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Abstract: The urban heat island (UHI) becomes more and more serious with the acceleration of
urbanization. Many researchers have shown interest in studying the UHI by using remote sensing
data, but these studies rarely examine the mountainous cities. Studies on UHI in mountainous
cities often used empirical parameters to estimate the land surface temperature (LST), and lacked
satellite-ground synchronous experiments to test the accuracy. This paper revised the parameters in
the mono-window algorithm used to retrieve the LST according to the characteristics of mountainous
cities. This study examined the spatial and temporal patterns of the UHI intensity in Chongqing,
a typical mountainous city, and its relationship with land cover from 2007 to 2016 based on the
Landsat 5 TM and Landsat 8 TIRS data and the improved method. The accuracy of the LST derivation
increased by about 1 ◦C compared to the traditional method. The high LST areas increased and
extended from the downtown to suburban area each year, but the rate of change decreased. The UHI
is dramatically impacted by the rivers. There is a good relationship between the urban sprawl and
the UHI. The LST was reduced by about 1 ◦C within a 300 m distance from large urban fringe
green spaces. The urban landscape parks had a strong effect relieving the UHI at a 100 m distance.
The LST was reduced by about 0.5 ◦C. This study greatly improves the accuracy of LST derivation,
and provides reliable parameters for the UHI researched in mountainous cities.
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1. Introduction

Urbanization is one important attribute of regional social and economic development. It results in
land use/cover changes and increased building density, both horizontally and vertically, in urban areas.
These changes associated with urbanization impact on urban climate considerably [1,2]. The consistent
and significant increase in surface air temperature in urban areas relative to in surrounding rural areas,
a phenomenon termed as urban heat island (UHI) effect, has been exacerbated [3]. At the same time,
the eco-environment problems caused by UHI become more and more serious with the acceleration of
urbanization [4,5]. In recent decades, UHI effects have been the focus of study of sciences, and large
UHI effects have been measured and reported for most regions of the world. The UHI of New York
City is performed using a mesoscale network of weather stations by Gedzelman et al. [6]. It averages
about 4 ◦C in summer and autumn and 3 ◦C in winter and spring. According to Weng, urban land
development raised surface radiant temperature by 13.01 K between 1989 and 1997 in Zhujiang Delta
of South China. The spatial pattern of radiant temperature increase was correlated with the pattern of
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urban expansion [7]. Ogashawara et al. found that the distribution of UHIs in São José dos Campos has
expanded rapidly from 1986 to 2010. The correlations between the Normalized Difference Vegetation
Index (NDVI) and Normalized Difference Water Index (NDWI) and temperature were low (<0.5);
a moderate correlation was found between the Normalized Difference Built-up Index (NDBI) and
temperature [8]. Many other researchers also have shown interest in estimating the magnitude of
UHI, analyzing its spatio-temporal evolution features, understanding its implication with respect
to a broad set of environmental factors, and looking for the measures to reduce its detrimental
effects [9–16]. These studies on the UHI phenomenon can be divided into two types: ground-based
observed air temperature in urban and rural weather stations and remotely-sensed data-based land
surface temperature [17]. It is well known that the air temperature defined UHI can be used to analyze
the long-term trend, but considerable efforts must be made to correct air temperature biases when
comparing UHI effects across different regions. It is difficult to analyze the UHI phenomenon in the
regions where there are not enough weather stations. The remote sensing data with the advantages
of large area, synchronization, and spatial coverage has become the effective tool for studying UHI
phenomenon [18–22]. Rao studied the UHI effects by using thermal remote sensing data for the first
time in 1972 [23]. Since then, many scientists turned to the use of remotely-sensed data for UHI
effect analysis [8]. The remote sensing data, such as NOAA (National Oceanic and Atmospheric
Administration), MODIS (Moderate Resolution Imaging Spectroradiometer), TM (Landsat Thematic
Mapper), ETM+ (Enhanced Thematic Mapper Plus), etc., were widely used to examine the UHI
effects [12,18,19]. Many algorithms for UHI based on remote sensing were also be developed by the
scientists [24]. Among many UHI algorithms based on remote sensing, the mono-window algorithm,
because it is easy and feasible, is widely used in the studies of UHI [9,15,22–26]. While these detailed
studies provide an excellent basis for understanding UHI, there are also some limitations: (1) These
studies rarely examined the mountainous cities; (2) Few studies on UHI in mountainous cities based
on remote sensing data often used empirical parameters to estimate the land surface temperature
(LST). It is therefore hampered by the lack of proper parameters to retrieve the LST in mountainous
cities; (3) Many studies lacked satellite-ground synchronous experiment to test the accuracy.

