS was mixed with 200 mL of 0.1 mol/L SDS solutions and stirred vigorously for 0.5 h.
Then, the resulting mixture was tip sonicated for 2 h using a Biaosafer ultrasonic cell disrupter at
800 W under ambient conditions. At last, the ultrasonic product was collected for characterization and
designated as Kaol-SDS-U.

2.3. Characterization

Powder XRD patterns were obtained by a Rigaku D/max 2500PC X-ray diffractometer (RIGAKU
Company, Akishima, Japan) with CuKα (λ = 0.154178 nm) radiation at the scanning rate of 1◦/min in
the 2θ range of 1–15◦, operating at 40 kV and 100 mA. Typically, the samples were firstly dispersed in
absolute ethyl alcohol. Then, about 1 mL of the mixture was dropped on a glass and allowed to air dry.
The prepared glass was used for the test. The infrared spectra were collected using a Nicolet Nexus
870 FTIR spectrometer (Thermo Company, Waltham, MA, USA) with a smart endurance single-bounce
diamond ATR cell. We transformed the corresponding data into transmission data by using the ONMIC
software between 600 and 4000 cm−1, with a resolution of 4 cm−1 and 32 scans. Thermal analysis was
recorded with a Mettler Toledo TGA/DSC1/1600HT instrument (Mettler-Toledo Company, Zurich,
Switzerland), operated at a heating rate of 10 ◦C/min from room temperature to 1100 ◦C under a
nitrogen gas atmosphere. Samples for TEM were prepared from dilute suspensions and investigated
using a FEI-Tecnai G2 F30 S-TWIN TEM (FEI Company, Eindhoven, The Netherlands) operating at
300 kV. The powder samples were dispersed in ethanol by ultrasound for 20 min and then deposited
on holey carbon-coated copper grids. Samples for SEM were prepared by gold-coating powders
and analyzed with a Hitachi S-4800 SEM (accelerating voltage of 3 kV, Hitachi High-Technologies
Company, Tokyo, Japan). The particle size distribution of the samples was measured with the Malvern
Mastersizer 2000. The measurements (Malvern Instruments Ltd, Malvern, UK) were conducted in
liquid dispersion, i.e., in distilled water with a refractive index for light equal to 1.55. Cycle injection
mode was selected, and test times were 1~2 min.

3. Results and Discussion

3.1. XRD Analysis

Figure 1 shows the XRD patterns of Kaol, Kaol-DMSO, Kaol-MeOH and Kaol-SDS. In the case
of Kaol, the (001) reflection can be observed at 12.24 (2θ) with basal spacing of 0.72 nm. After being
intercalated with DMSO, a new reflection appeared at 1.14 nm, corresponding to a typical interlayer
distance of Kaol-DMSO as described before [30,31]. When the Kaol-DMSO was washed with fresh
MeOH, MeOH gradually grafted on to the inner-surface hydroxyls of Kaol by an Al–O–C bond [56].
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The basal spacing of 0.86 nm of Kaol-MeOH was observed after drying (Figure 1). Upon intercalation
of SDS, the basal spacing of Kaol-MeOH increased to 4.21 nm, which was an increase of 3.49 nm
compared to Kaol, indicating the successful intercalation of SDS into Kaol. Additionally, the reflections
at 2.07 nm and 1.36 nm are assigned to the second and third order diffractions of Kaol-SDS, respectively.
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Figure 1. XRD patterns of Kaol and the intercalated Kaol products.

3.2. FTIR Analysis

FTIR spectra of Kaol, Kaol-DMSO, Kaol-MeOH and Kaol-SDS with no further treatment are
shown in Figure 2. The FTIR spectrum of Kaol was characterized by hydroxyl stretching peaks at 3690
and 3620 cm−1. A shoulder of the large 3690 cm−1 at around 3665 cm−1 could be clearly observed in
the raw Kaol. The band at 3620 cm−1 was assigned to the inner hydroxyl of Kaol. The other bands
corresponded to inner-surface hydroxyl. Generally, the inner hydroxyl groups are not influenced by
the intercalation and grafting due to the hydrogen of inner hydroxyls being oriented towards the
vacant sites. However, the inner-surface hydroxyls are readily affected by the interlayer modifications.
When DMSO was intercalated, the band at 3690 cm−1 shifted to 3695 cm−1, while the band at 3665
shifted to 3660 cm−1 (Figure 2). The new bands at 3536 and 3505 cm−1 were due to the formation of
moderately strong hydrogen bonding between some of the inner surface hydroxyls and the sulphonyl
oxygen [57]. Besides, the characteristic stretching vibrations of C–H at 3023 cm−1 (asymmetry) and
2937 cm−1 (symmetry) corresponded to –CH2 of DMSO. The Si–O bond stretching bands of Kaol at
1115, 1029 and 1007 cm−1 were observed at 1123, 1025 and 1109 cm−1 for Kaol-DMSO. Additionally,
the Al–OH bending vibrations of Kaol at 912 cm−1 shifted to 904 cm−1.

