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Abstract: In light of the need for fine-grained, accurate, and timely urban land use information,
a per-field classification approach was proposed in this paper to automatically map fine-grained
urban land use in a study area within Haidian District, Beijing, China, in 2016. High-resolution
remote sensing imagery and multi-source social sensing data were used to provide both physical and
socioeconomic information. Four categories of attributes were derived from both data sources for
urban land use parcels segmented by the OpenStreetMap road network, including spectral/texture
attributes, landscape metrics, Baidu Point-Of-Interest (POI) attributes, and Weibo attributes.
The random forests technique was adopted to conduct the classification. The importance of each
attribute, attribute category, and data source was evaluated for the classification as a whole and
the classification of individual land use types. The results showed that a testing accuracy of 77.83%
can be achieved. The approach is relatively good at classifying open space and residential parcels,
and poor at classifying institutional parcels. While using solely remote sensing data or social sensing
data can achieve equally high overall accuracy, their importance varies in terms of the classification of
individual classes. Landscape metrics are the most important for open space parcels. Spectral/texture
attributes are more important in identifying institutional and residential parcels. The classification of
business parcels relies more on landscape metrics and social sensing data, and less on spectral/texture
attributes. The classification accuracy can be potentially improved upon the acquisition of purer
parcels and the addition of new attributes. It is expected that the proposed approach will be useful
for the routine update of urban land use information and large-scale urban land use mapping.

Keywords: urban land use classification; per-field classification; remote sensing; social sensing;
random forests

1. Introduction

Fine-grained urban land use information (urban land use types at a spatially disaggregated level)
is of great significance to urban planning, economic analysis, hazard and pollution analysis,
and environmental conservation [1–4]. There has been increasing demand for fine-scale urban land
use maps in the past several decades [5]. On the other hand, the timely acquisition of up-to-date
land use information is of equal importance, because the urban environment has been changing at
a greater pace, especially in rapidly developing regions [2]. Traditionally, the update of land use maps
has mainly relied on experienced analysts interpreting remote sensing images, topographic maps,
and building maps with the assistance of field survey and statistical data [6,7]. While this is labor-
and time-consuming, desirable and consistent land use information cannot be guaranteed due to the
various judgements and technical proficiency levels of analysts [4,7,8]. In sum, as a great challenge to
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urban land administration and planning, the derivation of fine-grained, accurate, and timely urban
land use information is needed to keep up with the pace of urban development, and to better assist
municipal administrations with their routine land use mapping assignments.

Remotely sensed images have become a major data source to map urban land use. Because of
the pixelated nature of remotely sensed images, urban land use classification was conventionally
conducted on a per pixel basis. However, the per-pixel classification is usually associated with
the “salt and pepper” effect, and can only handle spectral, texture, and contexture attributes well.
Furthermore, a pixel is not socially and functionally meaningful in the context of urban land use
classification. As opposed to per-pixel classification, per-field classification determines the land
use of each predetermined field instead of a pixel. A field, in the context of urban land use
classification, is a geographically meaningful region with relatively homogeneous socioeconomic
functions. Per-field urban land use classification can overcome the limitations of per-pixel classification,
and can incorporate field-only new attributes in the classification, such as the size, shape, and
statistics of the field. Many studies have demonstrated improved classification results using per-field
classification [9,10]. There are also classification approaches that integrate per-pixel and per-field
methods; however, they have only been applied to land cover classification instead of urban land use
classification [11–13].

In the era of big data, the advantages of per-field classification are even more outstanding.
While high spatial resolution remotely sensed images provide abundant and detailed information
on the spectral, textural, contextual, and spatial configuration of urban land cover [14,15], multiple
sources of social sensing data (e.g., social media, mobile phone, digital maps, and GPS trajectories)
make it possible to examine the socioeconomic and demographic characteristics of urban land [16–19].
It is more meaningful for a field, a thematically and functionally defined land use region, than for a pixel
to have socioeconomic and demographic attributes derived from social sensing data. The combination
of the two data sources takes into consideration both the physical and socioeconomic attributes of
a field, and thus is expected to hold great potential for providing better insights into urban landscape
patterns and for mapping urban land use more accurately [20]. However, most urban land use studies
relies solely on either remote sensing data [2,21] or social sensing data [22–25], but seldom on both [20].
Consequently, the importance of attributes derived from both data sources for use in classifying
different urban land use types is rarely addressed in the literature.

The fields used in per-field urban land use classification have been gradually evolving from
a traditional aggregated level (e.g., census tract or traffic analysis zone) to a more disaggregated level
(e.g., census block or land parcel) [5], so that more detailed land use information can be derived.
Smaller and more disaggregated fields are especially necessary for urban land use mapping in China,
as the representative land parcel size is much smaller in China than in many other countries, such as
Japan, Sweden, Canada, and the United States [26]. A highly-automated approach is needed to generate
socially homogeneous and more disaggregated fields for use in the routine update of urban land use
information and large-scale urban land use mapping.

In light of the issues, challenges, and knowledge gaps revealed above, two objectives were set for
this paper: (1) to develop a highly automated methodological framework integrating remote sensing
and social sensing data, and (2) to evaluate the importance of individual attributes, attribute categories,
and both data sources in fine-grained urban land use classification.

In this paper, a methodological framework was designed to automatically map fine-grained
urban land use in urban Haidian District, Beijing, China, in 2016, using both high-resolution remote
sensing data and multi-source social sensing data. Urban land use parcels (fields) were generated
automatically from OpenStreetMap road networks. The Gaofen-2 remotely sensed imagery was
used to calculate the spectral and texture attributes and landscape metrics for each parcel. Points Of
Interest (POI) data acquired from Baidu Maps (http://map.baidu.com) and geotagged Weibo posts
(http://www.weibo.com) were used to provide the socioeconomic and demographic attributes of
each parcel. The classification was conducted using the random forests algorithm. The importance of
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parcel attributes, attribute categories, and both data sources was assessed for the whole classification
and for the classification of individual land use types. Finally, the applicability and limitations of the
proposed approach were discussed, with the expectation to shed light on how to further improve the
classification results.

