
sensors

Article

An Ontology-Based Reasoning Framework for
Querying Satellite Images for Disaster Monitoring

Marjan Alirezaie *, Andrey Kiselev ID , Martin Längkvist ID , Franziska Klügl and Amy Loutfi

Center for Applied Autonomous Sensor Systems, Örebro University, 702 81 Örebro, Sweden;
andrey.kiselev@oru.se (A.K.); martin.langkvist@oru.se (M.L.); Franziska.Klugl@oru.se (F.K.);
amy.loutfi@oru.se (A.L.)
* Correspondence: marjan.alirezaie@oru.se

Received: 20 September 2017; Accepted: 2 November 2017; Published: 5 November 2017

Abstract: This paper presents a framework in which satellite images are classified and augmented
with additional semantic information to enable queries about what can be found on the map at
a particular location, but also about paths that can be taken. This is achieved by a reasoning
framework based on qualitative spatial reasoning that is able to find answers to high level
queries that may vary on the current situation. This framework called SemCityMap, provides the
full pipeline from enriching the raw image data with rudimentary labels to the integration of
a knowledge representation and reasoning methods to user interfaces for high level querying.
To illustrate the utility of SemCityMap in a disaster scenario, we use an urban environment—central
Stockholm—in combination with a flood simulation. We show that the system provides useful
answers to high-level queries also with respect to the current flood status. Examples of such queries
concern path planning for vehicles or retrieval of safe regions such as “find all regions close to
schools and far from the flooded area”. The particular advantage of our approach lies in the fact that
ontological information and reasoning is explicitly integrated so that queries can be formulated in a
natural way using concepts on appropriate level of abstraction, including additional constraints.

Keywords: satellite imagery data; natural hazards; ontology; reasoning; path finding

1. Introduction

Reliable and automated satellite image classification is of increasing importance for disaster
management and climate change monitoring. In addition to the recognition of objects and entities in
satellite images, it is also important to be able to reason about these entities and eventually answer
queries posed by human operators in order to guide decision making processes.

An important enabler for automated reasoning and also for human machine interaction is that
the images contain semantic annotations upon which intelligent and automated retrieval or planning
processes can rely. These semantic annotations are typically based on pre-defined concepts about
objects and entities. They should also contain rich domain knowledge and information about relations
between the concepts in order to facilitate more complex and elaborate reasoning. Examples of such
reasoning could be the reasoning about spatial and temporal information between and about objects.
In natural disaster situations, e.g., a flood, the duration of rescue activities, such as finding safe areas,
or navigation-related tasks, can be considerably reduced by enabling machines to do such automated
reasoning processes.

This paper presents a complete framework, SemCityMap, which takes as input large scale satellite
images and automatically extracts and enriches semantic annotations to facilitate a variety of tasks
such as retrieving regions with specific (e.g., spatial) features, or finding paths between two specific
areas. The city that we used for illustrating the features of the framework is Stockholm. According to

Sensors 2017, 17, 2545; doi:10.3390/s17112545 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0305-3728
https://orcid.org/0000-0002-0579-7181
http://dx.doi.org/10.3390/s17112545
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 2545 2 of 25

the recent studies of climate researchers [1], many different parts of Stockholm are under risk for floods.
This is mainly because of an increase in the average temperature which causes more rain in autumn
and winter. Thus, the scenario of a flooded Stockholm is actually realistic. Therefore, we have defined
a disaster scenario in which the central part of Stockholm is mostly covered by water.

In the proposed framework, first, a convolutional neural network (CNN) is used to provide rapid
classification of entities in the map using pre-defined rudimentary categories (roads, building, trees etc.).
The map with these initial labeling is augmented with additional information from publicly available
sources in order to extract addresses, affordances, and other high-level knowledge. By organizing this
information in ontologies, the reasoning framework exploits the combination of explicitly defined
domain knowledge in form of ontology patterns with up-to-date situational information extracted
from the satellite images. Thus, the overall system is able to answer high-level queries about the
current status and situation in the map. Due to the ontological reasoning involved, queries can contain
concepts that do not directly correspond to original labels, as well as involve complex combinations of
additional conditions. They may include even features of the situation before the disaster.

The main contributions of this work are:

1. We propose a principled approach to semantically enrich annotations in a map by geometrically
aligning classification output from a CNN to publicly available geo-data.

2. Instead of building our own ontology from scratch, we show how to reuse publicly available
geo-related ontologies in order to represent geometry, spatial relations and affordances of entities.
This extension is called OntoCity.

3. We demonstrate the framework, SemCityMap, for path finding tasks in a flood scenario where
high-level semantics are integrated into the path finding algorithm per se.

4. We evaluate query performance under different conditions formulated in the queries.
These conditions involve spatial relations, connectivity, and the classification of the entity in the
map (buildings, roads, schools, etc.).

Before presenting related work, we briefly explain what it actually means for the SemCityMap
framework to be based on ontological reasoning.

1.1. Ontology-Based Reasoning

In both the fields of Geography Information System (GIS) and Remote Sensing (RS), ontologies are
being increasingly used as a semantic representational model [2]. Semantic models in general define
a domain of discourse in the form of relevant concepts along with their relations and constraints [3].
Such an ontological representation can help to reduce the semantic gap between different abstraction
levels of data [4], that in case of GIS can range from the digital satellite imagery data of a scene under
process, to the symbolic information in the form of objects or physical entities in the scene.

Ontological relations which are in the form of logic-based axioms are used by reasoning methods
in order to infer both implicit and explicit information. For instance, with a user-given a concept,
an ontology-based reasoning process understanding the ontology languages is able to retrieve more
general/specific concepts using the subsumption relations between concepts. Relations between
concepts can be more complicated and specify further features (e.g., in the form of logical constraints)
about the concept by relating it to the others. For instance, let us assume that an ontology designed to
represent geo-related concepts contains concepts such as river, building, road, bridge, etc. The concept
bridge can be more (e.g., geometrically) related to the concept river as bridges may be built to cross
rivers, connecting two shores. If such relation along with further geometrical/spatial or topological
information (e.g., defining what is a “shore”) is added to the ontology, a reasoner can infer for which
instances on the map the relation holds and thus identify an object as a bridge. This provides not just
a high-level language to talk about what can be found on a map, but enables to add common-sense
knowledge about the current situation. Such explicit definition of concepts and relations supports
reusability of ontological information.

Sensors 2017, 17, 2545 3 of 25

Ontological reasoning whose performance mainly relies on the proper definition of concepts and
their relations can benefit from the general reusability of ontologies and fetch further information by
going beyond a specific domain. Reusability of ontologies is being studied in the ontology design
patterns community [5] whose concern is about designing ontological modules generic enough to be
used in multiple domains. In this paper, we will explain how OntoCity as the main representation
model in our work is using ontology patterns to assist the ontology reasoner in retrieving useful
information for the user.

1.2. Related Works

Due to their specific features such as knowledge reusability that leads to semantic interoperability,
ontologies are well contributing in representation of different domains [6]. For instance, in the GIS
literature, ontologies are used for different purposes such as image classification, information retrieval
and decision making processes. In image classification, as an inevitable process in geo-related
applications using satellite imagery data, ontologies are used to semantically relate the imagery
data to relevant objects in order to improve the classification results. The work presented in [7]
proposes a knowledge-driven methodology to enhance the object-based semantic classification method
using ontologies that express objects, their size and spatial relations. Likewise, in [8] an ontology-based
solution is suggested to classify ocean satellite images using an ontology which provides high and
low level features of regions extracted from an ocean scene. Besides the ontology languages such as
RDF (Resource Description Framework) and OWL (Web Ontology Language), ontologies allow us to
use further constraints in definition of concepts, understandable by reasoners that can contribute in
retrieving further (implicit) information about a given domain. For instance the approach explained
in [9] is able to retrieve geographic information using a qualitative representation where the spatial
and directional relations are defined in a way understandable by qualitative reasoner.

Apart from the role of ontologies in improving the analysis of geo-related data shown in the
aforementioned research work, we recently see an increase in use of ontologies for more specific
applications such as emergency management including rescuing and disaster relief. There has been
considerable amount of work based on ontologies in the area of natural disasters. This is due to
the ontologies’ semantic interoperability feature that can increase the chance of retrieving required
information. For instance, [10] proposes an ontology model to represent events along with the actions
required to be taken in specific emergency situations. Another work presented in [11] introduces
an ontology which is developed based on SUMO (Suggested Upper Merged Ontology) in order to
model an emergency rescue patterns automatically generated based on the given context. In particular,
the OntoFire ontology explained in [12] is part of a portal that is focused on wildfires, and offers
different services such as navigation automatically generated based on the relations discovered between
the given data. Moreover, FloodOntology introduced in [13] is used for flood forecasting and is
composed of entities related to the measurement elements such as hydrological/hydraulic parameters
used to predict the time and the duration of the floods.

