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Abstract: Heated metal mark is an important trace to identify the cause of fire. However, traditional
methods mainly focus on the knowledge of physics and chemistry for qualitative analysis and make
it still a challenging problem. This paper presents a case study on attribute recognition of the heated
metal mark image using computer vision and machine learning technologies. The proposed work
is composed of three parts. Material is first generated. According to national standards, actual
needs and feasibility, seven attributes are selected for research. Data generation and organization
are conducted, and a small size benchmark dataset is constructed. A recognition model is then
implemented. Feature representation and classifier construction methods are introduced based on
deep convolutional neural networks. Finally, the experimental evaluation is carried out. Multi-aspect
testings are performed with various model structures, data augments, training modes, optimization
methods and batch sizes. The influence of parameters, recognitio efficiency and execution time are
also analyzed. The results show that with a fine-tuned model, the recognition rate of attributes metal
type, heating mode, heating temperature, heating duration, cooling mode, placing duration and
relative humidity are 0.925, 0.908, 0.835, 0.917, 0.928, 0.805 and 0.92, respectively. The proposed
method recognizes the attribute of heated metal mark with preferable effect, and it can be used in
practical application.
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1. Introduction

With the rapid development of construction industry and material technology, metal components
are widely used in modern architecture and domestic appliance. Generally, metal components are
nonflammable and can be retained after the fire. When being heated, complex physical and chemical
changes happened on the metal component. Consequently, various marks are left on the surface of the
metal component. The heated metal mark is influenced by attributes of heating temperature, heating
duration, heating mode, cooling mode, etc. The oxidation reactions on surface of metal are different
with various attribute conditions. These attributes of heated metal marks are useful clues to locate the
fire point, and then the source and situation of fire could be further analyzed. The scene of the fire is
very complicated and cannot reappear. Therefore, it is a better way to recognize or classify attributes
of heated metal through observing its marks image.

Table 1 gives the inspection methods for trace and physical evidences from fire scene (a National
standard of People’s Republic of China) [1]. It includes relationship between color of heated metal mark
and heating temperature. It should be noted that the color range of metal is determined by human
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expert. According to the standard, Ying Wu et al. utilized metal oxidation theory to analyze the relation
between color of metal surface and its heating temperature. When heating temperature approaches or
exceeds melting point, the metallographic organization significant changed [2,3]. Zejing Xu and Yupu
Song proposed a method to record attributes value of object surface by means of macro-inspection
and micro-analytical. Then fuzzy mathematics was adopted to establish temperature of building
component [4]. Dadong Li and Tengyi Yu analyzed the changes in the surface of Zn-Fe alloy with
different temperature and heating duration. By using stereo microscope and electron microscope, they
found that chemical composition and organization structure were changed and these leaded to the
color change on the surface of metal [5].

Table 1. Relations between color change of ferrous metal and heating temperature. The heating duration
time is set with 30 min.

Color Heating Temperature

dark purple 300 ◦C
sky blue 350 ◦C
brown 450 ◦C

dark red 500 ◦C
orange 650 ◦C

light yellow 1000 ◦C
white 1200 ◦C

It can be seen that traditional methods for this problem are mainly based on the knowledge of
physics and chemistry for qualitative analysis. However, it is usually unpractical to implement and
with less automation. This paper takes another point of view, completely relies on computer vision and
machine leaning technologies. The attributes of heated metal are modeled and analyzed by data-driven
mode and intelligent recognition method is devised.

Image recognition is a classical problem in computer vision and machine learning fields.
With annotated training dataset, supervised learning or unsupervised learning method can be adopted.
It has two main steps. First, features are extracted from training images. Second, classifier models are
trained with feature vectors and corresponding attribute labels.

Image feature representation is a key research field and many works have been reported. Before the
year 2012, mainstream methods for image feature extraction and representation are based on hand-craft
features by experienced scientist and engineer. Image local feature extraction and representation
algorithms are designed to deal with content translation, scale variant, rotation, illumination and
distortion, as much as possible. Local image descriptors are then transformed into feature vectors, and
global image feature representation is aggregated with all local feature vectors. Some representative
researches are introduced in the following statements. David Lowe proposed SIFT (scale invariant
feature transform descriptor) [6,7]. It was computed from the pixel intensity around a specific interest
point in image domain. A SIFT descriptor was encoded with 4× 4× 8 = 128 dimensions for each
interest point. Dalal and Triggs developed an image local descriptor HOG (histograms of oriented
gradients) which was computed from a group of gradient orientation histograms within subregions [8].
The dimension of HOG descriptor was determined by the number of cells per block, the number
of pixels per cell and the number of channels per cell histogram. The SURF (speeded-up robust
features) descriptor proposed by Bay et al. was closely related to the SIFT [9]. The main difference
was that SURF was computed based on Haar wavelets and the interest point was determined based
on approximations of scale-space extrema of the determinant of the Hessian matrix. SURF had
better computational efficiency. Gabor f ilter was a linear filter that commonly used in image texture
analysis [10,11]. A classical 2D Gabor f ilter in spatial domain can be seen as a sinusoidal plane wave
modulated by Gaussian kernel, and whether there were any specific frequency content with the specific
directions in a localized region of an image can be estimated. LBP (Local binary patterns) was another
powerful feature descriptor for image classification [12]. It was computed based on comparison
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between a pixel with each of its 8 neighbor pixels. It defined an 8-digit binary number in clockwise
or counter-clockwise orientation. The frequency of each binary number was computed and the final
feature vector was represented by accumulating all cells in a region. Moreover, various improvement
versions of these local feature descriptors were proposed constantly.