2. Methods

This section describes the study area of urban Haidian District, Beijing, China, and the data
sources of GaoFen-2 remotely sensed images and social sensing data. The methodological framework
to map fine-grained urban land use (Figure 1) was also introduced, including the generation of urban
land use parcels, the calculation of their attributes, per-field urban land use classification, and attribute
importance analysis.
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Figure 1. Diagram of the methodological framework of urban land use classification.

2.1. Study Area

The urban Haidian District in Beijing, China, was chosen as the study area (Figure 2).
Haidian District lies in the northwestern part of the urban core area of Beijing, China, and is the
second largest district in urban Beijing. It has 29 subdistricts, with 3 of them containing mostly rural
and urban–rural transitional areas. The road networks are sparse in the rural areas, leading to a much
reduced performance of segmented urban land use parcels than in the urban core area [27]. Therefore,
three rural subdistricts (Shangzhuang, Xibeiwang, and Sujiatuo) were excluded and the rest of the
urban Haidian District was used as the study area for automatic mapping of fine-grained urban land
use. The study area covers an area of about 195 km2. It is home not only to most universities in Beijing,
but also to many high-tech companies, famous attractions, and different types of residential areas,
creating a complicated urban landscape. It is expected that the method applicable to the study area
can also achieve desirable classification results in other areas.
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Figure 2. The study area of the urban Haidian District overlaid on a GaoFen-2 true-color image and
the location of the study area and Haidian District within Beijing, China.

2.2. Data Sources and Preprocessing

2.2.1. GaoFen-2 Remotely Sensed Imagery

GaoFen-2 (GF-2) is a high-resolution remote sensing satellite that was launched on 19 August
2014. The GF-2 satellite has two Panchromatic/MultiSpectral (PMS) sensors on board (PMS-1 and
PMS-2 with the same band designations). The band designation of GF-2 PMS is very close to that
of Landsat ETM+, with a swath of 45 km (Table 1). The spatial resolutions of the multispectral and
panchromatic bands are 4 m and 1 m, respectively.

Table 1. Spectral bands of GaoFen-2 (GF-2) Panchromatic/MultiSpectral (PMS) as compared with
those of Landsat ETM+.

Band
GF–2 PMS Landsat ETM+

Wavelength (µm) Resolution (m) Wavelength (µm) Resolution (m)

1: Blue 0.450–0.520 4 0.450–0.515 30
2: Green 0.520–0.590 4 0.525–0.605 30
3: Red 0.630–0.690 4 0.630–0.690 30
4: Near Infrared 0.770–0.890 4 0.775–0.900 30
5: Shortwave Infrared 1 − − 1.550–1.750 30
6: Thermal − − 10.40–12.50 60
7: Shortwave Infrared 2 − − 2.090–2.350 30
8: Panchromatic 0.450–0.900 1 0.520–0.900 15
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A GF-2 multispectral image acquired on 17 February 2016 was used to derive the spectral/texture
attributes and landscape metrics. The radiometric calibration was applied on the GF-2 image to convert
digital numbers to Top-Of-Atmosphere (TOA) reflectance using parameters provided by the China
Centre for Resources Satellite Data and Application (http://www.cresda.com/CN/index.shtml).
An atmospheric correction was conducted to convert the TOA reflectance to surface reflectance
using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypertube (FLAASH) module of the
Environment for Visualizing Images software (ENVI, Version 5.1). The image was then orthorectified
using the Rational Polynomial Coefficients (RPC) orthorectification module of ENVI 5.1.

The preprocessed GF-2 image was classified into impervious surface, vegetation, water, and barren
soil using an object-based classification method implemented by eCognition 8.7 (Trimble GmbH,
Raunheim, Germany). The GF-2 land cover classification provides the basis for the derivation of
landscape metrics. A total number of 50 100 m× 100 m sample regions was randomly selected, and the
land cover types of the pixels within these sample regions were identified by visual interpretation
in order to assess the accuracy of the land cover classification. The overall accuracy of the GF-2 land
cover classification reaches 84.1%.

2.2.2. Social Sensing Data

Two types of social sensing data were used in this paper, including the Baidu POI data and
geotagged Weibo data. The Baidu POI data were acquired in 2016 via the Application Programming
Interface (API) provided by Baidu Maps (http://map.baidu.com/), one of the most popular web
mapping services in China. A total number of 84,150 records of Baidu POIs was obtained within the
study area, belonging to the 17 classes of automotive, business, education, entertainment, financial,
food, government, healthcare, landmarks, lodging, media/arts, personal care, residence, retail, services,
sports, and transportation (Figure S1). Baidu POIs of these 17 classes were reclassified into the 4 classes
of open space, institutional, residential, and business in correspondence with the urban land use
classification system used in this paper (introduced later in Section 2.4). Weibo (or Sina Weibo) is the
largest microblogging social media platform in China. It is known as Chinese Twitter. Python scripts
were used to randomly crawl 504,816 geotagged Weibo posts, with their locations within the study
area and post times in 2016. These Weibo posts were partitioned into 16 three-hourly time bins based
on their post times, from 0:00–3:00 to 21:00–24:00 on weekdays and weekends. The spatiotemporal
pattern of Weibo posts can represent the daily activities of residents, and has been demonstrated to be
effective in discriminating urban land use types [20,28].

2.2.3. OpenStreetMap Road Network

OpenStreetMap (OSM) is one of the most popular collaborative mapping projects. As the pioneer
Volunteer Geographic Information (VGI) project that attracts the most public contribution, OSM has
collected abundant data, and the total road length and coverage of OSM are even superior to those of
some proprietary maps in some countries or regions [29,30]. The high positional accuracy of OSM in
urban areas has also been confirmed [31]. The free accessibility and reliability make OSM a promising
data source of generating urban land use parcels for automatic urban land use mapping.