In all the aforementioned work, sharing different types of data and then reasoning upon it was
the key, for which semantic interoperability is a necessity [14]. Semantic interoperability is better
achievable if the designing process of ontologies respects some generic ontology patterns that are
usually relying on upper level ontologies [5]. However, most of the aforementioned ontologies used in
disaster scenarios are designed in an ad-hoc way and are not based on upper level ontologies.

In this paper, we focus on (re)using existing geo-ontologies as one step towards enabling semantic
interoperability in geo-related domains. The ontology proposed in this work is called OntoCity as an
extension of GeoSPARQL ontology suggested by the Open GeoSpatial Consortium (OGC). We will
explain how this extension enables us to reason using semantically enriched data.

We have so far explained a brief introduction to the ontological reasoning in Section 1.1, and also
its role in the GIS literature in Section 1.2. Since the main focus of the paper is representing the
role of OntoCity in querying satellite data, we continue by explaining the basis of OntoCity, as the

Sensors 2017, 17, 2545 4 of 25

representational model in the SemCityMap framework, in terms of its building blocks in Section 2.
In order to show how OntoCity is instantiated, in Section 3, we provide the link between the data layer
including data acquisition and data processing and the ontology population process in. Given the
populated ontology, we are ready to go through the reasoning process in Section 4, where we explain
which types of queries are needed to be answered. In Section 5, we visually explain the pipeline
of SemCityMap. This section also provides us enough room to briefly introduce our graphical user
interface which although did not have a main role in the representation and the reasoning part, however,
is quite important to visualize the outputs of the reasoner. Section 6 talks about the implementation of
a disaster scenario and measure the computational features of the framework such as the searching
time of the queries applied upon real data of Stockholm. We then conclude the paper in Section 7
which is followed by a brief discussion on the future work in Section 8.

2. Modeling in Ontologies

In order to enable intelligent reasoning upon imagery data for disaster management,
a representation model whereby the data along with its relations are represented in a higher abstraction
(i.e., symbolic) level, is required. For this, we have developed an ontology called OntoCity. OntoCity is
constructed based on GeoSPARQL proposed by OGC as a standard vocabulary for geospatial data
in RDF that enables qualitative spatial reasoning upon this type of data [15]. OntoCity is designed
to represent all the structural aspects of a city including the building blocks, their types (e.g., natural
or man-made), and their relations (e.g., spatial relations, affordances, etc.), which might be used for
disaster relief.

In the following subsections we describe the structure of GeoSPARQL and then its extension
formed in OntoCity. Since the definitions of axioms in the ontology are given in Description Logic
(DL) language, we first briefly explain the notations used in the following sections (for further details,
we refer the readers unfamiliar with the DL syntax to the Basic DL tutorial in [16]):

• The expression “name1:name2” refers to the entity name2, which belongs to the ontology name1.
• The subsumption relation shown as “A v B” means concept A is a subset (a specialization) of

concept B.
• The full existential quantification shown as “∃ R.C” indicates all the concepts whose instances

have at least one relation with concept C via property R.
• The number restriction shown as “= n R”, where n is a numerical value, indicates an ontological

concept whose instances are related to other concepts/values n-times via the property R.

2.1. GeoSPARQL

GeoSPARQL provides a generic basis to define any spatial object (as an instance of
the class geos:SpatialObject (The prefix geos refers to the name of the GeoSPARQL
ontology.)) that has a geometry in the physical world. The class that is responsible to
represent such entities in geo-related domain is called geos:Feature which is subsumed by
the class geos:SpatialObject (geos:Feature v geos:SpatialObject). Each instance of the class
feature is connected to another instance belonging to the class geos:Geometry via the property
geos:hasGeometry as follows:

geos:Feature v ∃ geos:hasGeometry.geos:Geometry (1)

Using the property geos:asWKT, each geometry indicates all the boundaries (inner and outer) of
the object in the form of the WKT (Well Known Text) string format which refers to a literal (a rdfs
literal) value specifying a list of coordinates defining the boundary:

geos:Geometry v ∃ geos:asWKT.rdfs:Literal (2)

Sensors 2017, 17, 2545 5 of 25

The class geos:Geometry as such has its own taxonomy to define specialized geometries such as
polygons, rectangles, etc., as its subclasses.

Furthermore, GeoSPARQL provides a set of properties that qualitatively represent the spatial
relations defined in RCC-8 (Region Connection Calculus) [17]. According to the RCC-8 calculus,
any spatial relation between any two spatial objects can be represented in one of the 8 basic RCC
relations shown in Figure 1.

X Y

X Y

X Y

X
Y

X DC Y ≡ geos:disjoint

X PO Y ≡ geos:overlaps X EQ Y ≡ geos:equals

X EC Y ≡ geos:touches

Y

X

X TPP Y ≡ geos:within

X

Y

X TPPi Y ≡ geos:contains

Y
X

X nTPP Y ≡ geos:within

X
Y

X nTPPi Y ≡ geos:contains

Figure 1. RCC-8 spatial relations defined in GeoSPARQL, where DC = disconnected, EC = externally
connected, TPP = tangential proper part, nTTP = non-tangential proper part, PO = partially overlapping,
EQ = equal, TPPi = tangential proper part inverse, nTTPi = non-tangential proper part inverse.

In next section, we explain how OntoCity is built by extending GeoSPARQL.

2.2. DUL Ontology

In construction of OntoCity we have also used the upper ontology DOLCE+DnS Ultralite (www.
ontologydesignpatterns.org/ont/dul/DUL.owl.) (DUL). By upper ontology we refer to an ontology
containing general concepts and relations that are publicly used across all domains [18]. As we see in
next section, the reason behind using DUL in OntoCity is to represent events in the form of instances
of the class DUL:Event.

2.3. OntoCity

The OntoCity ontology is an extension of GeoSPARQL. This extension has been done in
three aspects including (I) refactoring of the spatial relations, (II) representing a taxonomy of
the geos:Feature class, (III) defining path connectivity, that are separately explained in the
following sections.

2.3.1. Refactoring of Spatial Relations

As shown in Figure 1, there are several distinct relations in RCC-8 that all are indicating
intersection relations between two given objects (e.g., goes:overlaps, geos:within, geos:contains).
Although there are differences between the aforementioned relations that differentiate them from
each other, however, in many situations, we are only interested to know if the two objects (or their
bounding boxes) are intersecting or not. For the sake of practicality, we have defined a new class in
OntoCity called ontocity:intersects that as a superclass subsumes the relations geos:overlaps,
geos:contains and geos:within. In other words, whenever we use the ontocity:intersects
relation between any pair of spatial objects we mean that at least the boundary boxes of these two
objects are sharing a common space.

Furthermore, in OntoCity, we have defined a new object property, called
ontocity:hasSpatialRelation, as the superclass of all the relations in RCC-8 calculus. The new
property is used to complete the definition of geos:Feature in the sense that each instance of this
class has at least one spatial relation with another feature.

geos:Feature v ∃ ontocity:hasSpatialRelation.geos:Feature (3)

www.ontologydesignpatterns.org/ont/dul/DUL.owl
www.ontologydesignpatterns.org/ont/dul/DUL.owl

Sensors 2017, 17, 2545 6 of 25

2.3.2. Taxonomy of geos:Feature

The ontocity:hasSpatialRelation property is used in the definition of the subclasses of the
geos:Feature class. As said in Section 2.1, a feature in GeoSPARQL represents any object that has
a geometry. In OntoCity, we have defined 3 direct subclasses of the class geos:Feature including
ontocity:Region, ontocity:Segment and ontocity:Area.

The class ontocity:Region as a direct subclass of the class geos:Feature is used to represent
all the regions or structures in a city that have a label (e.g., building, river, parking place, etc.).
The ontocity:Region class is as such categorized into 2 main subclasses ontocity:ManmadeRegion
and ontocity:NaturalRegion.

ontocity:Region v geos:Feature u (4)

∃ ontocity:hasSpatialRelation.ontocity:Region

ontocity:ManmadeRegion v ontocity:Region (5)

ontocity:NaturalRegion v ontocity:Region (6)

The categorization of the class region is also formed based on the other properties such as the land
cover of regions (e.g., water area, or vegetation area taken from the classified satellite data) or their
affordances (e.g., a region can be walked on as part of a path). The following example subsumption
relations show the direct subclasses of the class ontocity:Region:

ontocity:PavedArea v ontocity:GroundArea v ontocity:Region (7)

ontocity:VegetationArea v ontocity:Region (8)

ontocity:WaterArea v ontocity:Way v ontocity:Region (9)

Each of the direct subclasses of the class ontocity:Region has its own subclasses as either a
man-made or natural region types (see Figure 2). For instance, as shown in the following, the concept
ontocity:Road indicates a region on the scene that is man-made and can be used as a way (i.e., a route)
in a city. Likewise, a river is also a region, but natural one which is used as a way (for example for
boats) with water texture:

ontocity:Road v ontocity:ManmadeRegion u ontocity:PavedArea u ontocity:Way (10)

ontocity:River v ontocity:NaturalRegion u ontocity:WaterArea u ontocity:Way (11)

As we will show in Section 3.3, all the instances of the class geos:Feature, regardless of their
types, are represented in the form of their boundaries and also the spatial relations between them.
For being used in disaster management, their semantics can be further enriched. Most of the rescue
tasks in emergency situations in outdoor environments are based on navigation and way finding in
destroyed environments. Considering the semantics of regions (i.e., the affordance which shows what
they can be used for) and consequently their alternatives (in case of obstruction or danger) can be
an essential help in automatic navigation (or path finding) processes. In the following subsection,
we explain another extension in OntoCity which is about defining paths along with their alternatives.