Image global descriptor is then represented based on these local feature descriptors. BoVW (bag of
visual words) model was one of most widely adopted methods [13]. First, visual words were gained by
clustering all local feature vectors and visual vocabulary was comprised of all visual words. Then each
local patches of an image can be mapped to a visual word and the whole image was represented by
the histogram of the visual word frequency. One disadvantage of original BOVW model was that it
lacked spatial relationship of image content. Kristen Grauman and Trevor Darrell proposed SPM (spatial
pyramid matching method) [14]. SPM treated an image as multi-resolutions, and it generated histograms
by binning data points into discrete regions of different size. Thus, features that did not match at high
resolutions can also be matched at low resolutions. VLAD (Vector of Locally Aggregated Descriptors) [15]
and FV (Fisher Vector) [16] methods were presented that based on encoding the first and second order
statistics of feature vector. They not only increased classification performance, but also decreased the
size of visual vocabulary and lowered the computational effort.

With the global image feature representation, metrics between high dimension feature vectors
are used to measure difference between images object. SVM (Support vector machine) was the most
widely used classifier training method [17]. It treated features as points in high dimensional space and
mappings was conducted that the examples of the separate categories were divided by hyper-planes
which was forced as wide as possible.

Many public available image benchmark datasets were provided to speed up the technology
development with large size labeled training samples. ImageNet and COCO were the two most famous
sets. ImageNet was first opened by Jia Deng et al. in the year 2009 [18]. It contained at least 14 million
images and covered over 20,000 categories. Microsoft COCO dataset was opened in 2014 and with
a total of 2.5 million labeled instances in 328,000 images [19]. These datasets not only provided large
size labeled images, but also provided platforms for comparison of different algorithms based on the
unified standards.

Recently, deep learning has scored great success in machine learning field especially for image
classification [20]. It is also called deep structured learning or hierarchical learning and essentially it is
a special form of neural network. It uses a cascade of multiple layers of nonlinear processing units for
feature transformation and extraction. The main advantages of deep learning are: (1) Feature extraction
in deep level. It generates compositional models where the object is expressed as a layered composition of
primitives; and (2) efficient parameter adjustment. The parameters in deep model for feature extraction
are tuned based on training data and loss function completely automatic. Yan LeCun designed a small
scale convolutional neural networks, LeNet, with the purpose of recognizing handwritten mail ZIP
code [21,22]. A medium scale deep convolutional neural networks, AlexNet, proposed by Krizhevsky
and Hinton won the ImageNet competition by a significant margin over traditional methods [23]. In the
next few years, several more powerful models were proposed. ZFNet, VGGNet, GoogleNet and ResNet
won the ImageNet image classification competition successively [24–27]. ResNet achieved an excellent
top-5 error performance with 3.57% and outperformed humanity for the first time.

According to our knowledge, there is no researches focus on our problem. Some most relevant
works are reviewed. A rail surface defects type detection method was proposed [28]. It constructed
a deep network with three convolutional layers, three max-pooling layers and two fully connected layers.
Twenty-two thousand four-hundred eight object images were manually labeled. Using the larger network
and 90% percent data for training, 92.47% multi-class accuracy was obtained. A bearing fault diagnosis
algorithm was introduced based on ensemble deep networks and an improved Dempster–Shafer
theory [29]. Models used in this work was a smaller one with 3 convolutional layers and 1 fully
connected layer. This fusion model combined multiple uncertain evidences and computed the result
through merging consensus information and excluding conflicting information. Ten thousand image
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samples were used for training and 2500 image samples were used for testing. With fusion and ensemble,
it gained 98.72% performance for 10-type fault type classification. A deep learning-based method
was proposed for characterization of defected areas in steel elements with utilization of a magnetic
multi-sensor matrix transducer and integration of data [30]. In this method, three united architectures
for multi-label classification were used for evaluation of defect occurrence, rotation and depth. Basiclly,
this model contains three convolutional layers, three max-pooling layers and one fully connected layer.
Thirty-five thousand simulated data samples were generated. Data used for training and testing was set
with a ratio of 85:15. A surface defects classification method was proposed for hot-rolled steel sheet [31].
The network contained seven layers, and eight surface defects were defined. There were 14,400 samples
for the whole dataset and 1800 samples for each type. Ninety-four percent accuracy was obtained with
5/9 data for training. A damage detection method of civil infrastructure was designed [32]. The model
contained three convolutional layers, three pooling layers and one fully connected layer. The images
were divided into small patches, and were manually annotated as crack or intack. The dataset contained
40,000 samples, and 90% used for training. 98.22% accuracy performance was obtained with sliding
windows. A Faster r-cnn-based method was used for structural surface damage detection [33]. 5 types of
surface damage were defined as concrete cracks, steel corrosion (medium and high levels), bolt corrosion,
and steel delamination. ZFNet was used as the backbone network. Two-thousand three-hundred
sixty-six image samples were collected as the dataset. This model achieved a 87.8% accuracy with
2.3:1 proportion of training and testing samples. A multilevel deep learning model was proposed
for surface defect and crack detection inside steel box girder [34]. This model included three bypass
to concatenate the final feature representation. Three types, including crack sub-image, handwriting
sub-image, background sub-image were defined. Raw images were obtained by common digital camera.
After division, 67,200 sub image samples were generated. With 80% dataset for training, 95% mean
accuracy precision was obtained. Moreover, the effects of super-resolution inputs were also investigated.
These related works made similar studies to the proposed one. However, these methods usually adopted
relatively simple models and the state-of-art deep learning models were not concerned. The training and
optimization procedure were not demonstrated clearly. Based on these points, we carry out our research.