Chongqing, a typical mountainous city, is located at the valley between Mount Tongluo and
Mount Zhongliang. The eco-environmental problems caused by UHI are becoming increasingly acute
with the acceleration of urbanization. Ren found that the UHI intensity of Chongqing increased year
by year. The UHI effect was stronger in winter and at night [27]. Li et al. indicated that the UHI
was contemporaneous with the Urban Wet Island (UWI) in Chongqing. The vertical structure of
UHI was shown as the city being covered by warm moist air at 200–300 m above the river level [28].
He et al. discovered that the UHI was influenced by the mountainous terrain features and city layout
in Chongqing [29]. Dan et al. thought that the Yangtze River and Jialing River had important effects on
the UHI of Chongqing [30]. Some other scholars also did some research on UHI in Chongqing [31,32].
Although Chongqing’s UHI effect has been well studied, most of the literature is based on weather
station data, which neglects the spatial extension and distribution of UHI. These studies also lack
necessary verification of their precision. Furthermore, it is necessary to better understand how the
impact factors, especially urban green spaces, influence the UHI effect in Chongqing.

In this study, we rectify the parameters used in the mono-window algorithm according to the
terrain features of Chongqing. We use a combination of Landsat TM and Landsat 8 TIRS data,
automatic weather station data, and satellite-ground synchronous experiment data to estimate the LST,
test its accuracy, and examine the relationship between the impact factors and the UHI variations in
Chongqing. The main objective of this study is to provide a suitable quantitative method to study UHI
in mountainous cities.
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2. Materials and Methods

2.1. Study Area

Chongqing municipality, one of the fastest developing cities in China over the past twenty
years, is situated in southwest China. Characterized by rugged hills, Chongqing is a typical
mountainous city and is also one of the three famous “stoves” of China. The study area is located
between 106◦23′2.4”E–106◦41′45.6”E and 29◦20′31.2”N–29◦43′26.4”N in the southwest of Chongqing
municipality, with a total area of approximately 780 km2 (Figure 1). It has a humid subtropical monsoon
climate, and receives an average annual precipitation of 1000 mm. The average annual temperature is
18.4 ◦C. The Yangtze River and Jialing River go through the area roughly from south to north and from
west to east respectively, uniting in the city center. Separated by the terrain and the rivers, naturally,
the study area forms a multi-center structure. The UHI phenomenon in the study area is obvious
because of the air circulation caused by the terrain barrier, and the high population and building
density caused by rapid urbanization [33].
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Figure 1. A map of the study area.

2.2. Data and Image Pro-Processing

Satellite remote sensing offers a great opportunity to acquire continuous LST data without direct
physical contact with the surface, with sufficient spatial resolution to distinguish between urban
and surrounding rural areas [34]. The Landsat 5 TM and Landsat 8 TIRS are the most widely used
remote sensing data for UHI studies. Five Landsat 5 TM images (i.e., 20 September 2007; 20 July
2008; 24 September 2009; 11 August 2010 and 30 August 2011) and four Landsat 8 TIRS images
(i.e., 19 August 2013; 6 August 2014; 8 July 2015 and 10 July 2016) were used for retrieval of LST in
this study. The data acquisition dates had highly clear atmospheric conditions, and the images were
acquired from the Institute of Remote Sensing and Digital Earth Chinese Academic of Sciences Data
Center, which corrected the radiometric and geometrical distortions of the images before delivery.
The images were further rectified to a common Universal Transverse Mercator coordinate system
based on 1:10,000 scale topographic maps, and were resampled using the nearest neighbor algorithm
with a pixel size of 30 by 30 m for all bands, including the thermal bands (with the resolution of 120 by
120 m and 100 by 100 m for Landsat 5 TM and Landsat 8 TIRS respectively). The resultant RMSE was
found to be less than 0.5 pixels. In addition, the meteorological data from 4 standard weather stations,
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11 intensive automatic weather stations, and 19 field observing sites, the urban planning data, the land
use/cover, and some other auxiliary data were used to assist in the analysis.

The sensor TM band 6 and TIRS band 1 on Landsat 5 and Landsat 8 measures the radiances at
the top of the atmosphere, and its brightness temperatures can be derived using Plank’s law [35].
The approach to the retrieval of temperature was described in the User’s Handbook. The following
equation was used to convert the digital number (DN) of TIR bands into spectral radiance:

Lλ = DN (Lmax − Lmin)/255 + Lmin, (1)

where Lλ is spectral radiance; DN represents the digital number of band 6 of TM and band 1 of TIRS;
Lmax and Lmin (given in the header files of the images) are the maximum and minimum spectral
radiance of band 6 of TM and band 1 of TIRS respectively.