Apart from the class ontocity:Region which represents all the physical geo-entities on the
ground, there are two other direct subclasses of the geos:Feature class called ontocity:Segment
and ontocity:Area. The main feature of these two classes is that they are, unlike the class
ontocity:Region, representing more abstract spatial concepts that are not physically existing on
the ground or not labeled with a specific term referring to a cover land.

Sensors 2017, 17, 2545 7 of 25

Figure 2. Hierarchy of the subclasses of the class geos:Feature in OntoCity.

An instance of the class ontocity:Segment is defined as a rectangular feature on the map and
holds (intersects with) several regions (see Axiom (12)). As we will explain in Section 3.3, instances of
the class ontocity:Segment are used to improve the performance of the query system.

ontocity:Segment v geos:Feature u (12)

∃ geosp:hasGeometry.geos:Rectangle u
∃ ontocity:intersects.ontocity:Region

Likewise, each instance of the class ontocity:Area represents an area in the form of a polygon
(and not necessarily a rectangle) in which an event (either natural or man-made) has occurred. By event
we refer to the class DUL:Event. As we will see in Section 3.3, the geometry of the instances of the
class ontocity:Area is considered by the query system when it is assumed to query about locations
impacted by an event.

Sensors 2017, 17, 2545 8 of 25

ontocity:Area v geos:Feature u (13)

∃ ontocity:hasEvent.DUL:Event u
∃ ontocity:intersects.ontocity:Region

As Axiom (13) shows, the spatial relation defined between an area and a region is the relation
ontocity:intersects. It means that an area involved in an event can intersect with some parts of a
region (and not necessarily contains the whole region).

2.4. Path Connectivity in OntoCity

A region can also represent a way (i.e., a transportation route) located between two other
regions. For this, we have defined another class, ontocity:Way v ontocity:Region, which subsumes
the classes ontocity:Road (and subsequently ontocity:Street, ontocity:HighWay, etc.) and
ontocity:River. To complete the definition of the class ontocity:Way an extension is required.
This extension involves the representation of a way (i.e., path) along with the regions connected
through it. Representation of a way with its involved regions asks for a relation that is defined between
more than two elements. More specifically, a path is seen as an n-ary relation semantics that can be
modeled via the generic n-ary ontology pattern [19].

In OntoCity, the n-ary path relation needs to be symmetric (a symmetric n-ary or s-n-ary).
According to [20], assuming s-n-ary as a function upon the two given argument x and y, the following
relation holds:

s-n-ary(x,y) = z ⇐⇒ s-n-ary(y,x) = z.

More specifically, our definition in path connectivity (symmetric n-ary relation) in OntoCity
represented in Figure 3, relies on the fact that: region x is connected to the region y via the path z, if
and only if the region y is also connected to region x via the same path. As Figure 3 shows, there are
two extra classes in OntoCity, ontocity:IndirectNeighbors and ontocity:PathConnection, where
the former represents the two regions in OntoCity which are connected via a path, and the latter
indicates the path (as an instance of ontocity:Way) connecting these two regions together. The DL
representation of the classes are as follows:

ontocity.IndirectNeighbors v = 2 ontocity.hasRegion.ontocity:Region (14)

ontocity.PathConnection v ∃ ontocity.connects.ontocity.IndirectNeighbors u (15)

= 1 ontocity.hasPath.ontocity:Way

ontocity:Region

ontocity:Way ontocity:PathConnection ontocity:IndirectNeighbors
ontocity:hasPath ontocity:connects

Ontology Concept

rdfs:isSubClassOf

Object Property

=2 ontocity:hasRegion

Figure 3. The PathConnection Pattern in OntoCity representing a symmetric n-ary relation.

The relations between concepts are provided via three properties, ontocity:hasPath,
ontocity:connects and ontocity:hasRegion.

By specializing the aforementioned classes, OntoCity contains different types of paths.
For instance, as shown in Figure 4, the class ontocity:PathConnection subsumes the class

Sensors 2017, 17, 2545 9 of 25

ontocity:RiverConnection whose path and region parts are defined as subclasses of the class
ontocity:River v ontocity:Way and the class ontocity:Shore v ontocity:Region, respectively:

ontocity:RiverConnection v ontocity:PathConnection u (16)

∃ ontocity:connects.ontocity:IndirectShores u
= 1 ontocity:hasPath.ontocity:River

where : ontocity:IndirectShores v ontocity:IndirectNeighbors u (17)

= 2 ontocity:hasRegion.ontocity:Shore

and, ontocity:Shore v ontocity:GroundArea v ontocity:Region (18)

Likewise, the class ontocity:PathConnection is specialized to the class
ontocity:BridgeConnection which defines bridges as paths over water areas as follows:

ontocity:BridgeConnection v ontocity:PathConnection u (19)

∃ ontocity:connects.ontocity:IndirectShores u
= 1 ontocity:hasPath.ontocity:Bridge

where : ontocity:Bridge v ontocity:Way v ontocity:Region (20)

The subclasses of the class ontocity:PathConnection can be further related to each other if
there are similarities in types of regions or ways mentioned in their definitions. For example, the two
classes ontocity:BridgeConnection and ontocity:RiverConnection are similar in the sense that
both are able to connect shore areas. Finding these similarities might help a path finding process to
find alternative paths for those located in forbidden or unreachable areas in certain situations (e.g.,
dangerous areas such as rivers in case of flood).

In Section 6 we will show how OntoCity is populated with instances of the path connectivity
pattern. For now, let us assume that OntoCity is populated with all the regions and their connections.

ontocity:Region

ontocity:Way ontocity:PathConnection ontocity:IndirectNeighbors
ontocity:hasPath ontocity:connects

=2 ontocity:hasRegion

ontocity:River

ontocity:Bridge

ontocity:RiverConnection

ontocity:BridgeConnection

ontocity:hasPath

ontocity:hasPath

ontocity:IndirectShores
ontocity:connects

ontocity:connects

ontocity:Shore
=2 ontocity:hasRegion

Ontology Concept

rdfs:isSubClassOf

Object Property

Specialized Concept

Figure 4. Extension of the PathConnection in OntoCity - River and Bridge example.

Given a specific region type C as a constraint (e.g., a forbidden area) which is also defined in
OntoCity (C v ontocity:Region), by running the Query (21), we will be able to retrieve all the
alternatives for the region type C. By alternatives, we mean those regions (more specifically instances
of the class ontocity:Way) that are although different from C (and therefore legal to be part of a path),
they are similar to C in the sense that they play the same role as C in terms of connecting specific region
types. Using the path connectivity pattern in OntoCity and the query, we can automatically retrieve
paths compatible with the situation.

Sensors 2017, 17, 2545 10 of 25

AlternativeWays = { ri ∈ Ri | Ri v ontocity:Way ∧ ri 6∈ C ∧ ∃ c ∈ C ∧ (21)

∃ p1 ∈ P1 v ontocity:PathConnection ∧ ∃ p2 ∈ P2 v ontocity:PathConnection ∧
∃ n ∈ N v ontocity:IndirectNeighbors ∧
(c, p1) ∈ ontocity:hasPath ∧ (p1, n) ∈ ontocity:connects ∧
(ri , p2) ∈ ontocity:hasPath ∧ (p2, n) ∈ ontocity:connects }

For instance, assuming the situation does not allow us to cross water areas, we can specialize the
Query (21) by assuming C = ontocity:WaterArea which will be equivalent to the extension of the
path connectivity shown in Figure 4. According to this specialized query, the reasoner will return back
an alternative for water areas, which can however be still used to connect shore areas (e.g., bridges as
alternatives for rivers).

3. Populating OntoCity for a Particular Disaster

In order to clarify how OntoCity is used, and how the system is able to make sense of the raw
satellite imagery data, we briefly go to the details of the data acquisition and the classification processes.
After that, the instantiation of the ontology along with the reasoning process will be explained.