This paper presents a case study on heated metal attribute recognition by deep convolutional
neural networks model. There are three important stages: (1) Material construction stage. Attributes of
heated metal are first defined as needed. Then the procedure of raw image data generation is designed,
including material type, heating mode, cooling method and capture device, etc. Benchmark dataset
is finally organized; (2) Model training stage. Deep convolutional neural networks models used in
this work are introduced, including basic structure, top models structure and useful technologies;
(3) Experimental evaluation stage. Experiments and analysis are carried in many aspects, including
performance on different models, parameters setting, data augment, model convergence, recognition
efficiency and execution time. Figure 1 gives the whole framework of this study.

The main contributions of this paper are threefold:

• Deep convolutional neural networks models are adopted to recognize attribute of heated metal
based on its marks image;

• The material benchmark dataset is completely new designed and generated;
• Extensive experimental evaluations and analyses are carried out.

The rest of this paper is organized as follows. Section 2 presents the materials generation. Section 3
describes the methodology. Experimental evaluation and analysis are given in Section 4. Section 5
concludes this paper.
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Figure 1. The framework of this work.

2. Materials Generation

Since there are no benchmarks in related fields, dataset for training and testing is constructed
in this work. This section includes attributes definition, raw image generation and benchmark
dataset construction.

2.1. Attribute Definition

According to the conditions defined in National standard of People’s Republic of China
GB/T42327905.3-2011 (inspection methods for trace and physical evidences from fire scene—Part 3:
Ferrous metal work) [1], the heating temperature of metal is the the most important factor. In addition,
other important factors are also covered for practical demands. Therefore, metal types, heating mode,
heating temperature, heating duration, cooling mode, cooling humidity and placing duration are used
as basic attributes which we want to recognize from heated metal mark image. The attributes are
configured as follow:

• Metal type. This attribute indicates the type of heated metal in the fire scene;
• Heating mode. This attribute indicates heating source and form;
• Heating temperature. This attribute indicates the temperature degree of the metal that being heated;
• Heating duration. This attribute indicates the duration time of the metal that being heated;
• Cooling mode. This attribute indicates the method of the heated metal that being cooled;
• Cooling humidity. This attribute indicates the humidity degree when the heated metal that

being cooled;
• Placing duration. This attribute indicates the duration time of the heated metal that being cooled.

For each attribute, its value ranges considered in this study are detailed described in Table 2.
For simplicity, attribute i is abbreviated as ai in the subsequent sections.
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Table 2. Attributes of heated metal defined in this study.

Attribute Abbr. Attribute Name Types (Predefined Label Values)

a1 Metal type 2 types: (1) galvanized steel; (2) cold rolled steel
a2 Heating mode 3 types: (1) vacuum; (2) muffle furnace; (3) gasoline burner
a3 Heating temperature 4 degrees: (1) 400 ◦C; (2) 600 ◦C; (3) 800 ◦C; (4) 1000 ◦C
a4 Heating duration 4 degrees: (1) 15 min; (2) 30 min; (3) 40 min; (4) 45 min
a5 Cooling mode 2 types: (1) Natural cooling; (2) forced cooling
a6 Placing duration 3 degrees: (1) 24 h; (2) 36 h; (3) 48 h
a7 Relative humidity 2 degrees: (1) 65%; (2) 85%

2.2. Raw Image Generation

Two widely used metal materials, galvanized steel and cold rolled steel, are selected as research
objects. The metal plate is first cut to equal size (length = 1.0 cm, width = 1.0 cm, thickness = 1.0 mm).
This guarantees the consistency of the experimental conditions. Three devices, a vacuum resistance
furnace, muffle furnace and gasoline burner, are used to heat metals for simulating three different
heating scenes. Figure 2a–c demonstrate the three devices respectively. After heating to a specific
temperature (a3) and duration time (a4), the metals are placed in a test chamber, as shown in Figure 2d.
The test chamber provides constant temperature and humidity, so attributes of cooling mode (a5),
placing duration (a6) and relatively humidity (a7) can be employed. To exhibit better appearance
feature of sample images, we do not use traditional camera, instead a special purpose microscope is
used to capture the heated metal mark image, as shown in Figure 2e.