The next step is to convert the spectral radiance to at-satellite brightness temperature under the
assumption of uniform emissivity. The conversion formula is:

T = K2/ln(1 + K1/Lλ), (2)

where T is the effective at-satellite brightness temperature in K of band 6 of TM and band 1 of TIRS; Lλ
is spectral radiance; and K1 and K2 are pre-launch calibration constants.

2.3. Derivation of LST and Improvement of the Parameters

The methods for the retrieval of LST from satellite TIR (Thermal Infrared) data can be broadly
classified into three categories: single-channel methods, multi-channel methods (split-window
algorithm, SWA), and multi-angle methods [36–38]. In comparison with other methods, the
mono-window algorithm is simpler and only three parameters (the average atmospheric operative
temperature, land surface emissivity and atmospheric transmittance) are needed; therefore,
the mono-window algorithm was used to calculate the LST for the Landsat TM and TIRS images.
The mono-window algorithm’s calculation formula is as follows [39]:

Ts = {a(1 − C − D) + [b(1 − C − D) + C + D]T + DTa}/C, (3)

where Ts is the emissivity-corrected land surface temperatures, and a and b are regression coefficients.
In most studies, the values of the a and b were given roughly as −67.35535, 0.458608, respectively,
within the temperature range of 0~70 ◦C. The images used in this study are all at noon in summer, and
the range of temperature variation is small. In this case, the a and b are equal to -67.9542 and 0.45987,
respectively (within the temperature range of 20~50 ◦C); C = τε and D = (1 − τ)[1 + τ(1 − ε)] are the
intermediate variables; τ is the atmospheric transmittance; ε is the land surface emissivity; T is the
effective at-satellite brightness temperature of band 6 (TM) and band 1 (TIRS); and Ta is the effective
mean atmospheric temperature.

τ, ε and Ta are three essential parameters in the mono-window algorithm. Many researchers
used these empirical values in their studies. But, in fact, the mono-window algorithm is sensitive
to parameters. So it is obvious that the empirical values are not suitable to the retrieval of LST in
Chongqing, a typical mountainous city with complex terrain features. In this study, we improved the
method to estimate the three essential parameters, and the retrieval accuracy of LST was also improved.

2.3.1. Determination of the Land Surface Emissivity (ε)

The urban area can be divided into water, natural surface, and built-up. If land over is water
then εw = 0.995. If land cover is natural surface, and NDVI < 0.05, then it is bare land, and εs = 0.972.
If NDVI > 0.7, it is fully covered by vegetation, and εv = 0.986. When NDVI ε [0.05, 0.7], the land
surface emissivity (ε) was computed as follows [19]:
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ε = Pv Rvεv + (1 − Pv) Rsεs + dε, (4)

When land cover is built-up, the land surface emissivity (ε) was computed as follows [19]:

ε = Pv Rvεv + (1 − Pv) Rm εm + dε, (5)

where Pv is vegetation coverage; Rv = 0.9332 + 0.0585Pv is vegetation temperature ratio; εv = 0.986 is
land surface emissivity with very high vegetation coverage; Rm = 0.9886 + 0.1287Pv is the building
surface temperature ratio; and εm = 0.972 is the building surface emissivity. The effect of dε is negligible
in many studies. They all assume that the land surface is flat. As mentioned before, the terrain of
Chongqing is complex. In this paper, we estimated the value of dε according to the vegetation coverage
(when Pv ≤ 0.05, dε = 0.0038; when Pv > 0.05, dε = 0.0038(1 − Pv)).

2.3.2. Determination of Atmospheric Transmittance (τ)

The atmospheric transmittance (τ) can be estimated by the following equation [39]:

τ = 0.97429 − 0.08007ω,ω ε [0.4, 1.6]; τ = 1.031412 − 0.11536ω,ω ε [1.6, 3.0], (6)

whereω is atmospheric water vapor content in g·cm−2. In many studies,ωwas often estimated by
experience. In our study, we calculate it as follows [40]:

ω = a0 + a1e, (7)

where a0 and a1 are empirical constants. The central latitude and average altitude of the study area are
29.5◦ and 350 m, respectively, so we can determineω = 0.04691+ 0.19604e, according to Yang et al. e is
absolute vapor pressure. It can be calculated as follows [40]:

e = 0.6108exp[17.27(T0 − 273.15)/(237.3 + T0 − 273.15)]RH, (8)

where T0 is air temperature, and RH is relative humidity. Due to a lack of meteorological data, most of
the studies use the meteorological data from standard weather stations to estimate e. Unfortunately,
urban areas often have few weather stations, making the accuracy of e unsatisfactory. In this study,
the meteorological data from 4 standard weather stations, 11 intensive automatic weather stations,
and 19 field observing sites are combined to determine the value of e. We therefore generated
satisfactory results.