3.1. Data Acquisition

In the presented system, multiband satellite imagery data is used both for classification and
for visualization. The data is represented in two forms: orthorectified images and reconstructed 3D
meshes. Ortho images are used for classification. The dataset consists of 7 primary and 7 synthetic
bands. The resolution of the image data is 0.5 m/px. The images are orthorectified and referenced to
actual GIS data. The summary of the color bands is given in Table 1.

Table 1. Spectral bands used in the multispectral orthography image.

Band Bandwidth (nm) Description
Red 630–690 Vegetation types, soils, and urban features
Green 510–580 Water, oil-spills, vegetation, and man-made features
Blue 450–510 Shadows, soil, vegetation, and man-made features
Yellow 585–625 Soils, sick foliage, hardwood, larch foliage
Coastal 400–450 Shallow waters, aerosols, dust, and smoke
Seafloor 400–580 Synthetic image band (Green, Blue, Coastal)
NIR1 (Near Infra-Red) 770–895 Plant health, shorelines, biomass, vegetation
NIR2 860–1040 Similar to NIR1
Pansharpened 450–800 High-resolution pan andlow-resolution multispectral
Soil 585–625, 705–745, 770–895 Synthetic image band (NIR1, Yellow, Red Edge)
Landcover 400–450, 585–625, 860–1040 Synthetic image band (NIR2, Yellow, Coastal)
Panchromatic 450–800 Blend of visible light into a grayscale
Red Edge 705–745 Vegetation changes
Vegetation 450–510, 510–580, 770–895 Synthetic image band (NIR1, Green, Blue)
DSM - Digital surface model

For visualization, the stereophotogrammetrically reconstructed 3D mesh data is used to provide a
user a possibility to inspect the area from different viewpoints.

3.2. Classification and Segmentation

The classification of the map is performed on a per-pixel level using a Convolutional Neural
Network (CNN) [21] based on 7 rudimentary categories of labels including (vegetation, ground, road,
building, water, railroad and parking). The procedure and the structure of the network follows the work
by [22]. The surrounding area of the pixel to be classified is used as input to the CNN. A softmax layer
is attached to the output of the CNN for the final classification. In this work, a one-layer CNN is used

Sensors 2017, 17, 2545 11 of 25

on a 25× 25 input patch with 50 filters of filter size 11 and pooling dimension 5. These hyperparameters
were selected to get an output of 3× 3 from the CNN. The softmax layer was set to 500 hidden units.
The whole network is trained end-to-end with supervised backpropagation on the training set until the
accuracy on the validation set has not been improved in the last 10 epochs. The training/validation/test
sets are obtained by randomly extracting 1000 input patches of size 25× 25 from each of the 7 classes
and then dividing them into a 80/10/10 split. The classification result on the test set is presented in
Section 6.2.1.

After the whole map has been classified, the segmented (Segmentation here refers to the SLIC
segmentation algorithm and is different from the instances of the class onto:Segment defined in the
ontology.) regions that are used for later are obtained by using the SLIC segmentation algorithm [23]
and then merged using the pixel classifications, see Figure 5. The purpose of merging regions is to
reduce the number of regions and to get regions that better represents real world areas/objects.

Classified and merged
regions

Segmentation

Classification

CNN

SLIC

Input data

Figure 5. Merged classified regions are obtained by averaging the classification results (Black = building,
Dark Green = Vegetation, Light Green = Ground, Gray = Road, Red: RailRoad) over all classified pixels
in each region from an initial SLIC segmentation. Regions are merged if the average classification
certainties for two connecting regions are both above a certain threshold.

3.3. Population of OntoCity

Instantiation of classes in OntoCity is in two steps of region instantiation (related to the
classes ontocity:Region and ontocity:Segment) and event instantiation (related to the classes
ontocity:Region, ontocity:Area and DUL:Event) explained in the following subsections.

3.3.1. Region Instantiation

Region instantiation process includes three different steps including regions’ boundary
extraction from the classification output, generating instances of the class ontocity:Segment (i.e.,
segmentation (Segmentation in ontology refers to the class onto:Segment and is different from
segments generated by the classifier.) of the map) and representing spatial relations between regions
in a segment.

Each generated segment (which is henceforth referred to as region) is represented as an instance of
a subclass of ontocity:Region, equivalent to its label (i.e., one of the rudimentary labels mentioned in
Section 3.2. Assuming LR indicates a preliminary label assigned by the classifier to region ri, and refers
to the region type R (e.g., Building, Parking, etc.,) the first step of populating OntoCity is as follows:

ri ∈ R where : R v ontocity:Region (22)

Sensors 2017, 17, 2545 12 of 25

OntoCity also includes the geometry of each region. Given the boundaries of a region, we are able
to enrich the (preliminary) label (LR) of the region assigned by the classifier. As shown in Figure 2,
the hierarchy of regions in OntoCity are more than the 7 rudimentary labels (e.g., building, water,
etc.) used by the classifier. Thanks to the availability of geo data on publicly available sources such
as OpenStreetMap (OSM) [24] or the map provided by Lantmäteriet (a Swedish government body
responsible for mapping the country), we could automatically extract more specific labels for the
classified regions. Given the region ri, a new label could be retrieved from the sources assigned
to the area located at the same place that the region’s boundary indicates. The labels provided by
Lantmäteriet is shown in Figure 6.

Figure 6. Labels provided by Lantmäteriet.

Let us assume that LR is the label of region ri set by the classifier, and LC is the candidate label for
the region given by its counter part on public sources. The label enrichment process updates OntoCity
w.r.t the following condition:

ri ∈ R ∧ C v R =⇒ ri ∈ C (23)

In other words, the instance ri will also be the instance of the class C (relevant to the candidate label
LC) if the class C in OntoCity is subsumed by the original class label R. For instance, if a region (ri) is
labeled as Building (LR = Building) by the classifier (where: ontocity:Building v ontocity:Region),
and at the same time, the enrichment process finds from other sources a region at the same location
as ri, labeled as School (LC = School), then OntoCity will be updated by a new instantiation as ri ∈
ontocity:School only if ontocity:School v ontocity:Building. Details of the label enrichment
process based on public maps can be found in [25].

One of the main purpose behind representing the geometry of regions on the map is to enable
the map to answer queries about the topology and the neighborhood of regions. As we will see in
Section 4.1, there is a direct relation between the time these queries take to answer and the number
of regions modeled in the ontology. In order to improve the scalability of the query system in terms
of the number of regions, we have considered another concept in OntoCity called ontocity:Segment
v geos:Feature, that as said in Section 2.3, represents rectangular spatial objects. Each segment
instance in OntoCity is supposed to cover a particular part of the map holding a number of regions.
Depending on the size of the map and also its resolution, we divide the map to a number of
pairwise disjoint rectangular segments that altogether cover the entire map. Each time a region
ri is extracted from the classification output, we populate the ontology also with all the segments (i.e.,
instances of the ontocity:Segment class) geometrically intersecting with ri. The intersection relation
(ontocity:intersects) between a region and a segment can be in the form of either geos:contains
or geos:overlaps in the RCC-8 calculus.

Finally, after generating the instances of the segment class in the ontology and representing the
geometry of regions in each segment, we calculate the spatial relations between any pair of regions
within a segment. For instance, if the two given regions ri and rj belonging to one segment are direct

Sensors 2017, 17, 2545 13 of 25

neighbors, we add the axiom: “ri geos:touches rj” in OntoCity saying that the two regions are
directly connected to each other. Likewise, all pairs of regions belonging to disconnected segments are
(implicitly) related to each other via the RCC-8 geos:disjoint relation.

3.3.2. Event Instantiation

By event, we refer to any natural or man-made occurrence that happens at a certain time and
place. Event as a concept has been already defined in plenty of ontologies mostly relying on the upper
DOLCE Ultra Light (DUL) ontology, where we can find the modeled spatio-temporal aspect of an
occurrence along with the participation of agents (e.g., humans) [26]. In OntoCity, we have so far
considered only the spatial representation of events borrowed from the DUL ontology.

Representation of an event in OntoCity is in the form of an instance of the class DUL:Event which
occurs at certain areas in a city. These areas are also indicated as instances of the class ontocity:Area
subsumed by the class geos:Feature. Each area is likewise represented in the form of its boundaries
that intersects one or several regions (see DL definition of the class ontocity:Area in Axiom 13).

The geometrical data of the flooded area in this work is generated using a rudimentary offline
flooding simulator, which uses available DSM map to build a map of flooded areas. The flood
simulation is performed in a static scenario, without taking into account any effects of the flood
dynamics (such as flows and surface wetting). The flooding map generation is a multipass process,
in which a set of flooding contours is generated for a given range of water levels with a given step.
In own particular scenario, the lowest water level was set at 24 m above the zero level to 40 m, with a
step of 0.5 m. On each step, the process starts with a binary thresholding of the DSM map at a given
threshold (flooding level). This results in a binary bitmap, from which the contours of flooded areas
are being extracted using Teh-Chin chain approximation algorithm [27]. Finally, after the contours
are extracted, they are simplified using the Ramer–Douglas–Peucker algorithm (ε = 5.0) [28,29] and
filtered based on the area, so only the contours with the area of more than 750 m2 are used in the form
of geometries for the instances of the class ontocity:Area.