(a) (b) (c)

(d) (e)

Figure 2. Devices used in this study for generating image dataset. (a) demonstrates vacuum resistance
furnace; Muffle furnace and gasoline burner are shown in (b,c) respectively; (d) is a test chamber with
constant temperature and humidity.; Heated metal mark images are captured via microscope in (e).



Sensors 2018, 18, 1871 7 of 19

2.3. Benchmark Dataset Construction

According to the conditions and processes set up above, independent productions are conducted.
The image sample is captured with a resolution of 2152× 1616 pixels. Each heated metal mark image
sample is labeled with 7 attribute values as illustrated in Table 2. Image samples are demonstrated
in Figure 3, and totally there are 900 image samples. Based on the generated image dataset with
attribute label values, this work makes a case study to analysis and construct relations between
heated metal mark image and its attributes based on computer vision and deep convolutional neural
networks model.

Figure 3. Demonstration of generated heated metal mark image samples. 7 attributes are labeled at the
top-left position of each image.

3. Methodology

In this study, we want to design a model that can predict metal attribute based on its mark image.
The basic formation can be written as Equation (1). x denotes a heated metal mark image. y is the
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attribute value estimated by a classifier model f (). In the following, basic structures of convolutional
neural networks, top CNNs models, useful techniques and pesudocode are explained.

y = f (x) (1)

3.1. Basic Structures in CNNs

CNNs (Convolutional neural networks) are a special form of neural network, and proved to be the
most powerful model for computer vision, especially for image classification and object detection [20].
Classical CNNs are composed of three principle layers, the convolutional layer, pooling layer and fully
connected layer, respectively.

3.1.1. Convolutional Layer

The convolutional layer is the core building block of CNNs. It contains a set of trainable filters.
Typically, the filter slides over the image spatially, and the final feature map is computed by convolution
operation (dot product operation) across the whole image. Equation (2) gives the basic convolution
operation. The convolution is an elementwise multiplication and sum of a filter in local image region.
con f eature[i, j], c[i, j] and I[i, j] represent convolution result, convolution filter kernel and image at
indices i and j. The height and width of filter kernel is denoted by l. After convolution, there is always
an activation operation for model simulation and optimization. Equation (3) gives the ReLU (Rectified
linear units) function, one of the most popular activation function for CNNs [35]. z means the result of
convolution. r(z) denotes the activation value and all the activation results constitute the feature map.

conv f eature[x, y] =
u1=l

∑
u1=−l

u2=l

∑
u2=−l

c[u1, u2] ∗ I[x− u1, y− u2] (2)

r(z) = max(0, z) (3)

Figure 4 demonstrates the basic convolution operation of an image. Let the input image be set
with 32× 32 pixels and with RGB channels. It can be represented as a formation of 32× 32× 3 matrix.
If there are 6 filters with size 5× 5× 3, then 6 separate activation feature maps with a stack of size
28× 28× 6 (with ReLU activation function, no padding, 1 pixel stride) are computed.

Ideally, one filter corresponds to a specific feature. The advantage of convolutional layer is that
the local structure of an image can be captured and the parameter of a filter can be shared.

Figure 4. Demonstration of convolution operation in an image.

3.1.2. Pooling Layer

The aim of pooling layer is to reduce the dimension of a feature map while the important feature
can also be retained. It makes the feature representation smaller and more compact. The result of
pooling layer is shown in Figure 5a. The basic operation of pooling is to slide a window with specified
size and stride on a feature map, and the corresponding value is computed by max or mean operation
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inside the window, as is shown in Figure 5b. Pooling layer decreases the scale of feature map and the
subsequent computation is also reduced. Moreover, pooling also reduces the number of parameters,
and makes the model invariant to transformation, distortion, translation and scale change.

(a) (b)

Figure 5. Demonstration of pooling operation.

3.1.3. Fully Connected Layer

A fully connected layer can be seen as a traditional multi-layer perceptron. Fully connected
means all nodes in the previous layer are connected with all nodes of the next layer. It has two basic
effects: (1) fully connected layer is another way of learning non-linear combination between features
of different depth; (2) it can be used as output layer that the last feature map will be transformed into
classification result with full connection. In this way so f tmax activation function is usually adopted.

Figure 6 demonstrates the fully connected layer. As shown in the figure, an image is used as an
input of CNNs model. Layer m− 1 and layer m are two continuous hidden layers, which are fully
connected. Meanwhile, there are two nodes in the output layer, which represents 2 attribute values of
metal type that the model predicted.

Figure 6. Demonstration of fully connected layers in CNN.

3.1.4. Loss Function and Model Training

Let {(x1, y1), (x2, y2), ..., (xm, ym)} denote the training image data set. xi denotes the heated metal
marks image with size w× h× c, where w, h and c denote the width, height and channel of input
image. yi ∈ {0, 1, ..., n} is attribute label value.