2.3.3. Determination of Effective Mean Atmospheric Temperature (Ta)

According to Qin et al. for mid-latitude summers, Ta can be approximated as [39]:

Ta = 16.011 + 0.92621T0, (9)

where T0 is near-surface air temperature. In this paper, we improved the accuracy of Ta by using the
integrated meteorological data from standard weather stations, intensive automatic weather stations,
and field observing sites.

3. Results

3.1. Retrieval Accuracy Validation of LST Based on Satellite-Ground Synchronous Experiment

The best way to validate retrieval accuracy is to compare the in-situ ground truth measurements
of LST with the retrieved ones from the remote sensing images data of a specific region. On 30 August
2011, we carried out a satellite–ground synchronous experiment at a Landsat TM pass over the study
area. We recorded the air temperature, LST, wind speed, and air humidity at 46 field sites each 15 min
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from 9:30 a.m. to 3 p.m. In actual operation, we used the data from 19 sites with high reliability to
validate the retrieval accuracy of LST (Table 1).

Table 1. Retrieval accuracy validation of LST based on satellite-ground synchronous experiment.

Land Use/Cover Sites
Ground

Measurement
LST Ttrue (◦C)

Method of Improved Parameters Method of Empirical Parameters

Retrieved LST
Ts1 (◦C)

Absolute
Difference

|Tture − Ts1| (◦C)

Retrieved LST
Ts2 (◦C)

Absolute
Difference

|Ttrue − Ts2| (◦C)

Farmland Yuanyuang 35.20 37.15 1.95 34.82 0.38
Wood Nanshan 36.00 35.83 0.17 31.95 4.05
Wood Zhaomushan 26.50 29.20 2.70 27.69 1.19
Wood Shaping 34.00 34.20 0.20 30.47 3.53
Wood Huahui 37.70 34.10 3.60 32.98 4.72
Wood Pingtingshan 31.00 33.33 2.33 29.02 1.98
Shrub Guanyinqiao 39.90 39.27 0.63 35.93 3.97

Grassland Chaotianmen 36.00 36.85 0.85 33.09 2.91
Grassland Bailin 31.00 33.06 2.06 31.05 0.05

Residential area Houbao 35.10 35.71 0.61 32.58 2.52
Square Longtousi 37.20 36.92 0.28 33.57 3.63
Square Caiyuanba 42.50 39.84 2.66 37.42 5.08
Square Dachuan 43.20 38.98 4.22 36.95 6.25

Pavement Jinyuan 27.00 30.00 3.00 26.14 0.86
River beach Jialing river 1 29.10 30.57 1.47 26.16 2.94
River beach Yangtze river 1 27.00 28.77 1.77 28.72 1.72

Water Jialing river 2 28.50 30.57 2.07 32.57 4.07
Water Yangtze river 2 26.00 28.77 2.77 26.5 0.50

Wasteland Dadukou 36.50 38.56 2.06 34.90 1.60

Mean - 33.65 34.30 1.86 31.71 2.73

The results in Table 1 indicate that the LSTs retrieved after improving the parameters are generally
higher than the in-situ ground truth measurements of LSTs. The mean values are 34.30 ◦C and 33.65 ◦C,
respectively, with a difference of 0.65 ◦C. The maximum, minimum, and mean absolute difference
between Ttrue and Ts1 are 4.22 ◦C, 0.17 ◦C, and 1.86 ◦C. We also compared the retrieved LST by
comparing the empirical parameters with the ground truth LST. The former is generally lower than the
latter. The mean value is lower by 1.94 ◦C. The maximum, minimum, and mean absolute difference
between Ttrue and Ts2 are 5.08 ◦C, 0.05 ◦C, and 2.73 ◦C. The retrieval accuracy of LST in different land
use/cover types are shown in Figure 2. The results suggest that the method of improved parameters
has higher accuracy in wood, shrub, residential area, square, and river beach than in the method of
empirical parameters. In farmland and pavement, the method of improved parameters shows a lower
LST retrieval accuracy. On the whole, the experimental results show that the LSTs retrieved by using
the improved parameters are more accurate compared to the LSTs retrieved based on the previous
parameters. This good matching of the LSTs retrieved to the actual ones confirms the applicability of
the improved parameters to the UHI studies in mountainous cities.