4. Reasoning

In a disaster situation, a rescue team may need to query a semantically-enabled map for finding
(safer) regions with specific (e.g., thematic or spatial) features, or for navigation services such as finding
(collision free) paths or alternatives to specific areas, in case the main ones are inaccessible. For the
rescue team requests, the system is assumed to consider certain semantic constraints given in the
queries as well as in the definition of regions and relations asserted in the ontology. In other words,
a reasoning process which understands the ontological axioms (such as the definition of concepts and
constraints), is needed to be aligned with OntoCity.

In this paper, we consider two different types of queries including finding regions and finding
paths that are further explained in the following subsections. For each type we also clarify the reasoning
process applied upon OntoCity in order to answer the queries. Before going to the details it is worth
mentioning that the reasoning process is done upon the populated ontology which contains the regions
in the form of their geometries as well as their spatial relations between each other. The spatial relations
are calculated using our geometrical processing module implemented in Java, as an off-line process.
Given the populated ontology with all the regions and their links, we are able to run the our queries in
the form of SPARQL as a pattern matching process language under the Jena framework [30].

4.1. Region Retrieval

By region retrieval we refer to a region searching process based on criteria such as types of
regions along with the spatial metrics including directional relations, spatial relations and distances.
More precisely, given a point pc chosen by the user on the map along with a set of criteria including
the region typesRi andRj, an interval indicated by the lower bound dl and upper bound du, and also

Sensors 2017, 17, 2545 14 of 25

S as a binary spatial relation, a region retrieval process is defined as a searching process generating the
answer set A defined as follows:

A = { ri ∈ Ri | Ri v ontocity:Region ∧ (24)

dl ≤ distance(pc, ri) ≤ du ∧
6 ∃ a ∈ ontocity:Area ∧
(ri , a) ∈ ontocity:intersects ∧
∃ rj ∈ Rj v ontocity:Region ∧

(ri , rj) ∈ S v ontocity:hasSpatialRelation }

The answer set A contains all the regions of the given type Ri as a subclass of the
ontocity:Region class, located further than dl m and closer than du meter to the given point pc.
Furthermore, according to the given query, these candidate regions are assumed not to be involved in
some events. In other words, the query returns backs those regions that are not intersecting with an
event-influenced parts of the city (i.e., refering to the instances of the class ontocity:Area). The query
structure also has the capacity to mention some features in neighborhoods of the candidate regions.
In other words, we can restrict the regions to only those that are in spatial relation S (as a subclass of
the ontocity:hasSpatialRelation) with regions with specific typeRj.

For instance, the user can ask for all the buildings (Ri = ontocity:Building) which are located at
a certain distance from point pc clicked on the map, and are connected (geos:touches) to water areas
(Rj = ontocity:WaterArea).

The time that the searching process requires to retrieve the regions of the answer set A,
highly depends on the number of region instances in OntoCity. The more region instances are
defined in OntoCity, the longer the search time is. In order to keep the system scalable (i.e., retaining an
acceptable search time, regardless of the number of regions), the geometry of regions and segments are
needed to be considered. In other words, instead of checking all the regions one by one and see if they
are complying with the constraints given in A, we first retrieve the relevant segments which are the
only ones supposed to contain the candidate regions.

The main parameters indicating the relevant segments are the lower (dl) and the upper (du)
bounds given in the query. The relevant segments are those intersecting the rectangular border area
calculated by subtracting the smaller square from the bigger one as shown in Figure 7 (the hatched
area). The reason why we represented segments in the form of rectangles is to take advantage of
the R-Tree [31] data structure used to more efficiently do spatial searching and calculate geometrical
relations between regions and segments.

Depicted in the figure with dash lines, S2dl
and S2du are referring to the area of the smaller square

(with the edge size of 2dl) and the bigger square (with the edge size of 2du), respectively. Let us also
name the hatched area as D which is defined as follows:

D = S2du − S2dl
(25)

As we can see, without taking the segments defined in the ontology into account, in order to
retrieve the regions occupying some parts of D, the intersection of all the regions (in gray) with the
area D has to be geometrically checked. However, instances of segments in OntoCity can be used to
considerably reduce the number of regions in this geometrical process. For this to be possible, we first
check the intersection of all the segments (12 instances in Figure 7) with the area D. It excludes the
4 segments 1, 5, 7, 9, as the irrelevant segments and only consider the regions in the relevant ones.
This exclusion as we will show in Section 6 can highly influence the searching time of the query. It is
also obvious to realize that if the size of the segments were smaller we could exclude even more
segments in the beginning of the searching process.

Sensors 2017, 17, 2545 15 of 25

8

119 10 12

dl dl

1 2 3 4

5 6 7

du du

dl

dl

du

du

Figure 7. Retrieving segments relevant to the distance criteria given in the query. Segments are shown
in blue rectangles. The red point indicates the point pc selected by the user on the map. The boundaries
(lower and upper bounds) are also shown in green (dl) and red (du) lines.

4.2. Path Finding

After specifying features of regions appropriate to a specific situation, the system can be further
asked to find a possible path from the given point pc to the found regions, which satisfy certain
constraints based on the context or the environmental conditions. However, finding paths between
a given point and a region is not always straightforward. Path finding known as the subproblem
of path planning has been mainly developed in robotics for motion planning and also navigation
purposes [32].

Let us assume that X ⊆ Rd (d ∈ N, d ≥ 2) is a d-dimensional configuration space. By a
configuration space we refer to a set whose members indicate all the states of an agent, a vehicle,
a robot’s body or whatever that is supposed to be navigated [33]. Let Xobs and X f ree also represent
the obstacles and obstacle-free space, respectively, where: X f ree = X \ Xobs. Assuming that the initial
condition xinit ∈ X f ree and Xgoal ⊆ X f ree, a path planning problem is defined as a triplet (X f ree, xinit,
Xgoal) [34], whose solution is a collision free path from xinit to Xgoal .

Path planning methods are in general categorized into 5 main groups including sampling
based, node based optimal, mathematic model based, bio-inspired based and multi-fusion based
algorithms [35]. In this work, due to the need to answer queries in as quick as possible in disaster
situations, we have focused on the sampling based algorithms as they are on-line and quick in
finding paths.

Sampling based algorithms and in particular RRT (Rapidly-exploring Random Tree) are based
on a tree generation process whose nodes represent samples that are randomly selected from a given
configuration space X. In our previous work, we developed on extension of RRT in order to involve the
semantics of the map within the searching process [36]. After a brief explanation of the previous work,
we will go into further details to see how we can better integrate the extended RRT with OntoCity and
also the region retrieval process particularly for disaster scenarios where some regions (due to natural
hazards) cannot be used by vehicles.

In RRT, the tree construction process starts by adding the first configuration point, xinit, considered
as the initial node of the tree, and continues till either a feasible path to the destination is found or the
searching time ends [33]. The maximum searching time is set in the form of a parameter indicating
the number of steps that the algorithm randomly fetches a configuration sample and adds it to the
tree by linking it to the nearest node in the tree provided that the connection is collision free. To find a
collision free path, these samples should necessarily belong to X f ree.

Sensors 2017, 17, 2545 16 of 25

It is possible to end up with situations where no path is found due to the time limit set for a
collision-free path searching process in a highly constrained environment [33]. For instance, in case
of an Unmanned Aerial Vehicle (UAV), obstacles are understood as either elevation constraints or
semantics constraints such as specific regions that should not be involved in any generated paths due
to natural disasters such as flood.

Self-navigating vehicles such as drones are being increasingly used in outdoor environments
for different purposes. What makes this process complicated and challenging for machines is the
environment which is not always static. For instance, in case of disasters, some parts of the environment
can be completely unreachable and therefore should be excluded from the X f ree space. These changes
in the environment increase the number of constrains and consequently the complexity of the path
finding process.

In case of disaster, we extend RRT for improving its searching time using the semantics represented
in OntoCity either in the form of path connectivity explained in Section 2.4 or the constraints considered
in region retrieval process discussed in Section 4.1. The idea is to semantically enable RRT, or more
specifically, to assist the path finding process by suggesting alternative regions for those which have
changed and are not accessible anymore due to the catastrophe. It is worth mentioning that our typical
application is about finding a way for a drone or a robot in disaster situations and not regular path
planning scenarios as in logistics.