For an input heated metal marks image sample data xi, we want to compute the probability value
p(y = j|xi)(j ∈ 0, 1, ..., n). The output, a n-dimensional vector is estimated to represent the probability
of each attribute type that xi belongs to. The hypothesis function can be expressed as Equation (4).
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hθ(xi) =


p(yi = 0|xi; θ)

p(yi = 1|xi; θ)
...

p(yi = n|xi; θ)

 =
1

∑n
j=0 ε

θT
j xi


εθT

0 xi

εθT
1 xi

...
εθT

n xi

 (4)

where θ = {θ0, θ1, .., θn} is the model parameters. θi is the parameter that belongs to ith predicted
attribute. This equation normalizes the result and makes the sum to 1. For model training, the loss
function can be given as follows:

J(θ) = − 1
m

 m

∑
i=1

3

∑
j=0

1{yi = j}log
ε

θT
j xi

∑3
l=0 εθT

l xi

+
λ

2
||θ|| (5)

As shown in Equation (5), formula 1{.} represents an indicative function, and the second part
is a commonly used term for model regularization. Loss function usually indicates the difference
between predicted attribute label and true attribute label values. The goal is to make the loss function
minimal. SGD (stochastic gradient descent) method is used for optimization and the corresponding
derivative functions are given as Equations (6) and (7).

∇θj J(θ) = −
1
m

m

∑
i=1

[xi(1{yi = j} − p(yi = j|xi; θ))] + λθj (6)

p(yi = j|xi; θ) =
ε

θT
j xi

∑3
l=0 εθT

l xi
(7)

3.2. Top CNNs Models

In this subsection, some state-of-art CNNs models used in our study are introduced.

3.2.1. VGGNet

VGGNet was introduced by Karen Simonyan and Andrew Zisserman in Visual Geomrtry Group,
University of Oxford [25]. This work first explored the feasibility of increasing the depth of CNNs
model with very small convolution filters (3 × 3 receptive field and up to 19 weight layers) for
large scale image classification task. The performance on the ImageNet challenge demonstrated the
effectiveness of VGGNet model.

3.2.2. ResNet

Kaiming He et al. proposed ResNet in Microsoft Research [27]. This model focused on training
extreme deeper networks. For solving the problem of gradient vanishing, a residual learning framework
was devised. The weight layers were computed by addition with traditional stacked layer and a shortcut
connection perform identity mapping. The deep residual model stacked basic building block of
residual learning and made the model extremely deep (up to 152 layers). The experimental results
on the ImageNet dataset demonstrated that the seemingly simple technique make the extremely deep
model easier to optimize. It gained 1st place on the ILSVRC 2015 classification task while it still had
lower complexity.

3.2.3. Inception

This model was first introduced by Christian Szegedy et al. in Google Inc. [26]. It increased both
the depth and width of the network while keeping the model computational budget constant based on
Hebbian principle and multi-scale process. They devised the Inception block as a new organization.
The filters were multiple scales(1× 1, 3× 3 and 5× 5). 1× 1 convolutions were used as bottleneck to
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reduce high dimension. A 22 layers deep network was finally constructed by stacking these Inception
modules. This model was referred as Inception-v1.

Sergey Ioffe and Christian Szegedy referred to the problem of internal covariate shift in deep
CNNs model training [36]. They addressed it by normalizing the input of each layer. This enabled
training with much higher learning rates and cared less about parameter initialization. This model
was called Inception-v2.

Christian Szegedy and Vincent Vanhoucke explored to scale up networks in order to utilize
the added computation as efficient as possible by suitably factorized convolutions and aggressive
regularization [37]. A highest quality version of Inception-v3 was designed with better performance.

Christian Szegedy and Sergey Ioffe et al. combined the Inception architecture and Residual
connections [38]. The empirical results clearly showed that the new model accelerate the network
training significantly and outperformed the traditional Inception model in performance. This new
model was referred as Inception-v4.

3.2.4. Mobilenet

Aiming at deploy deep learning model into computationally limited platform such as mobile
and embedded systems, Andrew G. Howard and Menglong Zhu et al. proposed MobileNets [39].
Depth-wise separable convolutions were introduced to build light weight deep neural networks.
Trade off between model latency and accuracy were considered. While, according to the constraints of
the problems, model size could be adjusted automatically.

3.3. Useful Technique

Here we introduce some useful techniques used for the training and optimization of deep
learning models.

3.3.1. Dropout

Deep convolutional neural networks usually contains a huge number of parameters, and it is
prone to model overfitting. Dropout is a technique that a node is dropped out with probability of
1− p or kept with probability p. Only the retained nodes are trained. All dropped out networks are
averaged in testing stage. This method essentially cuts node interactions, and makes the model learn
better feature representation that can generalize new data. Dropout does not just decrease model
overfitting, but also improve training efficiency [40].

3.3.2. Data Augment

Most applications are faced with the problem of lacking sufficient training data, which is a key
point for training large scale deep learning models. Data augment is a widely used method to generate
new data with perturb existing one [41,42]. This method can provide more training data, reduce
overfitting and improve generalization to a certain extent.

3.3.3. Pre-Trained Model

Another way to manage insufficient training data is to use an existing model for initialization.
Loading these parameters into the network and start to train a new one [43]. The pre-trained models
are often trained with other large dataset of related domains or in-domains.

3.4. Pseudocode

In this subsection, Algorithm 1 is given to demonstrate the pseudocode of the proposed method.
Given Trainset, Testset and initialized model parameter θ. A batch of sample images is random selected
from Trainset. After augment, the model is trained once with S and parameter θ is updated. Loss L is
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computed based on Testset. If L is less than ε or iteration counter i exceeds predefined thresholds N,
training is over.