LST images from nine periods Landsat 5 TM6 and Landsat 8 TIRS1 data of the study area were
calculated using the improved parameters mono-window algorithm (Figure 3, Table 2). In order
to eliminate the effects of the environmental factors, we normalized the LSTs to 0~1, and divided
them to seven levels (i.e., very high temperature area, high temperature area, sub-high temperature
area, medium temperature area, sub-medium temperature area, low temperature area, and very low
temperature area) by using the natural breaks grading method (Figure 4, Table 3).
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3.2. Spatio-Temporal Features of UHI

The temporal variation and spatial distribution of annual UHI over the study area are shown
in Figures 3 and 4, Tables 2 and 3. The results suggest that The LSTs show a gradually increasing
trend from 2007 to 2011, and a decreasing trend from 2011 to 2016. The spatial pattern of the UHI
changed from a scattered pattern in 2007 to a more contiguous pattern in 2011 and 2016, along with
the expansion of the regional urban system. The centers of high temperature were consistent with
built-up and bare land areas, and the low-temperature centers are located in the area of two rivers
(i.e., Yangtze River and Jialing River) and two mountains area (i.e., Mount Zhongliang and Mount
Tongluo). The relatively high temperature areas (i.e., very high LST area and high LST area) shifted
from south to north and expand from the central city to the outskirts. On 20 August 2011, the mean
LST was 37 ◦C. In most of the study area, the LST was above 35 ◦C, and the maximum LST was even
up to 51.26 ◦C. Compared to 2007, the mean LST increased by 0.29 ◦C, the distribution of the relatively
high temperature areas became more even. The minimum LST was 28.01 ◦C, and the maximum LST
was 46.52 ◦C on 10 July 2016. Compared to 2011, the mean LST decreased by 2.39 ◦C. The distribution
of high-temperature centers was more disperse from 2007 to 2016, and their inner structure and
composition obviously changed. These distributions and changes of the UHI effect are closely related
to the types and functions of the different underlying surface and their changes.

In the study area, the very low LST areas were mainly the large water bodies, such as ponds,
reservoirs and rivers, and changed with the water level. There were marked changes from 2007 to 2016,
and the area ratio showed an obvious increasing trend from 2007 to 2016. (Table 3). The low LST areas
concentrated on the high vegetation coverage areas and some small water bodies. After 2009, the area
ratio sharply decreased, while it increased quickly from 2011 to 2013. Then, the increasing trend
slowed down. The sub-medium LST areas were located in the sub-high vegetation coverage areas
and farmlands. They changed in volatility from 2007 to 2016. The medium LST areas were the forests
and grasslands with low vegetation coverage and some farmlands, and increased rapidly over time,
from 15.29 km2 in 2007 to 371.79 km2 in 2010. The medium LST area ratio decreased quickly from 2010
to 2016. The high LST areas, and very high LST areas were mainly distributed in the industry lands,
built-up areas, and development and construction areas. Compared to 2007, the total area ratio of the
two types quickly increased as a general trend and was up to 0.80%, and 0.25%, respectively in 2015 and
2016. The relatively high temperature areas were spotty and distributed linearly in 2007, and the large
high temperature areas were mainly located in the business and industry concentrating areas, such as
Yuzhong, Dadukou, and Jiulongpo, etc. In 2008, the relatively high temperature areas also distributed
in the business and industry centers within the inner ring road, but the spatial structure gradually
transformed from a dispersedly spotty and linear distribution to continuous area distribution. At the
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same time, many constructing areas became the new high temperature centers. In 2009, when the
lands within the inner ring road had not met the urban development, some new high temperature
areas appeared outside inner ring road, such as Lianglu, Jingkou, Tangjiatuo, Lishuwan, Chonggang,
Changgang, etc. The LST was generally higher in 2010. The main change in this year was the obviously
northward shift of the high-temperature centers, and the expansion of the relatively high temperature
areas (from 0.76 km2 in 2009 to 57.07 km2 in 2010). In 2011, the relatively high temperature areas
decreased compared to 2010 (from 2.35 km2 in 2010 to 1.31 km2 in 2011), but it was still far more than
it was in 2007, 2008, and 2009. Although the relatively high LST areas were largest in 2010, apparently
there was a general trend of increasing UHI effect from 2007 to 2011. From 2011 to 2015, the relatively
high temperature areas continually increased. The area ratio increased from 0.17% to 0.80. In 2016,
the area ratio decreased to 0.25%.
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Table 2. LSTs of the nine dates (◦C).

Date LSTmin LSTmax LSTmean LSTstd

20 September 2007 28.63 56.90 36.71 2.02
20 July 2008 26.00 44.64 33.24 2.02

24 August 2009 28.43 50.22 35.04 2.25
11 September 2010 25.44 47.20 34.01 2.24

30 August 2011 26.28 51.26 37.00 2.78
19 August 2013 25.32 48.21 34.89 2.40
6 August 2014 25.98 52.79 34.90 2.33

8 July 2015 24.98 46.58 31.24 2.34
10 July 2016 28.01 46.52 34.61 2.20
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Table 3. The area ratio of different LST levels from 2007 to 2016 (%).