2.3. Generation of Urban Land Use Parcels

The fields have to be generated before the per-field urban land use classification can be conducted.
There are several commonly used methods to delineate a fine-scale field boundary. The first one is to
use existing fields, such as census blocks or land parcels [2,7,32]. While these existing fields are usually
detailed and reliable, they are usually inaccessible (and often confidential) in China [8]. Furthermore,
they cannot meet the requirements of the routine update of urban land use maps, because only
the land use type can be updated, instead of field boundary change and land parcel integration or
separation. Traditional visual interpretation and manual digitization is another way to obtain the
fields [14], yet is time- and labor-consuming, and may lead to inconsistent field boundaries [7,8].

http://www.cresda.com/CN/index.shtml
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Image segmentation techniques produce fields with similar spectral and textural characteristics [33]
instead of the ones with homogeneous social functions, which are more meaningful in the context of
urban land use classification. In this paper, the OSM road network was used to segment the study
area into disaggregated fields: urban land use parcels with homogeneous socioeconomic functions.
It has been demonstrated that fields automatically segmented by road networks can yield satisfactory
per-field classification results [8,20,27].

A method proposed by Liu and Long [8] was adopted in this paper to generate the urban land use
parcels. Because OSM roads rely on crowdsourced contribution, their completeness is heterogeneous
across space [34]. Therefore, the OSM roads were firstly preprocessed (Figure S2) to derive more
meaningful parcels: first, the road segments were extended for as long as 100 m to deal with the issues
of a topologically disconnected road network; and second, dangling road segments were removed
because they cannot be connected to nearby road segments. According to the principal tags and
their relative importance (http://wiki.openstreetmap.org/wiki/Key:highway), the OSM roads were
classified into three levels, from the most important (Level 1) to the least important (Level 3). Based on
the investigation of road widths in the study area and the standards of the Ministry of Housing and
Urban-Rural Development of China, buffers with widths of 40 m, 20 m, and 10 m were generated
respectively for Level 1, Level 2, and Level 3 roads to create road space. The parcels were then derived
by removing the road space from the study area. The segmented parcels with an area below 5000 m2

were removed, so that less meaningful parcels (e.g., parcels surrounded by overpasses or roundabouts
and parcels too small to have socioeconomic functions) were excluded from the following classification
and analysis. A total number of 865 parcels were generated accordingly in the study area.

2.4. Classification System

This paper uses a classification system adapted from the Chinese land use classification
criterion (GB/T21010-2007). This criterion divides the built up land into eight Level 1 classes,
including residential, institutional/public service, business, industrial, warehousing, transportation,
public facilities, and open space. The eight classes were merged into four to form the classification
system used in this paper, because there are no or only few parcels of the classes of industrial,
warehousing, transportation, and public facilities within the study area [7]. The four classes were
not further divided into subclasses because of the limited number of samples in the study area.
While ensuring enough sample in each class for the development of a valid classification model,
the four-class system, as compared with one with a larger number of classes, also facilitates the attribute
importance analysis for the classification of individual classes (the second objective of this paper).

The class of open space includes parks, greenbelts, squares, water, agriculture, and vacant lands;
the institutional class includes educational, medical land, public services, and administrative offices;
the residential class includes urban residential areas (houses and apartments) and rural settlements;
and the business class includes office buildings, retail stores, hotels, recreational facilities, financial
services, and manufacturing/mining facilities.

2.5. Parcel Attributes

A total number of 60 parcel attributes were used in mapping fine-grained urban land use in
the study area, including 8 spectral and texture attributes, 24 landscape metrics, 12 Baidu POI
attributes, and 16 three-hourly Weibo post densities. Spectral/texture attributes include the mean,
standard deviation, kurtosis, and skewness, as well as four Gray-Level Co-Occurrence Matrix (GLCM)
texture measures of the near-infrared reflectance. The landscape metrics were derived from the land
cover classification map, describing the landscape composition, configuration, and aggregation of
each parcel. The mean and standard deviation of Baidu POI densities were derived from the kernel
density maps. The distribution pattern of Baidu POIs within each parcel was also calculated using
a nearest neighbor analysis. The kernel density maps of the three-hourly aggregated Weibo posts were
generated, and 16 attributes of mean kernel density were derived for each parcel.

http://wiki.openstreetmap.org/wiki/Key:highway
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2.5.1. Spectral and Texture Attributes

The spectral and texture attributes of the near-infrared (NIR) band were calculated for each parcel,
because the NIR band contains the most important information that differentiates vegetation and
built up regions [14]. The spectral attributes used in this paper include the mean, standard deviation,
kurtosis, and skewness of all pixel-wise near-infrared reflectance values in each parcel. The texture
attributes were calculated using Gray-Level Co-occurrence Matrix (GLCM). GLCM uses the adjacency
relationships between the gray levels of pixels to characterize the texture of an image [35]. This paper
used the window of 7 × 7 pixels to calculate the GLCM texture attributes, because this window
size was demonstrated to be suitable for urban land use classification using remotely sensed images
with spatial resolutions of 2.5–10 m [36]. The shift was set to five pixels (20 m), which represents
the average distance between urban land cover objects [37]. The texture measures of homogeneity,
dissimilarity, entropy, and second moment were calculated using the aforementioned parameter
settings, because these four texture measures have been identified as effective in distinguishing urban
land use types [36].

2.5.2. Landscape Metrics

Parcel-wise landscape metrics have been found to be among the most important in differentiating
urban land uses [14]. In this paper, 24 landscape metrics were calculated on the basis of the GF-2 land
cover classification (Table 2).

Table 2. Landscape metrics used in the urban land use classification [38].

Abbreviation Description

PLAND_i Percentage of parcel area comprised by impervious surface.

AREA_MN Mean patch size of all patches within the parcel.

AREA_MN_i Mean patch size of impervious surface patches within the parcel.

AREA_MN_v Mean patch size of vegetation patches within the parcel.

MESH_i Effective mesh size (i.e., a type of area-weighted mean patch size) of the impervious surface patches within the parcel.

MESH_v Effective mesh size (i.e., a type of area-weighted mean patch size) of the vegetation patches within the parcel.

ED Edge density within the parcel.

SHDI SHDI (Shannon’s Diversity Index) is a popular measure of diversity quantifying the landscape composition within the parcel.

SHAPE_SD Shape index of a patch measures the complexity of patch shape compared to a square of the same size. SHAPE_SD is the
standard deviation of shape index values of all patches within the parcel.

SHAPE_MN_i Mean shape index of the impervious surface patches within the parcel.

PD Patch density of all patches within the parcel.

PD_v Patch density of vegetation patches within the parcel.

LPI LPI is the largest patch index calculated as the percentage of parcel area comprised by the largest patch within the parcel.