Algorithm 1 Pseudocode of the proposed method.
Input: Trainset, Testset, Initialized model parameter θ

Output: Optimized model parameter θ′

1: Loss L = 1, iteration number = N, counter i = 0, Loss threshold ε;
2: while (i > n) and (L < ε) do

3: random select a batch of samples S from Trainset;
4: S = augment(S);
5: θ = Train(θ; S);
6: L = Test(θ; Testset);
7: i++;
8: end while
9: θ′ = θ;

10: return θ′;

4. Experimental Evaluations

4.1. Experiment Setup

The generated benchmark dataset is used to evaluate the performance of heated metal mark
attributes recognition, with deep convolutional neural networks models described in the above sections.
In this case study, seven groups attributes of heated metal mark are considered. Each group of attributes
are tested independently. Python is used as programming language. Tensor f low is adopted as deep
learning framework and Keras is selected as the library. All the experiments are tested on Pentium i5-7
series CPU, 16G RAM, Nvidia GTX 1070 GPU, Ubuntu OS PC.

The experiments include the following aspects: (1) Evaluation of recognition rate with cross
validation; (2) Evaluation of recognition efficiency; (3) Evaluation of different optimization method;
(4) Evaluation of different batch size; (5) Evaluation of execution time.

4.2. Evaluation of Recognition Rate with Cross Validation

The recognition performance is evaluated independently for different attributes. Therefore, there are
7 groups of testing. The performance of heated metal mark image attribute recognition is computed with
overall recognition rate, as shown in Equation (8). Ncorrect denotes the number of correctly recognized
samples. Nall denotes the number of all testing samples. For each attribute, the dataset is divided into
5 subsets with attribute values equally distributed. 4 randomly chosen subsets (720 image samples) are
used for training and the left subset (180 image samples) is used for testing. This process is repeated
4 times and the result is computed by averaging 4 independent testings.

Recognition Rate =
Ncorrect

Nall
(8)

Inception-v4, Inception-v3, ResNet, VGG16 and MobileNet are selected as basic CNNs
architectures for evaluation. Factors of pre-trained model and data augment are considered. In this
subsection, the pre-trained models are trained with COCO dataset [19]. If the pre-trained models are
used for initialization, the parameters of low-level layers are fixed and the rest parameters are trainable.
If the pre-trained models are not used for initialization, parameters of all layers are trainable. For data
augment, commonly used transformations include random cropping, vertical and horizontal flipping,
perturbation of brightness, saturation, hue and contrast are adopted. If the model is trained with
data augment, 40% of training image in each batch are augmented, otherwise the probability is 10%.
For model input, image size is set with 224× 224× 3 pixels. Epochs is set with 20 and batch size
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is set with 12. SGD is used as preferred optimization method. Learning rate is set with 0.0001 and
momentum is set with 0.9. Dropout is set with 0.2.

The results of average recognition performance are shown in Table 3. Configurations of CNNs
models, pre-trained model and data augment are listed in 1st, 2nd and 3rd columns respectively.
The experiments are conducted under various condition combinations. ai means ith attribute. traina

and testa denote recognition rate of training and testing. For convenience, NetModel(p1, p2) is used
to represent the model structure and parameters. NetModel ∈ {Inception-v4, Inception-v3, ResNet,
VGG16, MobileNet}. p1 and p2 are parameters for pre-trained and data augment. pi ∈ {0, 1}, where 0
stands for off and 1 stands for on. For example, VGG16(0, 1) means the model is trained with VGG16
structure, with pre-trained off and with data augment on.

For training performance, most models(with various configurations) finally reach 0.9 accuracy,
and some are close to 1. Meanwhile, the training accuracy achieves stability after about 10 epochs for
all attributes. The results demonstrate that the training accuracy for a1 to a7 are fine and acceptable.
This is mainly because the CNNs models have relatively large scale, and with the significant ability
of feature abstraction they get great recognition performance on training dataset. These results are
similar with other research reports.

For testing performance, the experimental results show that Inception-v4(0,1) model gets top-1
performance on a1 , with a value of 0.92. For a2, Inception-v4(0,1) model gets top-1 result, with a value
of 0.90. For a3, Inception-v4(0,1) and ResNet(0,1) models get better results, with values of 0.83. For a4,
Inception-v3(0,1) gets top-1 result, with a value of 0.92. For a5, Inception-v4(0,1) and Inception-v3(0,1)
models get better results, with values of 0.92. For a6, Inception-v4(0,1) and VGG16(0,1) models get
better results, with values of 0.78. For a7, Inception-v4(0,1), MobileNet(0,1) and Inception-v3(0,1)
models get better results, with values of 0.91.