Level 20 September
2007

20 July
2008

24 August
2009

11 August
2010

30 August
2011

19 August
2013

8 August
2014

8 July
2015

10 July
2016

Very low LST 4.24 4.32 5.04 3.45 2.61 4.12 12.16 12.25 4.28
Low LST 49.37 23.17 41.33 4.65 7.23 38.93 35.71 39.65 40.41

Sub-medium LST 44.29 59.77 42.65 36.93 54.99 33.39 31.10 34.16 44.67
Medium LST 1.96 12.24 10.02 47.65 32.04 16.20 11.72 9.38 7.75
Sub-high LST 0.11 0.55 0.86 7.02 2.96 6.96 8.69 3.76 2.64

High LST 0.02 0.04 0.09 0.28 0.16 0.37 0.55 0.77 0.24
Very high LST 0.01 0.00 0.01 0.02 0.01 0.03 0.07 0.03 0.01

Sum of high and
very high LST 0.03 0.04 0.10 0.30 0.17 0.40 0.62 0.80 0.25

3.3. Relationship between LST and NDVI

The Normalized Difference Vegetation Index (NDVI) was calculated for each image. The negative
correlations were found between NDVI and LST by comparing both images. In order to further study
their quantitative relationship, the NDVI and LST images on 30 August 2011 are selected as samples to
establish the linear regression. Its regression equation was given as follows.

LST = −6.212NDVI + 38.89 (NDVI ≥ 0), (10)
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With the increasing of NDVI, the LST decreased from approximately 45 ◦C to 33 ◦C. When
NDVI was approximately 0.18, some pixels had a higher LST. After analyzing the NDVI, LST and
high-resolution images, we find that most of these pixels were in the new construction areas.

3.4. Relationship between UHI and Urban Expansion

In the paper, the LST changes were detected from 2007 to 2016, and the amplitude of changes are
classified on Table 4, Figure 5.

Table 4. Classification standard of the LST change.

Types Strong LST
Decrease

Slight LST
Decrease No Change Slight LST

Increase
Strong LST

Increase

LST2011–LST2007 <−3 ◦C −3–−1 ◦C −1–1 ◦C 1–3 ◦C >3 ◦C

In Figure 5, we find that the LST decrease areas are mainly the water bodies and high vegetation
coverage areas, the no-change areas are distributed in the old urban districts, and the LST increase
areas are located at the north and south of the study area. From 2007 to 2011, the urban area also
mainly expanded to north and south (Figure 5b). From 2010 to 2016, the urban area expanded not only
to north and south, but also to east (Figure 5d). By comparing Figure 5a with Figure 5b, and Figure 5c
with Figure 5d, there is a good correlation between the expansion of urban area and UHI in pattern,
position and amount. The urban area expanded by 85.9 km2 from 2007 to 2011, and by 97.01 km2 from
2010 to 2016. The strong LST increase areas showed a rise of 54.57 km2 and 58.41 km2 during the same
time. It is obvious that the urban expansion was the main contributor to the UHI.Sustainability 2018, 10, x FOR PEER REVIEW  10 of 15 
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3.5. Relationship between UHI and Land Use/Cover

In this paper, we also explored the effect of different land use/cover types for UHI in a
mountainous city. Five land use/cover types were classified in the study area (i.e., built-up, bare
land, vegetation, water and road). Vegetation is the area containing forests, shrubs, grasslands and
crops. Water includes reservoirs, ponds and rivers. The area under development is similar to bare land.
The maps of land use/cover were retrieved from a Landsat images on 20 September 2007, 30 August
2011, and 10 July 2016. To study the temperature relationship of different land use/cover types, the
maximum, minimum, and mean LST of different land use/cover types were derived by averaging all
corresponding pixel values (Table 5). It can be found from Table 5 that the maximum and mean LST in
bare land are all highest followed by build-up, and the maximum and mean LST in water are lowest
due to its high heat capacity.
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Table 5. LST in different land use/cover types in 2007, 2011 and 2016.

Land
Use/Cover

Minimum LST (◦C) Maximum LST (◦C) Mean LST (◦C)

2007 2011 2016 2007 2011 2016 2007 2011 2016

Built-up 30.42 26.75 25.73 51.39 46.78 43.45 38.13 35.24 35.82
Bare land 30.03 28.72 26.45 56.9 47.20 46.52 38.37 36.91 37.27
Vegetation 29.52 28.33 25.79 48.39 40.99 41.77 36.27 33.43 30.37

Water 28.63 25.44 28.01 35.09 36.25 42.97 32.82 29.61 27.77
Road 30.05 32.81 26.03 45.11 43.49 42.32 37.7 34.82 32.74