Then, after the Kaol-DMSO was washed 10 times with fresh MeOH, the C–H stretching bands of
DMSO vanished completely, due to the removal of excess DMSO. By the intercalation of DMSO, the
bands at 3695 cm−1 appeared. After treatment with fresh MeOH, this band was weakened. Compared
with Kaol-DMSO, The Si–O stretching band of Kaol-MeOH at 1040 cm−1 appeared again. All the
changes of bands were attributed to the deintercalation of Kaol-DMSO and intercalation of Kaol with
MeOH. As seen in the FTIR spectrum of Kaol-SDS, the bands of inner-surface hydroxyl groups have
no obvious changes. The band at 3693 cm−1 was attributed to the tiny shift of the hydroxyl stretching
band to 3692 cm−1 (Figure 2). Additionally, a new inconspicuous band at 3542 cm−1 may be due to
SDS hydrogen bonded to hydroxyl surface groups. In comparison with Kaol-MeOH, the characteristic
bands of Kaol-SDS were shown at 2915, 2850, 1652, 1556 and 1472 cm−1. The first two bands originated
from the –CH2 of SDS corresponding to the asymmetry and symmetry stretching bands, respectively.
The absorption band at 1472 cm−1 was ascribed to the C–O stretching band. On the other hand,
the variation of the Si–O stretching band was not obvious. Therefore, the FTIR spectra variations
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of Kaol-SDS further confirmed the successful intercalation of SDS into kaolinite, which was in good
agreement with the XRD analyses.Minerals 2018, 8, x FOR PEER REVIEW  5 of 11 
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3.3. Thermal Analysis

The TG/DTG curves of Kaol and its intercalation compounds are shown in Figure 3. In order to
investigate the dehydroxylation of Kaol with different treatments, the DTG effect was characterized
by extrapolating the temperature of the beginning of the peak (Ti), ending of the peak (Te) and width
of the peak (W = Te − Ti). The temperatures of Ti (onset) and Te (outset) were determined from
the intersection of the extrapolated initial baseline and tangent to the frontal and terminal inflection
points, respectively. The DTG peaks parameters of the dehydroxylation of Kaol and Kaol intercalation
compounds are presented in Table 2. The thermal decomposition of Kaol occurred only in one step
observed in the TG curve. This step started at 450 ◦C and terminated at 600 ◦C and was related to the
dehydroxylation of Kaol. The DTG peak of Kaol centered at 520 ◦C was clearly observed, where a
mass loss of 12.6% was attained.

As seen in the TG curve of Kaol-DMSO, there were two steps, for which the first (5.9% mass loss)
took place between 120 and 220 ◦C was contributed to the volatilization of DMSO. The second step
(3.8% mass loss) that occurred between 455 ◦C and 630 ◦C was assigned to the dehydroxylation of Kaol.
The DTG maximum of the two processes appeared at 200 and 524 ◦C, respectively. In comparison with
Kaol, while the intercalated Kaol with DMSO did not modify the temperature of the DTG maximum
of the dehydroxylation, and the width of the peak decreased (Figure 3, Table 2). From the TG curve of
Kaol-MeOH, a strong endothermic peak starting at 400 ◦C and ending at 600 ◦C was observed, with
a mass loss of 2.2%. A less obvious endothermic peak appearing between 60 and 200 ◦C was also
displayed, which contributed to a mass loss of 12.5%, attributed to the degradation of water, MeOH
and methoxy groups in Kaol layers. The reason that the first peak in the DTG curve of Kaol-MeOH
became seriously broadened was the stronger interaction between MeOH and the hydroxyl of Kaol.
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In comparison with Kaol and Kaol-DMSO, the DTG peak of Kaol-MeOH shifted to a lower temperature
(Table 2), which was due to the hydroxyl activation.Minerals 2018, 8, x FOR PEER REVIEW  6 of 11 
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Table 2. The corresponding parameters of the dehydroxylation of Kaol and its intercalation compounds.

Samples DTG Peak (◦C) Ti (◦C) Te (◦C) W (◦C)

Kaol 520 450 632 182
Kaol-DMSO 524 456 627 171
Kaol-MeOH 507 440 564 124

Kaol-SDS 502 406 587 181

Four mass losses were observed in the DTG curve of Kaol-SDS, while three main processes were
detected in the TG curve. Typically, the first decomposition process occurred below 80 ◦C, which
was ascribed to the removal of externally-absorbed water. Then, the second loss, corresponding to
the degradation of external SDS, was observed in the range of 135–275 ◦C. The third volatilization,
which represented the removal of sodium dodecyl sulfate located in the Kaol interlamellar space,
occurred between 305 and 410 ◦C. Lastly, the loss starting at 420 and ending at 600 ◦C was attributed
to the dehydroxylation of Kaol. It was noteworthy that the dehydroxylation of Kaol-SDS appeared at
502 ◦C, which was the lowest of all samples, indicating that the activity of hydroxyl groups of Kaol
was increased by the intercalation with SDS. This was probably due to the effect of intercalated SDS.