However, there are significant differences in testing accuracy versus epoch. Large fluctuations
are shown especially on a2, a4 and a7 in our experiments. This also reveal that different training
modes have great influence on increasing the testing accuracy of models. Models with configuration
(0,1) obtain better testing accuracy for all attributes. Unlike researches of other image recognition
field that using pre-trained model can get better optimization, the experimental results in our study
show divergences that heated metal mark image attribute recognition with pre-trained off gets best
performances. The main reasons are that heated metal mark image is a very special research object, and
there is large gap from the common image dataset, so the filters provided by pre-trained model obtained
with common image dataset do not have much impact on our study. Inception-v4 outperforms other
models on recognition performance demonstrates superiority of combining Inception and Residual.
The result also shows that models with data augment can improve performance effectively. This is
reasonable for training data with certain augment can increase the diversity of sample and model
robust can be improved. It is especially important for large scale CNNs for its huge parameters are
prone to overfitting with insufficient training data. However, among all tests only a small group of
models achieve good convergence. The reason for this situation may originate from the complexity of
this study, including uncertain noisy generated in process of training image generation or unsuitable
attribute values definition. This can be solved by detailed model design and more careful tuning.



Sensors 2018, 18, 1871 14 of 19

Table 3. Recognition rate of heated metal mark attributes.

Model Pre-Trained Data Augment
a1 a2 a3 a4 a5 a6 a7

traina testa traina testa traina testa traina testa traina testa traina testa traina testa

Inception-v4

yes no 0.96 0.58 0.98 0.27 0.97 0.81 0.98 0.20 0.98 0.33 0.98 0.41 0.98 0.31
yes yes 0.98 0.45 0.99 0.30 0.94 0.69 0.98 0.48 0.98 0.82 0.98 0.40 0.98 0.57
no no 0.98 0.72 0.92 0.82 0.99 0.80 0.95 0.49 0.99 0.85 0.98 0.62 0.91 0.83
no yes 0.96 0.92 0.98 0.90 0.98 0.83 0.97 0.85 0.99 0.92 0.97 0.78 0.95 0.91

Inception-v3

yes no 0.96 0.60 0.98 0.25 0.99 0.81 0.97 0.47 0.99 0.80 0.96 0.47 0.92 0.31
yes yes 0.99 0.72 0.97 0.40 0.99 0.81 0.99 0.53 0.99 0.87 0.99 0.54 0.99 0.34
no no 0.97 0.79 0.90 0.63 0.94 0.82 0.93 0.60 0.99 0.86 0.85 0.59 0.95 0.48
no yes 0.97 0.90 0.96 0.85 0.99 0.81 0.98 0.91 0.99 0.92 0.97 0.69 0.98 0.91

ResNet

yes no 0.98 0.56 0.98 0.53 0.99 0.80 0.99 0.15 0.98 0.67 0.98 0.40 0.98 0.24
yes yes 0.98 0.45 0.98 0.43 0.99 0.79 0.97 0.26 0.99 0.67 0.98 0.39 0.98 0.39
no no 0.90 0.72 0.94 0.41 0.92 0.80 0.94 0.48 0.99 0.68 0.85 0.61 0.93 0.73
no yes 0.93 0.89 0.90 0.83 0.94 0.83 0.94 0.65 0.98 0.73 0.94 0.73 0.91 0.90

VGG16

yes no 0.92 0.72 0.95 0.71 0.90 0.20 0.92 0.64 0.99 0.69 0.92 0.77 0.90 0.52
yes yes 0.96 0.68 0.97 0.65 0.98 0.21 0.96 0.49 0.99 0.74 0.96 0.60 0.94 0.55
no no 0.93 0.61 0.92 0.63 0.90 0.32 0.91 0.51 0.98 0.74 0.66 0.63 0.95 0.81
no yes 0.93 0.87 0.90 0.85 0.94 0.81 0.93 0.72 0.98 0.80 0.83 0.78 0.97 0.89

MobileNets

yes no 0.98 0.58 0.97 0.43 0.98 0.21 0.98 0.57 0.98 0.81 0.98 0.49 0.98 0.13
yes yes 0.97 0.73 0.98 0.55 0.99 0.38 0.98 0.66 0.98 0.79 0.97 0.61 0.99 0.34
no no 0.90 0.68 0.91 0.75 0.94 0.82 0.98 0.53 0.99 0.81 0.85 0.65 0.95 0.55
no yes 0.93 0.90 0.92 0.83 0.96 0.82 0.90 0.82 0.99 0.89 0.91 0.74 0.97 0.91
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4.3. Evaluation of Recognition Efficiency

In this subsection, individual class recognition efficiency ηi, average recognition efficiency ηa

and the overall recognition efficiency ηo are evaluated, which are defined in [44]. qij is the number of
samples of class i that was classified into class j. nc is the total number of classes and N is the total
number of samples, as shown in Equations (9) and (10).

ηi =
qii

∑nc
j=1 qij

(9)

ηa =
∑nc

i=1 ηi

nc
(10)

Table 4 gives the recognition efficiency of 5 different deep learning models. For convenient
evaluating, all models are configured with (0,1). The results show that Inception-v4 gets optimal
performance than other models which is coincide with results of Section 4.2. Moreover, individual
efficiency ηi has low variance and it also proves the stability of the model.

Table 4. Classification efficiency analysis.