To further study the relationship between LST and land use/cover types, the areas of each LST
level in different land use/cover types in 2007, 2011, and 2016 were calculated (Table 6). Using the
information, how the land use/cover types may have contributed to UHI can be estimated. From
our analysis, it can be seen that almost all land use/cover types except water were distributed over
the medium and sub-medium LST areas. The difference is that the areas of bare land and road
located in medium LST areas were larger than those in sub-medium LST areas, but the vegetation was
the opposite. The vegetation areas mainly showed the characteristics of low and sub-medium LST.
The relatively high LST areas concentrated in the built-up (0.9 km2, 14.11 km2, 16.01 km2) and bare
land (2.54 km2, 8.95 km2, 5.95 km2) in 2007, 2011, and 2016. They nearly matched the total contribution.
Most of the areas of built-up were medium and sub-medium LST. However, the low and very low LST
areas were highly concentrated in water and vegetation. Both of them contributed more than 90% to
the total area of low and very low LST areas in the study area. So, it is easy to conclude that water and
high coverage vegetation areas play an important role mitigating the UHI effect.

Table 6. Area of each LST level in different land use/cover types in 2007, 2011 and 2016 (km2).

Land Use/
Cover

LST Levels

Very Low LST Low LST Sub-Medium LST Medium LST Sub-High LST High LST Very High LST

2007 2011 2016 2007 2011 2016 2007 2011 2016 2007 2011 2016 2007 2011 2016 2007 2011 2016 2007 2011 2016

Built-up 0.67 0.18 1.75 41.91 5.20 53.09 227.93 119.63 251.74 14.20 171.27 44.35 0.79 13.80 14.83 0.04 0.30 1.17 0.07 0.01 0.02
Bare land 0.00 0.00 0.00 0.18 0.34 0.19 0.55 4.87 5.06 7.18 19.65 31.15 2.14 8.05 4.53 0.24 0.82 1.32 0.16 0.08 0.10
Vegetation 1.18 0.01 0.79 314.26 24.48 218.65 108.33 293.80 87.07 0.65 56.89 6.96 0.04 1.02 0.49 0.01 0.02 0.02 0.00 0.00 0.00

Water 31.29 20.18 30.48 24.39 26.27 20.04 2.70 9.96 3.69 0.04 1.14 0.19 0.05 0.17 0.02 0.02 0.08 0.04 0.00 0.00 0.00
Road 0.04 0.00 0.00 0.07 0.00 0.04 0.11 0.10 0.35 0.13 0.18 0.44 0.01 0.00 0.24 0.00 0.00 0.94 0.01 0.00 0.05

3.6. Mitigating Effects of Different Urban Green Spaces on UHI

Two types of urban green spaces (i.e., urban fringe forests and urban parks) were selected in the
study. The urban fringe forests with large areas were retrieved from Landsat TM on 30 August 2011
(Figure 6), and the urban parks data was provided by Chongqing Park Management and Landscape
Planning Bureau. The urban fringe forests include three primary parts: Mount Tongluo located in the
east, Mount Zhongliang located in the west, and some hills located in the north. Nine urban parks were
selected as samples in the paper (i.e., Bolin park, Dongbu park, Eling park, Huahui park, Zhongyang
park, Pingdingshan park, Shaping park, Shanhu park, Shimen park). We created six buffers per 50 m
for each urban fringe forest and urban park in this study and estimated the mitigating effects of these
urban green spaces on UHI (Tables 7 and 8).

From Tables 7 and 8, it can be seen that there are obvious mitigating effects of the urban green
spaces on UHI, but the mitigating effects decreased over distance. The urban fringe forests can achieve
better performance than urban parks in mitigating UHI effects. For urban fringe forests, the two
mountains (Mount Zhongliang in the west and Mount Tongluo in the east) showed a similar trend
because of their similar features in area and spatial distribution. The decrease of LST changed from
1.85 ◦C and 1.93 ◦C to 1.47 ◦C and 1.32 ◦C, respectively, from the first buffer to the sixth buffer. The LSTs
of buffers in the north showed a fast decline over distance, from 2.01 ◦C to 0.53 ◦C within 200 m.
This may be caused by the small area and different spatial pattern of the north urban fringe forest.
In general, the urban fringe forests contributed to the decrease of LST by more than 1 ◦C within
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300 m. The mitigating effects of the shorter distance to the forests the mitigating effects on UHI are
more obvious.
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Table 7. Mitigating effects of the urban fringe forests on UHI (◦C).

Buffer (m) Decrease of LST in West Decrease of LST in North Decrease of LST in East Mean

0–50 1.85 2.01 1.93 1.93
50–100 1.81 1.36 1.76 1.64

100–150 1.65 0.86 1.59 1.37
150–200 1.58 0.53 1.56 1.22
200–250 1.58 0.37 1.49 1.15
250–300 1.47 0.22 1.32 1.00

1 Decrease of LST = mean LST of buffer—mean LST of urban area.

Table 8. Mitigating effects of the urban parks on UHI (◦C).