CONTIG_MN Contiguity index assesses the spatial connectedness of cells within a patch. CONTIG_MN is the mean contiguity index of all
patches within the parcel.

ENN_MN Euclidean nearest-neighbor distance is a measure of patch isolation, measuring the distance of a patch to the near neighboring
patch of the same type. ENN_MN is the mean value of the Euclidean nearest-neighbor distances of all patches within the parcel.

ENN_SD Standard deviation of the Euclidean nearest-neighbor distances of all patches within the parcel.

CL_i Clumpiness index quantifies the disaggregation of corresponding patch type within the parcel. CL_i is the clumpiness index
of the impervious surface patch.

CL_v Clumpiness index of the vegetation surface patch.

COH_i Patch cohesion index measures the physical connectedness of corresponding patch type within the parcel. COH_i is the patch
cohesion index of the impervious surface patch.

COH_v Patch cohesion index of the vegetation patch.

AI_i Aggregation index is calculated from an adjacency matrix, which shows the frequency with which different pairs of patch
types appear side-by-side. AI_i is the aggregation index of the impervious surface patch.

AI_v Aggregation index of the vegetation patch.

LSI_i LSI_i is the landscape shape index of impervious surface patches, which measures the overall geometric complexity of
impervious surface patches.

GYR_SD_v Radius of gyration measures how far across the parcel a patch extends its reach. GYR_SD_v is the standard deviation of the
radius of gyration of all vegetation patches within the parcel.
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The landscape metrics were patch-based algorithms quantifying the spatial pattern and
configuration of different land cover types. A patch is a homogeneous region composed of pixels of the
same land cover type [14,39]. Because many landscape metrics are highly or even perfectly correlated,
a correlation analysis was conducted to select a suite of metrics that were not significantly correlated
with each other and can represent as many aspects of a landscape pattern as possible. In light of these
principles, a total number of 24 landscape metrics were selected, including 9 at the landscape level
and 15 at the class (single land cover type) level (Table 2). McGarigal [38] is referred to for detailed
explanation and the calculation algorithms of these landscape metrics.

2.5.3. Density and Spatial Pattern of Baidu POIs

The nonparametric Kernel Density Estimation (KDE) with a search radius (bandwidth) of 100 m
was applied to four classes of Baidu POIs to generate four layers of kernel density. KDE helps to
overcome the issues associated with possible spatial errors of POI locations or parcel boundaries.
The mean and standard deviation of kernel density of the four classes were calculated for all land use
parcels. Furthermore, an average nearest neighbor analysis was applied to the four classes of Baidu
POIs in order to classify the point pattern distribution of each parcel into a few points, dispersed,
random, and clustered.

2.5.4. Density of Geotagged Weibo Posts

Because only a limited amount of geotagged Weibo posts were collected, and there are possibly
spatial errors associated with these Weibo posts [40], a kernel density estimation with a search radius
of 100 m was also applied to each three-hourly bin of Weibo posts to generate 16 corresponding density
maps (two kernel density maps for the time bins of 9:00–12:00 and 21:00–24:00 on weekdays are shown
in Figure S3 as examples). The mean kernel density of Weibo posts during the 16 time bins was derived
for all parcels for use in the land use classification.

2.6. Urban Land Use Classification Using Random Forests

2.6.1. Sampling Design for Training, Validation, and Testing

The actual land use types of the 865 road-segmented parcels were identified by experienced
analysts based on high-resolution remote sensing images, online digital maps, street views, and a field
survey. Since it is inevitable for parcels to contain multiple land use types, the land use types of these
mixed parcels were determined as the majority land use type.

The parcels were split evenly between training and testing samples in each of the four land
use classes, creating a training sample with 432 parcels and a testing sample with 433 parcels.
The training sample was used for model development and for tuning model parameters through
repeated 10-fold cross validation. The optimized model was then applied to the testing sample for an
accuracy assessment.

2.6.2. Random Forests Model

The random forests model is a bagging ensemble learning algorithm well-established in the
literature of land use/cover classification [41–43]. Random forests models build numerous decision
trees, and each tree is built using a random subset of independent variables and a random sample of
the training dataset. The output is the class voted by most trees. The prediction accuracy of random
forests models is evaluated by the Out-Of-Bag (OOB) accuracy, which is the classification accuracy of
the left-out samples averaged over all trees [41,44]. Random forests models can be applied on large
datasets with a high efficiency, and can handle the “curse of dimensionality” very well. As a tree-based
ensemble classifier, a random forests algorithm can achieve higher classification accuracy than single
decision tree classifiers, such as C4.5 and Classification And Regression Tree (CART) [45]. It also
outperforms some currently popular algorithms, such as Support Vector Machines (SVM), in many
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cases without the need to optimize a large number of parameters [46–48]. Bagging and boosting are
two widely used ensemble methods. Although boosting methods have been reported to be more
accurate, they are sensitive to outliers and are much easier to overfit without abundant training
samples, because they give more weight to previously misclassified samples during iteration [45,49].
Therefore, the random forests model, as a bagging-based classifier, was chosen over the boosting ones,
such as AdaBoost and JointBoost.

The optimization of random forests models requires two finely-tuned parameters: mtry and ntree.
The parameter mtry is the number of variables randomly chosen to split nodes, and ntree is the number
of trees in the forest. In this paper, mtry is set to range from 1 to 35 with an interval of 2, and ntree from
500 to 6000 with an interval of 500. The parameters mtry and ntree were optimized using 50-repeated
10-fold stratified cross validation. In a 10-fold stratified cross validation approach, the training sample
was randomly partitioned into 10 equal-sized subsamples with approximately the same proportion
of each of the land use classes. In each of the 10 iterations, one subsample was held out in turn for
validation, while the other 9 were held out for model training. Because of the randomness associated
with the partition and random forests models, 10-fold stratified cross validation was repeated using
different partitions 50 times for each combination of mtry and ntree. A mean validation accuracy was
derived by averaging the 500 (50 × 10) validation accuracies, and the combination leading to the
highest mean validation accuracy was deemed the best parameter. The optimized random forests
model was then built using these values of mtry and ntree, and applied to the testing sample for an
accuracy assessment.