Given the populated OntoCity, let us assume that the system is asked to find a path between
two regions without passing through/upon a specific region type C as a constraint. In order to find a
path with such feature, after fetching a random sample (xrand) from X f ree, RRT first checks to see if the
random sample xrand belongs to the forbidden region C or not (xrand

?
∈C). If it is the case (xrand ∈ C),

before extending the tree, RRT first runs the Query (21) explained in Section 2.4 (which is based on the
path connectivity formed in OntoCity) to retrieve at least an alternative region for the forbidden region
C. RRT then repeats the sampling process but this time within the newly retrieved region. In this way,
we are just shifting all the randomly selected samples from forbidden regions to their alternatives that
have similar behavior in terms of the connectivity of different regions (e.g., a sample taken from a river
will be replaced by another sample that is instead located on a bridge around the river.) The rest of the
RRT algorithm can be executed with no change.

One may pose the question: why before running the sampling process, we do not exclude all the
forbidden regions from the configuration space. The answer is that depending on type, size, number
and the geometry of constraints (i.e., forbidden zones) the region exclusion process can become highly
time consuming. Moreover, the process of excluding regions from the configuration space would
always be needed regardless of the location of the forbidden zones. However, in our suggested
approach we apply this part of the reasoning only if an invalid sample is selected.

5. System Description

We have so far explained the full pipeline of the SemCityMap framework from data acquisition,
to the enriching the raw image data with rudimentary labels, the integration of a knowledge
representation and reasoning methods to enable high level querying. This pipeline with the relations
among different components of the framework are represented in Figure 8. As we can see, OntoCity as
the representation model accepts as input the classification results in the form of a set of labeled
segments on the map. This representation together with the spatial connectivity of the instances of
regions are able to be queried by the reasoner. The queries are generated by the users whom are
provided an advanced graphical user interface (GUI) to express their needs according to the situation.
The reasoner outputs which are either in the form of regions boundary or paths between regions are
also represented upon the 3D map displayed by the GUI. Further details of the GUI are explained in
the following subsection.

Sensors 2017, 17, 2545 17 of 25

Semantic Model / Reasoner

OntoCity based on GeoSPARQL

pattern:PathConnection

POLYGON((146454,32 232324.33, 832787.3 32322.2, ...))

geom:Feature

geom:Geometry

ogc:asWKT

hasGeometry

asWKT

ontocity:Region

ontocity:Building

ontocity:WaterArea

ontocity:Road

geom:Polygon

hasGeometry

asWKT

User

Visualizer/ Client

3D map

User Interface/
Query Panel

Query Handler

Data Classification

Classification

Satellite Image

Figure 8. Semantic Representation and Reasoning as the main component of SemCityMap.

5.1. Advanced GUI

The user interface part of the system is developed as a standalone module, responsible for all
interactions with the users, including forming map queries from user inputs, and results visualization.
The secondary role of visualization provides a way to and performs visual inspection of the area of
interest. Therefore, it serves a role of an efficient interactive tool for the user, is able to render large
amounts of 3D data, performs queries, and displays information as overlays on top of the map.

The interface which is web-based is able to adjust the amount of 3D data to load from the server
depending on required level of details based on current viewpoint and task.

The user interface is a browser-based application and is developed using HTML5/JavaScript,
using WebGL1.0 specification. All 3D map data is served from a dedicated server in a form of
files (in glTF format), representing tiles of the map at different levels of details. A tiling algorithm
was implemented in order to minimize the amount of data to load and improve overall application
performance. The tiling algorithm loads map tiles at the required levels of details based on camera
elevation above sea level.

The interface also includes user interface controls to allow making map queries and visualizes the
query responses as map overlays.

In order to allow better possibilities for visual inspection of the map, the visualizer uses smooth
(Phong) shading, a realistic skydome rendering [37] depending on the current time/season at the point
of interest, and animated water. The user interface allows adjusting date/time to simulate various
lighting conditions and change level of water to visualize possible flooding scenarios.

Additionally to that, the visualizer allows map interaction using HMD-based devices (such as
HTC Vive or Oculus Rift) by using WebVR browser specification in conjunction with a development
(Nightly) version of Firefox web browser.

6. Results and Evaluation

6.1. Scenario

In order to investigate the performance of our semantically enabled region retrieval and path
finding processes, we have defined a disaster scenario including rescue services. For the sake of
simplicity, we have considered a simple drone as the self-navigating vehicle, with 1-dimensional
configuration, where each single configuration is represented in the form of a 3D point in the space.
In this case, the configuration space X is represented in 3D, where x, y and z coordinates are limited
within a specific numeric range depending on the width, length and height size of the environment.

Sensors 2017, 17, 2545 18 of 25

As mentioned in Section 1, the city that we used as example to illustrate our work is Stockholm in
flood situation. The rescue team in a flood situation may receive different types of requests depending
on the environmental conditions. For instance, one request might be finding safe regions around the
flooded or dangerous areas (such as water area) where people may need help. The rescue team may
also need to know the possible paths to the found regions which are only involving safe regions.

In the following subsection, we will show our results in data analysis, representation and
reasoning and explain how using OntoCity and the semantically enabled RRT improves the
searching time.

6.2. Results

Available satellite data belongs to the central part of Stockholm, as large as 8 km × 8 km (see
Figure 9a, which with 0.5 resolution results in a square shape area composed of 16,000 × 16,000 pixels.
The 3D satellite imagery data of Stockholm along with its elevation data are provided by Vricon [38] as
part of the Semantic Robot Project.

(a) (b)

Figure 9. (a) Stockholm’s Satellite Data (as large as 64 km2); (b) Approximately 115,000 classified
regions in Stockholm.

6.2.1. Classification

Table 2 shows the confusion matrix for a classifier that has been trained on 90% of the initial
labeled data (The details how we have gathered the initial manually labeled data can be found in [22])
with equal class distribution and tested on 1000 randomly drawn pixels per class from the remaining
10% of the labeled groundtruth.

Table 2. Confusion matrix (%) for the 7 classes for a classifier trained and tested on the manually
labeled data. The overall accuracy is 90.34%.

Vegetation Ground Road Bridge Building Water Railroad
Vegetation 95.6 1.1 0.3 1.4 0.3 0.9 2.9

Ground 1.2 95.0 0.6 0.7 0.1 0.8 1.7
Road 0.2 1.3 94.1 3.4 0.1 0.4 3.8

Bridge 0.7 0.7 1.9 78.7 7.2 2.4 3.6
Building 0.2 0.1 0.1 9.2 91.0 0.4 0.9

Water 0.5 0.7 0.5 2.7 0.6 93.3 2.4
Railroad 1.5 1.1 2.5 3.8 0.6 1.9 84.7

Sensors 2017, 17, 2545 19 of 25

6.2.2. Population of OntoCity with Stockholm Satellite Data

Population of OntoCity includes separate processes of region, segment, event and path
connectivity instantiation which are totally performed off-line (i.e., not at the query time). In the
following, we describe the population process of the ontology with Stockholm’s satellite data.

The classifier applied upon the satellite data results in about 115,000 labeled regions shown in
Figure 9b. However, before populating OntoCity with these regions, we first need to generate mutually
disjoint segments (i.e., the instances of the ontocity:Segment class) that altogether cover all parts of
the city.

Given the size of the map along with the number of classified regions, we found the
size 1000 × 1000 pixels for each segment suitable w.r.t the computational complexity of the reasoning
process. In this way, the map will be split into 256 (16 × 16) segments, where each will roughly contain
between 410–470 regions that computationally sound a reasonable number of regions, particularly for
geometrical/spatial calculations required in some queries.

Calculating the spatial relations between any pair of regions within a segment is also part of the
ontology population process. On account of the segmentation (Refers to the ontocity:Segment and
not the segmentation process in the classification phase.) process upon the map, the time required for
those geometrical calculations has been considerably improved. Each single geometrical calculation
process takes on average 0.0014 s (The computer used has an Intel(R) Core(TM) vPro processor
(2.60 GHz), 64 bit, 16 GB memory and Linux kernel 4.4.0-31-generic). The calculation time upon each
segment is on average about 110 s which in total (for the entire map with 256 segments) takes about
29745 s (≈ 8 h).

The second process that is done off-line (i.e., not at the query time) is instantiation of classes that
belong to the path connectivity pattern explained in Section 2.4. As we mentioned, the reason behind
the connectivity pattern is to define a new affordance for some regions in terms of path connectivity.
Reminding the example water area and bridges illustrated in Figure 4, we show how the instances
of the classes in the path connectivity pattern contribute in enhancing the performance of the path
finding process within a highly constrained environment. For instance, a region which is labeled as a
road, connected to a water area, and at the same time located between at least two distinct shore areas
(connecting them together), can be also seen or relabeled as a bridge in OntoCity. In order to find such
regions we obviously need to run a query which holds all the aforementioned spatial criteria. For this,
however, we have to first clarify what we mean by a shore area. As defined in Query (26), by shore,
we refer to a ground area which is as such connected to (i.e., geos:touches) a water area.