Attribute Efficiency Inception-v4 Inception-v3 ResNet VGG16 MobileNets

a1

η1 0.93 0.87 0.88 0.89 0.91
η2 0.91 0.93 0.90 0.85 0.89
ηa 0.92 0.90 0.89 0.87 0.90

a2

η1 0.92 0.83 0.79 0.82 0.80
η2 0.91 0.84 0.84 0.86 0.84
η3 0.87 0.88 0.83 0.87 0.85
ηa 0.90 0.85 0.82 0.85 0.83

a3

η1 0.80 0.78 0.79 0.77 0.80
η2 0.83 0.85 0.86 0.84 0.83
η3 0.85 0.80 0.83 0.83 0.80
η4 0.84 0.81 0.84 0.81 0.85
ηa 0.83 0.81 0.83 0.81 0.82

a4

η1 0.80 0.88 0.60 0.68 0.80
η2 0.83 0.92 0.68 0.76 0.85
η3 0.87 0.90 0.70 0.75 0.79
η4 0.86 0.93 0.63 0.69 0.84
ηa 0.85 0.91 0.65 0.72 0.82

a5

η1 0.90 0.89 0.71 0.83 0.88
η2 0.94 0.95 0.75 0.77 0.90
ηa 0.92 0.92 0.73 0.80 0.89

a6

η1 0.75 0.66 0.70 0.73 0.71
η2 0.77 0.73 0.72 0.80 0.75
η3 0.82 0.68 0.77 0.81 0.76
ηa 0.78 0.69 0.73 0.78 0.74

a7

η1 0.87 0.90 0.88 0.87 0.88
η2 0.95 0.92 0.92 0.91 0.94
ηa 0.91 0.91 0.90 0.89 0.91

4.4. Evaluation of Optimization Method

In this subsection, performance of different optimization methods, Adam, Adagrad and SGD
are evaluated. For comparison, Inception-v4(0,1) is used as basic CNNs model structure, and other
parameters are the same as Section 4.2.

For the training process, Adam and SGD get better results on attributes a1, a2, a3, a5, a7. SGD gets
best result on attributes a4 and a6. While, Adagrad gets worst result on all attributes. For the testing
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process, the results are the same as the training process. This phenomenon may be originated from the
reason that SGD is simple but always works well for most tasks, and Adam and Adagrad are more
fragile in our study and it may needs more complex tuning.

4.5. Evaluation of Batch Size

Batch size is another important factor for training CNNs model. In this subsection, performance
of different batch sizes, 8, 12, 16, 24 and 32 are evaluated. For comparison, Inception-v4(0,1) is used as
basic CNNs model structure, and other parameters are the same as Section 4.2.

For training process, models with batch size = 8 convergences slow, especially on attributes a1, a2

and a4. Models with batch size = 12, 16, 24, 32 get good results. For testing process, we can see that
large batch size leads to better model training and generalization. Comparing with models trained in
Section 4.2 (batch size = 12), the performances of models trained with batch size = 32 are improved
with 0.5%, 0.8%, 0.5%, 0.7%, 0.8%, 2.5%, 0.9% for attributes a1 to a7 respectively. There is obvious
performance enhancement for attribute a6, while there are not much improvements for other attributes.

4.6. Evaluation of Execution Times

In this subsection, model execution time is evaluated. Training and testing time of 5 deep leaning
models with various batch sizes (8, 12, 16, 24 and 32) are tested. Table 5 shows that VGG16 model cost
the most execution time, with 2.67s, 3.05 s, 3.33 s, 3.67 s and 4.33 s for batch size of 8, 12, 16, 24 and
32 for each training iteration. MobiliNets gets the least execution time, with about 60% of VGG16’s.
Inception-v4 is the preferred model for its excellent performance and acceptable cost. For testing time,
MobiliNets has the minimal cost, 0.031s. Moreover, trade off is feasible according to diverse needs.

Table 5. Execution time (seconds).

Execution Time Batch Size VGG16 Inception-v4 Inception-v4 ResNet MobileNets

Training time

8 2.67 2.45 2.03 1.84 1.59
12 3.05 2.77 2.29 2.09 1.81
16 3.33 3.08 2.54 2.31 2.04
24 3.67 3.41 2.81 2.54 2.23
32 4.33 4.05 3.34 3.02 2.65

Testing time x 0.11 0.083 0.062 0.045 0.031

5. Conclusion and Future Works

Heated metals are usually retained at the fire scene, and their mark can be used as an important
trace for fire analysis. Traditional methods recognize attribute of heat metal mark mainly depend
on human expert with knowledge of physics and chemistry. This makes the work very difficult to
popularize and automate. This paper makes a case study on heated metal mark image attribute
recognition based on convolutional neural networks. The benchmark dataset for training and testing
is designed. For seven selected attributes, various CNNs architectures, parameters, training mode,
recognition efficiency and execution time are evaluated and analyzed. One of the greatest advantages
of this work is that the feasibility of attribute recognition on heated metal mark image based on top
CNNs models is studied. Through the study, we can conclude that it is possible to recognise attributes
of heated metal mark using the tuned deep CNNs model with an acceptable accuracy, and it can be
implemented for real time applications.

This study needs to be further improved. Our future works will focus on three aspects: (1) More
datasets will be generated to enrich the benchmarks; (2) recognition with multi-atrributes joint model
will be studied and (3) Works will be focus on customed CNNs models structure design, and more
fine-tuning techniques will be developed.
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