2.6.3. Attribute Importance Analysis

One advantage of the random forests model that makes it superior over many other classification
algorithms is that it can generate an estimate of the relative importance of independent variables.
This paper uses the metric of mean decrease in accuracy to quantify the importance of parcel attributes,
as it is more reliable than the mean decrease in the Gini index [44]. The importance of parcel attributes
was evaluated for the whole land use classification and for the classification of single classes. Five types
of random forests models were built to fulfill this purpose, with the dependent variables being
respectively the four-level urban land use class and binary variables discriminating a particular class
and other classes. The attribute importance evaluation was conducted by generating the importance
rankings of parcel attributes and identifying sets of important attributes using the “Variable Selection
Using Random Forests for interpretation” (VSURF) approach proposed by Genuer et al. [50].

Aside from the importance of individual parcel attributes, the importance of different categories
of attributes was also evaluated. In this paper, four categories of parcel attributes were used for urban
land use classification, including spectral/texture, landscape metrics, Baidu POI, and Weibo attributes.
Random forests models were built using single categories and different combinations of categories,
resulting in four models using one category, six models using two categories, and four models using
three categories. Each model was run 50 times to attenuate the uncertainties associated with random
forests models, so that more stable mean overall producer’s and user’s accuracies can be derived from
the confusion matrices for the testing dataset. These accuracies were compared with the ones acquired
using all attributes to evaluate the importance of different categories of parcel attributes in the whole
classification and in the classification of individual classes.

3. Results

3.1. Classification Results

The mean validation accuracy of the random forests models with different combinations of mtry
and ntree ranges from approximately 70% to 74%. As indicated by Figure 3, initially the accuracy
increases with a larger ntree, yet tends to stabilize beyond 2000 trees. There exists an optimal range
of mtry, and higher accuracies can be achieved when mtry is between 5 and 11. The highest mean
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validation accuracy appears at mtry = 9 and ntree = 3000. Therefore, this combination of mtry and
ntree was used to conduct the urban land use classification within the study area.Remote Sens. 2017, 9, 865  10 of 23 
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The random forests model was built using the training dataset with 432 parcels. The testing
dataset with 433 parcels was used to assess the accuracy of the random forests model in mapping
fine-grained urban land use in the study area. The OOB accuracy and testing accuracy reaches 72.92%
and 77.83%, respectively. It can be noted that the testing accuracy is much higher than the OOB
accuracy. This is probably because of the relatively small training dataset [51]. The confusion matrix
for the testing dataset is shown in Table 3.

Table 3. Confusion matrix for the testing dataset.

Predicted
Actual

Open Space Institutional Residential Business User’s Accuracy

Open space 77 4 8 4 82.80%
Institutional 1 35 14 4 64.81%
Residential 1 15 159 10 85.95%

Business 4 18 13 66 65.35%
Producer’s accuracy 92.77% 48.61% 81.96% 78.57% 77.83%

Out of the four land use types, open space and residential can be classified relatively well,
with both the user’s and producer’s accuracy above 81%. On the other hand, the parcel attributes
and classification approaches used in this paper have difficulties in accurately classifying institutional
parcels. Some per-field urban land use classification studies have also reported that it is most difficult
for institutional parcels to be separated from other urban land use parcels [2,7]. The confusion
matrix showed that the institutional parcels can be easily confused with residential and business
parcels. This is probably because each land use type contains many subtypes, and this heterogeneous
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nature easily leads to the confusion. For example, some government complexes or universities
(institutional parcels) have very similar spectral/texture attributes and landscape metrics with business
parks or office parks (business parcels).

Figure 4 displays the misclassified parcels as well as the actual and predicted land use in the
study area. The residential and institutional parcels were interweaved and mostly clustered in the
southeastern part of the study area. Another residential concentration is located in the northeastern
part. A large connected area of open space is located in the west and between the two residential
concentration areas. Business parcels were sporadically distributed across the study area. As shown
in Figure 4a, the misclassified open space parcels were generally much smaller, with a mean parcel
area of 0.11 km2, as compared to 0.36 km2 for all open space parcels. On the contrary, misclassified
business parcels were mostly larger ones, with a mean area of 0.13 km2 as opposed to 0.08 km2 for
all business parcels. This indicates that it is more difficult for smaller open space parcels and larger
business parcels to be accurately classified. Despite the opposite tendencies, the reasons are possibly
the same: mixed parcels (parcels with mixed functions). Smaller open space parcels are generally
located in more developed areas with dense road networks, and are most likely the combination of
small green space and buildings (Figure S4a). Similarly, it is more likely for larger business parcels to
contain other land use types (Figure S4b). The influence of mixed parcels on the classification accuracy
is discussed further in the Discussion section.

3.2. Rankings of Attribute Importance and Sets of Important Attributes

Figure 5 shows the ordered attribute importance for the whole classification and for the
classification of the four individual land use classes. There are a total number of 26 attributes
identified as important for urban land use classification by the VSURF approach (Figure 5a), including
10 landscape metrics, 6 spectral/texture attributes, 3 Baidu POI attributes, and 6 Weibo attributes.
The landscape metrics and spectral/texture attributes are much more important than the other
two categories of attributes in terms of both the number and rankings of important attributes.

The number of important attributes is the fewest for the classification of open space parcels,
including only two landscape metrics, two spectral/texture attributes, and one Baidu POI attribute
(Figure 5b). High accuracies can be achieved using only a limited number of attributes, suggesting that
open space parcels are relatively easy to identify. The most important two attributes for the classification
of open space parcels are consistent with those for the whole classification, being PLAND_i, and AI_v.

A total number of 25 attributes were identified as important for the classification of institutional
parcels. The mean reflectance of the near infrared band is the most important, followed by the
mean business POI density and a series of landscape metrics. The most important Weibo attribute
is the Weibo post density between 06.00 and 09.00 on weekends, with a ranking of 7. Intriguingly
enough, the classification of intuitional parcels relies more on business POIs than on institutional POIs.
This can be attributed to the unbalanced distribution of the number of POIs among different categories.
The number of institutional POIs is much lower than that of business POIs, and many institutional
parcels are associated with only a limited number of institutional POIs. This attenuates the ability of
institutional POIs to discriminate between institutional and non-institutional parcels.