3.4. Particle Size and Morphology Analysis

Figure 4 demonstrates the morphologies of Kaol and Kaol products with different treatments.
The raw Kaol was mainly composed of typical stacks of hexagonal, large sheet-like and fine-grained
particles (Figure 4a). Compared with the original Kaol, no significant changes were observed in the
morphology of Kaol-MeOH due to the small interlayer space of Kaol. After the intercalation of SDS,
however, the d spacing of Kaol reached up to 4.21 nm, and the Kaol layers were simultaneously
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exfoliated (Figure 4e); because it was obviously found that low aggregated silicate layers were shown
and some platy particles scrolled from the edges of Kaol (Figure 4e).Minerals 2018, 8, x FOR PEER REVIEW  7 of 11 
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Figure 4d displays the morphology of exfoliated Kaol-SDS, which was treated by sonication.
In comparison with Kaol-SDS, the SEM images of Kaol-SDS-U also showed nearly no changes.
However, the curl degree of the Kaol layer was more serious than that of the Kaol layer without
ultrasonication (Figure 4f). Furthermore, completely curled layers are shown in the highly magnified
TEM image, indicating that a few Kaol layers would transform into nanoscrolls during the
exfoliation process. Previous studies [19,52,58–60] suggested that abundant kaolinite layers would
be transformed into nanoscrolls after the intercalation with long chain cationic intercalators such as
cetyltrimethylammonium bromide (CTAB), octadearyl dimethyl ammonium chloride (OTAC) and
dodecylamine. In comparison with Kaol-SDS and Kaol-SDS-U, however, only a limited number of
Kaol layers transformed into nanoscrolls. Most Kaol layers were composed of euhedral particles with
a pseudohexagonal morphology.

In order to analyze the particle size variations directly, all samples were characterized by a Malvin
particle size test instrument. The grain-size frequency curves of Kaol, Kao-MeOH, Kaol-SDS and
Kaol-SDS-U are shown in Figure 5 and Table 3. When raw Kaol was intercalated by DMSO and MeOH
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in turn, the distribution peaks shifted to a small size (Figure 5a,b), and the mean particle diameter of
Kaol-MeOH decreased nearly two times (Table 3). In the case of Kaol-SDS, both the size distribution
and parameters were similar to Kaol-MeOH, indicating that most Kaol layers were not exfoliated due
to the intercalation with SDS. After sonication, however, the particle size of Kaol-SDS was further
reduced (Table 3). At the same time, there are two obvious distribution peaks (Figure 5d), suggesting
two main particle size ranges in the samples.
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Table 3. The particle size of raw Kaol and Kaol with different exfoliation methods.

Samples D10 (µm) a D50 (µm) a D90 (µm) a Daverage (µm)

Kaol 1.225 3.142 6.614 3.729
Kaol-MeOH 0.885 2.054 3.702 2.205

Kaol-SDS 0.885 1.955 3.507 2.104
Kaol-SDS-U 0.165 0.635 2.811 1.274

a D10, D50 and D90 indicate the diameters at 10%, 50% and 90% of the cumulative volume distribution, respectively.

The results of the morphology and particle size of Kaol with different treatments indicated that
although the intercalation of Kaol with SDS expanded the interlayer space, very few Kaol layers were
exfoliated. The Kaol-SDS under sonication seriously reduced the average grain size of Kaol, while
the platelets were broken into small ones. Moreover, it was easily noted that the particle size of the
exfoliated Kaol layers via sonication was closer to the nanoscale.

4. Conclusions

Kaol-SDS has been successfully prepared by using Kaol-MeOH as an intermediate. The XRD
analyses indicated that the basal spacing of Kaol expanded to 4.21 nm after intercalation with SDS.
From the thermal analyses, it was found that the dehydroxylation temperature of Kaol-SDS evenly
reduced, maybe due to the hydroxyl activation of Kaol. The morphology analysis confirmed that few
layers of Kaol-MeOH were exfoliated, and few partially-curled Kaol sheets occurred in the intercalation
procedures. The sonication of Kaol-SDS further exfoliated Kaol layers into very thin sheets that curled
up to form nanoscrolls. However, most of the Kaol layers remained intact. Based on the particle size
analysis, the average grain size of Kaol-SDS-U decreased greatly in comparison with Kaol-SDS, and
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some Kaol layers were close to the nanoscale. Thus, it could be hopeful to provide a new exfoliation
method to obtain large aspect ratios of Kaol layers.
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