Buffer (m)

Decreases of LST

MeanBolin
Park

Dongbu
Park

Eling
Park

Huahui
Park

Zhongyang
Park

Pingdingshan
Park

Shaping
Park

Shanhu
Park

Shimen
Park

0–50 0.83 0.29 0.37 0.15 1.73 0.33 0.06 0.43 0.44 0.51
50–100 0.29 0.30 0.31 −0.02 1.12 0.63 −0.27 0.30 0.11 0.31
100–150 −0.30 0.09 0.14 −0.04 0.33 0.83 −0.23 0.18 −0.11 0.10
150–200 −0.44 −0.10 −0.04 0.03 −0.43 0.75 0.02 −0.18 −0.12 −0.06
200–250 −0.22 −0.37 −0.29 0.00 −1.08 0.71 0.15 −0.45 −0.16 −0.19
250–300 −0.17 −0.22 −0.46 −0.12 −1.69 0.36 0.23 −0.25 −0.14 −0.27

1 Decrease of LST = mean LST of buffer—mean LST of urban area.

Urban parks are natural landscapes for citizens to rest and can also, to some extent, play an
important role in mitigating UHI effects. Table 8 shows the differences between these parks, specifically
the different areas and patterns mitigating UHI effects. In general, the LST in the first and second
buffer of the parks, except Pingdingshan park, obviously decreased. The average contribution to the
LST decrease in the first buffer (0–50 m) was 0.51 ◦C. The maximum and minimum decrease of LST
were 1.73 ◦C (Zhongyang park) and 0.06 ◦C (Shaping park), respectively, within the 0–50 m distance.
The parks had only slight effects on the LST when the distance exceeded 150 m. Therefore, we should
design and plan urban parks (area, pattern, location and quantity) scientifically and reasonably to
maximize their effects on the UHI.
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4. Discussion

In this study, we rectify the parameters used in the mono-window algorithm according to the
characteristics of Chongqing, a typical mountainous city. We use a combination of Landsat TM data,
automatic weather station data, and satellite-ground synchronous experiment data to estimate the LST,
test its accuracy, and examine the relationship between the impact factors and the UHI variations in
Chongqing. The accuracy of the LST derivation increased by about 1 ◦C compared to the traditional
method and provides reliable parameters for the UHI researched in mountainous city. Furthermore,
all the analyses in this paper were based on the interpretation of remote sensing images, by which
we analyzed not only the methods to retrieve the UHI, but also the phenomenon of UHI and its
impact factors. The temporal and spatial variations of UHI were conducted through the analysis of
multi-temporal remote sensing images. The remote sensing images are ideal for analyzing UHI, but it
is difficult to select images with similar environmental conditions. In future studies, several additional
topics need to be explored. Firstly, the retrieval of UHI in mountainous cities is more complex than the
cities on the plain. Although we have improved the method to estimate the three essential parameters,
and the retrieval accuracy of LST was also improved, the retrieval method of LST needs to be improved
to accommodate the complex terrain features and reduce the influence of unhomogeneous atmospheric
conditions in the mountainous cities. Secondly, although we have analyzed the effects of urban spraw,
LUCC, and urban green spaces on the UHI, the impact mechanism of the shape, area, structure, and
distribution pattern of different land use/cover types in the urbanized area on UHI needs to be further
studied. Thirdly, the effect of human activities and other impact factors on UHI must be investigated.

5. Conclusions

Chongqing is a typical mountainous city. In this paper, qualitative and quantitative analyses
were used to study the spatio-temporal features of UHI and the relationship between LUCC and
UHI in the study area. Several conclusions were drawn: (1) The accuracy of the LST derivation was
improved by about 1 ◦C compared to the traditional method; (2) The high LST areas increased and
extended from the city center to suburban area each year, but the rate of change decreased. There
were many minor changes inside high LST areas; (3) There were many rivers in the city and the UHI is
dramatically impacted by the rivers. There is a good relationship between the urban expansion and
the UHI; and (4) The urban green spaces reduced the effects of UHI, but their functions decreased
with the increase of distance from the green spaces. The large urban fringe green spaces composed
a relative low temperature area and relieved the UHI in the large area. The LST was reduced by
about 1 ◦C within a 300 m distance from the large urban fringe green spaces. The urban landscape
parks had strong effects relieving the UHI at a 100 m distance. The LST was reduced by about 0.5 ◦C.
The study greatly improves the accuracy of LST derivation and provides reliable parameters for the
UHI researched in mountainous city.
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