The classification of residential parcels relies mainly on spectral/texture attributes, with six out of
eight spectral/texture attributes regarded as important. Weibo attributes stand out in the classification
of residential parcels, with 10 out of all 16 regarded as important. Notably and interestingly, the more
important Weibo attributes (with rankings from 8 to 13) cover two continuous periods of 03:00 to
09:00 on weekends and 06:00 to 18:00 on weekdays, i.e., early morning on weekends and daytime
on weekdays, indicating that these time periods are important in distinguishing residential parcels
from other parcels. Landscape metrics are less important for identifying residential parcels than other
parcels. As expected, the three POI attributes identified as important are the three residential POI
attributes, demonstrating the importance of residential POI attributes in classifying residential parcels.
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Figure 5. Ordered attribute importance for the whole classification (a), and for the classification of open
space (b), institutional (c), residential (d) and business parcels (e) (important attributes marked in black
border). Abbreviations: NIR_Kurt, NIR_Skew, NIR_MN, and NIR_SD are the kurtosis, skewness, mean,
and standard deviation of the near infrared reflectance, respectively; HOM, DSIM, ENT, and SMOM,
are the Gray-Level Co-occurrence Matrix (GLCM) texture measures of homogeneity, dissimilarity,
entropy, and second moment, respectively; Table 2 is referred to for the abbreviations of landscape
metrics; *_MN, *_SD, and *_Patt are the mean and standard deviation of kernel density of, as well as the
point pattern of Points of Interest (POIs) belonging to category *, and the categories BUSI, INST, OPSP,
and RESID represent business, institutional, open space, and residential POIs, respectively; WDAY_xx
and WEND_xx represent respectively the mean kernel density of Weibo posts between xx and xx + 3
o’clock on weekdays and weekends.

Business parcels have 16 important attributes. Landscape metrics are the most important with
the top two attributes and 7 out of 16 important attributes being landscape metrics. Five out of the
seven important landscape metrics are class-level ones computed for impervious surface patches,
indicating that the landscape pattern of an impervious surface is important for identifying business
parcels. Spectral/texture attributes are not as important in the classification of business parcels.
Weibo attributes reach the highest ranking of 3 among all land use types. The three Weibo attributes
included in the set of important attributes cover a time period of 12:00 to 21:00 on weekdays, indicating
the spatiotemporal pattern of Weibo user activities during weekday afternoons and evenings is
important in separating business parcels from other ones.
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3.3. Importance of Attribute Categories

Table 4 shows the overall producer’s and user’s accuracies of classifications using different
combinations of attribute categories. The last row in Table 4 shows the testing accuracies of the
random forests models using all four categories of attributes (full model) consistently with Table 3.
To facilitate the comparisons, the rows above present the deviation of the accuracies of one-, two-,
and three-attribute-category models (subset models) from the corresponding accuracies derived using
all attributes. Generally, the addition of new attribute categories increases the overall accuracy:
the overall accuracy deviations of the one-, two-, and three-attribute-category models are −11% to
−19%, −6% to −9%, and −4% to −5%, respectively. This indicates that each of the four attribute
categories is useful in the per-field urban land use classification.

Table 4. Overall producer’s and user’s accuracies of urban land use classification using different
combinations of attribute categories (OA: overall accuracy; PA: producer’s accuracy; UA: user’s accuracy;
ST: spectral/texture attributes; LM: landscape metrics; POI: Baidu POI attributes; WB: Weibo attributes).
Accuracies of one-, two-, and three-attribute-category models are presented as deviations from the
ones using four attribute categories.

Attribute Categories
OA
(%)

OpenSpace Institutional Residential Business

ST LM POI WB PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

1
√

−11 −6 −5 −8 −14 −6 −10 −29 −19
2

√
−18 −4 1 −19 −38 −27 −12 −8 −16

3
√

−15 −23 −13 −10 −29 −15 −10 −9 −8
4

√
−19 −33 −25 −12 −29 −15 −19 −20 −3

5
√ √

−8 −3 4 −5 −20 −14 −3 −1 −10
6

√ √
−6 −9 −3 −7 −9 −5 −7 −5 −6

7
√ √

−9 −19 −7 −9 −16 −2 −10 −15 −5
8

√ √
−9 0 1 −8 −21 −14 −7 −7 −10

9
√ √

−6 −2 2 −4 −17 −9 −4 −4 −5
10

√ √
−9 −16 −11 −4 −15 −6 −10 −13 −1

11
√ √ √

−5 0 1 −4 −12 −9 −3 −1 −7
12

√ √ √
−3 −2 0 0 −10 −4 0 −3 −3

13
√ √ √

−4 −16 −7 −5 −3 1 −5 −5 −2
14

√ √ √
−4 0 1 −1 −15 −6 −2 −5 0

15
√ √ √ √

78 93 83 49 65 82 86 79 65

The deviations of producer’s and user’s accuracies for the individual land use classes as influenced
by different category combinations vary more widely than those of the overall accuracy. This indicates
that the divergent influence of different categories is more pronounced on the classification of
individual classes. Landscape metrics are of ultimate importance to the classification of open space
parcels, as the inclusion of them can dramatically increase both the producer’s and user’s accuracies.
Spectral/texture attributes are important for the classification of institutional and residential parcels,
while they are the least important for business parcels.

While using only remote sensing data and only social sensing data can achieve comparable
overall accuracies (with the accuracy deviations being −8% and −9% for combinations 5 and 10),
the importance of remote sensing and social sensing data in classifying different urban land use types
varies as can be deduced from Table 4. Remote sensing data are noticeably more important than social
sensing data for open space parcels, and are slightly less important for institutional data, as they lead to
a slightly lower user’s accuracy. Remote sensing data is more important in reducing the false positives
for residential parcels and false negatives for business classes, while the effects of social sensing data
behave in the opposite way.
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4. Discussion

4.1. Marginal Effects of Important Parcel Attributes

As analyzed in Sections 3.2 and 3.3, the improved classification of different land use types
is dependent on different parcel attributes belonging to different categories. In this section, a partial
dependence plot was used to further analyze the probability of a parcel being classified as
a particular land use type as influenced by different parcel attributes [47,52]. Figure 6 illustrates
the partial dependence plots of the three most important attributes for the classification of the
four individual classes.