Shore = { ri ∈ Ri | Ri v ontocity:GroundArea ∧ (26)

∃ rj ∈ Rj v ontocity:WaterArea ∧

(ri , rj) ∈ S v geos:touches }

Given all the instances of the shore area, we eventually defined the relevant bridges as follows:

Bridge = { ri ∈ Ri | Ri v ontocity:Road ∧ (27)

∃ rj ∈ Rj v ontocity:WaterArea ∧

(ri , rj) ∈ S v geos:touches

∃ rs1 ∈ Shore ∧ ∃ rs2 ∈ Shore ∧ rs1 6= rs1 ∧
(ri , rs1) ∈ S v geos:touches ∧
(ri , rs2) ∈ S v geos:touches }

In this work, we have focused on the flood scenario and therefore, found it enough to only relabel
those regions that can also be used as bridges over water areas. Perhaps, the same reasoning and query
definition can be applied for other regions to get new labels useful in different situations for other
scenarios. We have applied the relabeling process upon the central part of the map which is mainly

Sensors 2017, 17, 2545 20 of 25

surrounded with water (see Figure 9a) and therefore highly prone to further damages in case of flood.
The central part of the map chosen for the relabeling process is composed of 42 (6 × 7) segments and
totally includes about 18,000 regions. Given the two aforementioned queries, a single road-to-bridge
relabeling process in a segment takes on average 0.8 s, which in total results in about 5 h for the selected
area. It is worth mentioning that although by applying the query upon segments separately we may
violate the completeness of the relabeling process (i.e., we may loose some regions adequate to be
relabeled as bridges), however, we did so to save time at geometrical calculations (The exact relabeling
time without segments has not been measured, but it will be more than 76 h for the selected area.).
Geometrical calculations are necessary for determining the actual spatial relation (RCC-8) between
two regions.

As mentioned above, another off-line process in OntoCity instantiation is about representation
of events occurred in different areas. Instances of events in our work is generated by the simulator
explained in Section 3.3.2. The simulator results in a number of polygons directly represented in
OntoCity. In this work, we have flooded Stockholm at 73 different areas shown in Figure 10 with
different sizes. As we can see in Figure 10a, the path finder finds a path using bridges if the constraint
is “no-water areas”, which is not the case in a flood situation, as the bridges are also under water (see
Figure 10b).

(a) (b)

Figure 10. The same region of Stockholm in flooded and non-flooded conditions. The points 0 and 3
are the start and the destination points respectively. They are located on the different islands but there
are possible paths between them through the bridges. (a) Non-flooded condition: the path finder is
able to find a path with a “no water” constrain, using a bridge; (b) Flooded condition: the path finder
is not able to find any path, because the destination point is located in the flooded area.

Given the populated ontology with regions, path connections and flooded areas, the users of the
system (e.g., the rescue team) will be able to query the map according to their needs in confronting
various environmental situations. For instance, a rescue team may need to find non-flooded regions
around (between 100 to 1000 m) to a given flooded point on the map (p f) in order to send a drone
there and see if people get stuck there or not (see Query (28)). The query can be further extended and
include spatial properties about these found regions. For instance, if it is needed to send a helicopter,
these found regions should also hold another spatial feature saying that they are close or connected
to at least one ground area with an area size big enough (e.g., 4 m2) for the helicopter to land (see
Query (29)).

Non-Flooded-Regions = { ri ∈ Ri | Ri v ontocity:Region ∧ Ri 6v ontocity:WaterArea ∧ (28)

100m ≤ distance(p f , ri) ≤ 1000m ∧

6 ∃ a ∈ ontocity:Area ∧
(ri , a) ∈ ontocity:intersects }

Sensors 2017, 17, 2545 21 of 25

Non-Flooded-Regions = { ri ∈ Ri | Ri v ontocity:Region ∧ Ri 6v ontocity:WaterArea ∧ (29)

100m ≤ distance(p f , ri) ≤ 1000m ∧

6 ∃ a ∈ ontocity:Area ∧
(ri , a) ∈ ontocity:intersects ∧

∃ rj ∈ Rj v ontocity:GroundArea ∧ 4m2 < size(rj) ∧

(ri , rj) ∈ S v ontocity:touches }

6.2.3. Query Time

In rescue scenarios, what matters is the response time of the queries. The main factor that
influences the response time is the number of available regions. It means that we have to exclude
regions as much as possible by applying a number of constraints that limit the number of candidate
regions for the queries. One of the essential criterion is the distance intervals set in the query. The larger
distance interval, the more regions to process. Although the distances are set by the users and we have
no control on them, however, there are still other factors whose priority in the query execution process
can considerably influences the response time.

We have considered 3 different setups for the same set of queries which along with their roles in
reducing the query response time are shown in Table 3 and briefly explained in the following.

1. Segmentation: this factor allows us to first retrieve the relevant instances of the
ontocity:Segment class (see Figure 7) to excludes all the regions belonging to all the non-relevant
segments.

2. Region Types Separation: since in the queries we usually consider types of regions (e.g., water
area, ground area, etc.) it can be helpful if we keep a separate list of regions for each segment
(instead of a long list of regions regardless of their type), and only consider (or ignore) the regions
with specific types mentioned in the queries.

3. Flood Area Exclusion: it obviously helps to first exclude the regions involved in the flood and
then continue the geometrical/spatial calculations between regions.

Table 3. The average of the query response time with and without the criteria mentioned in the query.
Each average time value has been calculated over running 50 different queries.

Segmentation Region Types Separation Flood Area Exclusion
query time with 3 s 1.34 s 1.69 s

query time without 67 s 13.52 s 2.71 s

For each criterion we have run 50 different queries to measure the average of the response time in
both situations: with and without the criterion (see Table 3). Except for the segmentation factor which
has been always considered, the inclusion/exclusion of the two other factors has been considered
independent from each other to better study their roles. As we can see, applying each factor in the
query causes the exclusion of some regions which consequently leads into shorter query time.

After retrieving the regions compatible with the desirable criteria, the rescue team may
furthermore need to know the possible paths to the found regions which are only crossing safe regions.

Figure 11a shows a path that connects two points (xinit in red and xgoal in green) by crossing
the river. Given water areas as forbidden zones, the path finding process would have difficulties
in finding a path as the majority of samples are located in water areas due to their bigger area size.
However, as depicted in Figure 11b, the path finding process replaces samples taken from the water
area (xrand in orange) with new samples taken from the bridge as an alternative (xalt in pink) for the
class ontocity:Water.

Sensors 2017, 17, 2545 22 of 25

(a) (b)

Figure 11. Path Finding With Constraints. The initial, goal and valid samples are in red, green and
yellow, respectively. The generated collision-free path is in dark blue. (a) Constraint: Elevation of
regions; (b) Constraint: Water Areas. Invalid samples are in orange and their alternatives are in pink.

We have run the extension of RRT for 70 different path problems with different initial and goal
points located in the central part of Stockholm. Table 4 shows the success rates with and without
using the ontology reasoning during the tree construction process of the path finder. As we can see,
the integration of semantics into the path generation process increases the success rates from 24.2% (17
successful cases out of 70) to 91% (64 successful cases out of 70) within 10 s set as the time limit for
path finding. Without using the ontology, the average time for generating a path approaches the set
upper limit of the planning process.

Table 4. Path Finder Performance.

Without Ontology Pattern With Ontology Pattern
Success Rate 24.2% 91%

Average of execution time 8.4 s 0.68 s

7. Conclusions

In this work we presented our framework designed to transform satellite imagery data into an
interactive map ready to be queried. To achieve a queriable map directly from satellite data, a CNN
classifier sensitive to the visual features (e.g., pixels’ color) of data has been applied to feed the
framework with labeled regions. However, depending on the queries, the more advanced features of
regions were needed to be taken into account. These features include pairwise spatial relations which
together with regions’ texture also indicate their affordance in terms of path connectivity. Representing
such features in an ontology which as such is an extension of the existing ontology GeoSPARQL,
enables the system to automatically query the classified regions based on certain criteria of regions
chosen based on the environmental situation.

We have shown that how by semantically enriching the representation of regions in OntoCity,
we can enable the system to automatically find alternatives for regions, with an improvement in
the time of queries including both region retrieval and path finding. The framework, SemCityMap,
can now be used as tool to enable better decision support, and situational awareness. Using the city of
Stockholm as an example, this paper has demonstrated the different functionalities that are available
in SemCityMap.

8. Discussion and Future Work

It is worth noting that the work has also been validated on another smaller Swedish town of
Boden [22], but future work will focus on several different improvements to the generic framework.

Sensors 2017, 17, 2545 23 of 25

First, errors in the preliminary CNN classification (misclassifications) could be addressed by leveraging
from the integrated reasoner. In other words, when entities are misidentified (e.g., a shadow is
misclassified as a road), we may want to exploit the high level domain knowledge in the ontology
pattern to reason away these errors. Second, the reasoner can als be enhanced in terms of which type
of agent is performing the query. For example, human operators may require that certain queries are
answered in a manner that are adaptable to their needs. However, an autonomous vehicle, may require
a different set of results. Our future work will examine how we can also take the constraints of the
agent in the answering of the queries.