As suggested by both Figure 5 and Table 4, the landscape metrics are the most important for
the classification of open space parcels. Specifically, PLAND_i and AI_v, as two landscape metrics,
are the two most important attributes. When the percentage of impervious surface of a parcel is below
30%, there is about an 80% probability for this parcel to be classified as open space. On the other
side, when PLAND_i is above 50%, it is much less likely for this parcel to be classified as open space.
It is also favorable for a parcel to be classified as open space if the vegetation patches within it are highly
aggregated. The third important attribute, entropy, makes sure that a parcel with high entropy values
(>3.5) can be concluded as non-open space with great certainty. A careful examination of the partial
dependent plots reveals that there always exists an optimal range for all nine attributes that can separate
open space and other parcels very well (i.e., the range with highly different probabilities between open
space and other parcels), which explains the much higher accuracy associated with open space parcels.

The probability range for institutional parcels is among the smallest, indicating that the variations
of attributes used in this paper cannot discriminate institutional parcels very well. For example,
the probability of a parcel being classified as institutional ranges from about 60% to 70% at different
values of second moment, while the range is from less than 10% to about 50% for open space parcels.
Spectral/texture attributes appear to be the most important category, while NIR_MN, as one of the
spectral/texture attributes, is the most important single attribute. The probability of a parcel being
classified as institutional is the highest (about 70%) when the near infrared reflectance is between
about 15% and 20%. However, the probability is almost equally high for the parcel to be classified as
residential within this range of the near infrared reflectance. Explicitly, this range has a high probability
and a low separability for the institutional class. Though Baidu POI appears to be a less important
category, the mean kernel density of business POIs ranks second. However, the second important
attribute cannot identify business parcels very well, as the probability only ranges from about 60%
to 67%. The partial dependence curve of the third important attribute, PLAND_i, for institutional
parcels is almost identical to that for residential ones, indicating that PLAND_i has limited separability
between institutional and residential parcels. The small probability range and low separability of the
parcel attributes caused the low accuracies associated with the institutional parcels.

Spectral/texture and Baidu POI attributes are more important for residential parcels. Two texture
attributes and one Baidu POI attribute constitute the three most important attributes. It is most likely
for a parcel to be classified as residential at very low values of second moment and very high values of
entropy, with probabilities of more than 80%. Naturally, a parcel with higher residential POI densities
is more likely to be classified as residential.

The top three most important attributes for business parcels include two landscape metrics and
one Weibo attribute. The partial dependence curves of AI_i and PLAND_i indicate that business parcels
are expected to be associated with a high proportion of impervious surface area and highly aggregated
impervious surface patches. It is more likely for a parcel with a higher population density between
18:00 and 21:00 during weekdays to be classified as a business parcel. The plots for all three of the most
important attributes share a similar pattern. That is, the probability for business parcels is much lower
at small values of these attributes as compared with those for institutional and residential parcels.
This indicates that it is more likely for a parcel to be identified as non-business in these situations.
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Figure 6. Partial dependence plots of the three most important attributes for the classification of different land use types: NIR_MN (a), ENT (b), SMOM (c),
PLAND_i (d), AI_i (e), AI_v (f), BUSI_MN (g), RESID_MN (h), and WDAY_18 (i). NIR_MN: mean reflectance of the near infrared band; ENT: entropy; SMOM: second
moment; BUSI_MN and RESID_MN: mean kernel density of business and residential POIs, respectively; WDAY_18: mean kernel density of Weibo posts between
18:00 and 21:00 on weekdays. Table 2 is referred to for the abbreviations of landscape metrics PLAND_i, AI_i, and AI_v.
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4.2. Issues Associated with Road-Segmented Parcels

There are inherent drawbacks with parcels generated using a road network. The quality of the
final segmented parcels is highly dependent on the quality and intensity of the road network. In sum,
both over-segmentation and under-segmentation can cause various issues impeding parcels from
being correctly classified.

Parcels segmented by roads may be associated with the partial function issue. This was caused
by a complete parcel being segmented into several individual subparcels with only partial functions.
This is usually associated with the over-segmentation or the function separation phenomenon itself
in reality. For example, a university may be segmented into several parcels by roads (an example
of Peking University shown in Figure S4c. One parcel may be composed mainly of student, staff,
and faculty housing, and another composed of teaching and administration facilities. That is, each
parcel only has partial function of the university. While the actual land use type of these parcels is
identified as institutional because they all belong to a university, they can be wrongly classified as
other types because they may have similar attributes with business or residential parcels.

An opposite issue to over-segmentation is under-segmentation. This may be caused by the data
quality of the road network, i.e., sparse road networks (Figure S4d). Under-segmentation is also
associated with the fact that parcels are not necessarily separated by road networks in reality, but rather
walls, fences, trees, or even nothing. This is an even harder situation to handle than sparse road
networks, because these non-road boundaries are seldom associated with Geographical Information
System (GIS) data, and can be hardly identified using remotely sensed images. Under-segmentation
makes mixed parcels (parcels with mixed functions) an inevitable issue in automatic per-field urban
land use classification. Mixed parcels may not exhibit the attributes of their majority function, but rather
the attributes of another function. Because the actual land use type is identified as the majority type,
the mixed parcels are expected to be a major issue influencing classification accuracy. The next section
focuses on evaluating the influence of mixed parcels on classification accuracy.

4.3. Influence of Mixed Parcels on Classification Accuracy

In order to evaluate the influence of mixed parcels on classification accuracy, road-segmented
parcels were compared with land use regions manually delineated by experienced analysts.
The manually delineated regions have more homogeneous urban functions, and therefore were regarded
as pure so that a metric can be designed to quantify the mixture degree of each road-segmented
parcel. The proportion taken up by the largest land use region within each road-segmented parcel
was used to indicate the degree of mixture, and is referred to as pure index hereinafter. A parcel with
a larger pure index is purer and less mixed.

As shown in Figure 7, there are about 30% highly pure parcels with a pure index over 95%.
Parcels with pure index values over 75%, i.e., moderately pure parcels, make up over half of the
total parcels. These suggests that the OSM road network did an adequate job in deriving pure land
use parcels.

The pure index of 75% was used as the threshold between the pure and mixed parcels, leading
to roughly half pure and half mixed parcels. This guaranteed that there are enough samples for both
categories of pure and mixed parcels so that reliable results can be derived. The confusion matrices
(Table 5) were derived from the classification results (Figure 4b,c) for both the mixed and pure parcels
to quantitatively access the influence of mixed parcels on the classification accuracy.

As can be seen from Table 5, the overall accuracy of mixed parcels is much lower than that of pure
parcels, indicating that the mixed functions within parcels caused by under-segmentation is one of the
major factors influencing classification accuracy. Both the producer’s and user’s accuracies of business
parcels and the user’s accuracy of institutional parcels were dramatically increased, by approximately
24%, for pure parcels. This implies that lower mixture degrees of parcels can significantly decrease the
possibility of other parcels being classified as institutional or business parcels and the possibility of
business parcels being classified as other parcels.
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Table 5. Confusion matrices of urban land use classification using mixed and pure parcels.

Mixed Parcels (Pure Index ≤ 75%)

Actual Predicted Open Space Institutional Residential Business User’s Accuracy

Open space 78 3 6 5 84.78%
Institutional 0 31 20 12 49.21%
Residential 2 20 151 11 82.07%

Business 4 19 19 42 50.00%
Producer’s accuracy 92.86% 42.47% 77.04% 60.00% 71.39%

Pure Parcels (pure index > 75%)

Actual Predicted Open Space Institutional Residential Business User’s Accuracy

Open space 62 7 10 3 75.61%
Institutional 1 35 7 5 72.92%
Residential 2 15 162 8 86.63%

Business 4 13 12 81 73.64%
Producer’s accuracy 89.86% 50.00% 84.82% 83.51% 79.63%

4.4. Limitations and Possible Improvements

Based on the actual land use in the study area and the objectives of this paper, a four-class system
was designed. However, the possible heterogeneity between subclasses within the same class and the
possible similarity between subclasses in different classes may pose potential difficulties in achieving
a higher classification accuracy. Better classification performance may be expected from the adoption
of a larger number of more easily separable classes given that more land use classes are present and
abundant samples are available.

Only one out of the four bands of the GF-2 image was used to calculate the spectral/texture
attributes of each parcel, since multicollinearity can cause biased and unreliable variable importance
estimation. When a higher classification accuracy is the sole objective, more spectral/texture attributes
and remote sensing-derived indices can be calculated from high-resolution satellites with more bands
(e.g., WorldView-2/3) to support better classification performance.

The methodological framework proposed in this paper for fine-grained urban land use
classification is relatively good at classifying open space and residential parcels, and poor at classifying
institutional parcels. The difficulties associated with the classification of institutional parcels have
also been reported in some other per-field urban land use classification studies [2,7]. The difficulties
may be due to the heterogeneous nature of institutional parcels; therefore, one way to improve the



Remote Sens. 2017, 9, 865 20 of 23

classification accuracy is to map subclasses and then merge. Another possible way, as discussed in
Section 4.3, is to decrease the mixture degree of parcels, which can dramatically increase the user’s
accuracies of institutional parcels.

Although social sensing data has been widely used to map urban land use, they are known to
suffer from positional inaccuracy bias. In the case of Weibo, the location information recorded in
the geotagged Weibo posts in the form of latitude and longitude is selected by users from a list of
nearby POI names. The influence of positional inaccuracy was further alleviated by the use of urban
land use parcels as the basic classification unit, and by the adoption of kernel density estimation and
temporal aggregation. Despite of the positional inaccuracy bias, the social sensing data are currently the
only reliable data sources to represent temporally and spatially fine-grained population distribution,
and including them is more beneficial than excluding them, as demonstrated by the results of this
paper. However, the issues associated with them should be borne in mind when they are used.

5. Conclusions

This paper used four types of attributes derived from both high-resolution remotely sensed images
and social sensing data to automatically map fine-grained urban land use using a per-field classification
approach in the study area within Haidian District, Beijing, China. The overall testing accuracy of the
classification reached 77.83%, demonstrating that the combination of remote sensing and social sensing
data is capable of accurately detecting fine-grained urban land use pattern. Specifically, open space
and residential parcels can be classified with high accuracy. Accuracy for business parcels is slightly
lower, yet can be potentially improved if purer parcels can be acquired. The accuracies for institutional
parcels is the lowest, possibly due to their heterogeneous nature.

The importance of all attributes for the whole land use classification and for the classification
of each individual class was evaluated using the VSURF approach and via the accuracy comparison
between the full model and subset models. The results showed that using only remote sensing
data and only social sensing data can achieve equally high accuracy in the per-field classification,
but their effectiveness in classifying individual classes differs. Landscape metrics is the most
important of all attribute categories for the classification of open space parcels. Spectral/texture
attributes are more important in distinguishing institutional and residential parcels from other parcels.
The classification of business parcels relies more on landscape metrics and social sensing data, and less
on spectral/texture attributes.

The approach to automatically map fine-grained urban land use can be applied to other regions
with reliable OSM road networks and easily accessible social sensing data, and can fulfill the increasing
demands for the up-to-date fine-grained urban land use information. The classification approach in this
paper is among the first attempts to combine high-resolution remote sensing images and multi-source
social sensing data. A comprehensive set of traditionally used and newly proposed parcel attributes
were calculated from both data sources, so that physical, spatial configuration, socioeconomic, and
demographic attributes can be taken into consideration all together during classification. The attribute
importance analysis and partial dependence plots shed light on the key factors for classifying each
individual class more accurately, and on which new attributes are needed to further improve the
classification accuracy. The accuracy can also be potentially improved upon the acquisition of purer
urban land use parcels, which is expected to be much easier in the future with the development of
OSM or other VGI maps.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/9/865/s1.
Figure S1: All Baidu POIs within the study area of urban Haidian District; Figure S2: Preprocessed OpenStreetMap
road network within the study are of urban Haidian District; Figure S3: The kernel density of Weibo posts during
9:00–12:00 (a) and 21:00-24:00 (b) on weekdays within the study area of urban Haidian District; Figure S4: Examples
of misclassified open space parcels, misclassified business parcels, over-segmentation, and under-segmentation;
Baidu Points-of-interest within the study area in the format of shapefile.
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