Acknowledgments: This work has been supported by the Swedish Knowledge Foundation under the research
profile on Semantic Robots, contract number 20140033. The authors would also like to thank Fabien Lagriffoul at
the Center for Applied Autonomous Sensor Systems for useful discussions that contributed to this manuscript.

Author Contributions: M.A. developed the ontology and the reasoning framework, and performed the
experiments; M.L. performed the data analysis including the classification and segmentation. A.K. implemented the
visualizer and performed the flood simulation. F.K. contributed to the discussions and the manuscript. A.L. leads
the Semantic Robots Research Direction and contributed to the discussions and the writing of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Climate Researchers Warn of Stockholm Floods. 2004. Available online: https://www.thelocal.se/20041204/
706 (accessed on 4 December 2004).

2. Siricharoen, W.V.; Pakdeetrakulwong, U. A survey on ontology-driven geographic information systems.
In Proceedings of the Fourth International Conference on Digital Information and Communication
Technology and its Applicationsm DICTAP, Bangkok, Thailand, 6–8 May 2014; pp. 180–185.

3. Bekke, J. Semantic Data Modeling; Prentice Hall: Upper Saddle River, NJ, USA, 1992.
4. Alirezaie, M. Bridging the Semantic Gap between Sensor Data and Ontological Knowledge. Ph.D. Thesis,

School of Science and Technology, Örebro University, Örebro, Sweden, 2015.
5. Gangemi, V.P.A. Ontology Design Patterns. In Handbook of Ontologies, 2nd ed.; Staab, R.S.S., Ed.; Springer:

New York, NY, USA, 2009.
6. Bittner, T.M.; Donnelly, S.W. Ontology and semantic interoperability. In Large-Scale 3D Data Integration:

Challenges and Opportunities; CRC Press: London, UK, 2005, pp. 139–160.
7. Gu, H.; Li, H.; Yan, L.; Liu, Z.; Blaschke, T.; Soergel, U. An Object-Based Semantic Classification Method for

High Resolution Remote Sensing Imagery Using Ontology. Remote Sens. 2017, 9, 329, doi:10.3390/rs9040329.
8. Almendros-Jimenez, J.M.; Domene, L.; Piedra-Fernandez, J.A. A Framework for Ocean Satellite Image

Classification Based on Ontologies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1048–1063.
9. Gao, Y.; Liu, L.; Lin, X.; Liu, Y. A Qualitative Representation and Similarity Measurement Method in

Geographic Information Retrieval. CoRR 2013, abs/1311.4644.
10. Wang, W.; Dong, C.; Yang, P. Ontology modeling of emergency plan systems. In Proceedings of the

6th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Tianjin, China, 14–16
August 2009; Volume 2, pp. 290–294.

11. Huang, W.D.; Ding, B.L.; Yan, L. The Design of Dynamic Response System Based on Digital Emergency
Plan. In Advanced Materials Research; Trans Tech Publications: Zürich, Switzerland, 2013; Volume 605, pp.
1855–1860.

12. Kalabokidis, K.; Athanasis, N.; Vaitis, M. OntoFire: An ontology-based geo-portal for wildfires. Nat. Hazards
Earth Syst. Sci. 2011, 11, 3157–3170.

13. Agresta, A.; Fattoruso, G.; Pollino, M.; Pasanisi, F.; Tebano, C.; Vito, S.D.; Francia, G.D. An Ontology
Framework for Flooding Forecasting. In Lecture Notes in Computer Science; Murgante, B., Misra, S.,
Rocha, A.M.A.C., Torre, C.M., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O., Eds.;
Springer: New York, NY, USA, 2014; Volume 8582, pp. 417–428.

14. Mostafavi, M.A.; Bakillah, M. Real Time Semantic Interoperability in Adhoc Networks of GeoSpatial Data
Sources: Challenges, Achievements and Prespectives. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
2012, 1–2, 91–100.

https://www.thelocal.se/20041204/706
https://www.thelocal.se/20041204/706

Sensors 2017, 17, 2545 24 of 25

15. Battle, R.; Kolas, D. Enabling the Geospatial Semantic Web with Parliament and GeoSPARQL. Semant. Web
2012, 3, 355–370.

16. Baader, F.; Nutt, W. Chapter Basic Description Logics. In The Description Logic Handbook;
Cambridge University Press: Cambridge, UK, 2003; pp. 43–95.

17. Cohn, A.G.; Bennett, B.; Gooday, J.; Gotts, N.M. Qualitative Spatial Representation and Reasoning with the
Region Connection Calculus. GeoInformatica 1997, 1, 275–316.

18. Hoehndorf, R. What is an Upper Level Ontology? Available online: http://ontogenesis.knowledgeblog.
org/740 (accessed on 13 April 2010).

19. Defining N-ary Relations on the Semantic Web. 2017. Available online: https://www.w3.org/TR/swbp-n-
aryRelations/ (accessed on 2 November 2017).

20. Maria Poveda, M.C.S. Ontology Design Pattern. Available online: http://ontologydesignpatterns.org/wiki/
Submissions:Symmetric_n-ary_relationship (accessed on 1 November 2017).

21. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324.

22. Längkvist, M.; Kiselev, A.; Alirezaie, M.; Loutfi, A. Classification and Segmentation of Satellite Orthoimagery
Using Convolutional Neural Networks. Remote Sens. 2016, 8, 329.

23. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Susstrunk, S. SLIC superpixels compared to
state-of-the-art superpixel methods. Pattern Anal. Mach. Intell. IEEE Trans. 2012, 34, 2274–2282.

24. OpenStreetMap. 2017. Available online: http://www.openstreetmap.org/ (accessed on 2 November 2017).
25. Alirezaie, M.; Längkvist, M.; Kiselev, A.; Loutfi, A. Open GeoSpatial Data as a Source of Ground Truth for

Automated Labelling of Satellite Images. In Proceedings of the Workshop on Spatial Data on the Web (SDW
2016) Co-Located with The 9th International Conference on Geographic Information Science (GIScience
2016), Montreal, QC, Canada, 27–30 September 2016; pp. 5–8.

26. Gangemi, A.; Guarino, N.; Masolo, C.; Oltramari, A.; Schneider, L. Sweetening ontologies with DOLCE.
In Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge Management,
Sigüenza, Spain, 1–4 October 2002.

27. Teh, C.H.; Chin, R.T. On the Detection of Dominant Points on Digital Curves. IEEE Trans. Pattern Anal.
Mach. Intell. 1989, 11, 859–872.

28. Ramer, U. An iterative procedure for the polygonal approximation of plane curves. Comput. Graph.
Image Process. 1972, 1, 244–256.

29. Douglas, D.H.; Peucker, T.K. Algorithms for the Reduction of the Number of Points Required to Represent a
Digitized Line or its Caricature. In Classics in Cartography: Reflections on Influential Articles from Cartographica;
Wiley Online Library: Hoboken, NJ, USA, 2011; pp. 15–28.

30. Carroll, J.J.; Dickinson, I.; Dollin, C.; Reynolds, D.; Seaborne, A.; Wilkinson, K. Jena: Implementing the
Semantic Web Recommendations. In Proceedings of the 13th International World Wide Web Conference on
Alternate Track Papers & Posters (WWW Alt. ’04), New York, NY, USA, 19–21 May 2004; ACM: New York,
NY, USA, 2004; pp. 74–83.

31. Guttman, A. R-trees: A Dynamic Index Structure for Spatial Searching. In Proceedings of the 1984 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’84), Boston, MA, USA, 18–21 June
1984; ACM: New York, NY, USA, 1984; pp. 47–57.

32. Jaillet, L.; Cortés, J.; Siméon, T. Sampling-Based Path Planning on Configuration-Space Costmaps.
IEEE Trans. Robot. 2010, 26, 635–646.

33. Lavalle, S.M.; Kuffner, J.J., Jr. Rapidly-Exploring Random Trees: Progress and Prospects. Available
online: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=5981B6747F51611A5FD1E02C563FF0F7?
doi=10.1.1.38.1387&rep=rep1&type=pdf (accessed on 5 November 2017).

34. Karaman, S.; Frazzoli, E. Sampling-Based Algorithms for Optimal Motion Planning. Int. J. Robit. Res.
2011, 30, 846–894.

35. Yang, L.; Qi, J.; Song, D.; Xiao, J.; Han, J.; Xia, Y. Survey of Robot 3D Path Planning Algorithms. J. Control
Sci. Eng. 2016, 2016, doi:10.1155/2016/7426913.

36. Alirezaie, M.; Kiselev, A.; Klügl, F.; Längkvist, M.; Loutfi, A. Exploiting Context and Semantics for UAV
Path-Finding in an Urban Setting. Available online: http://ceur-ws.org/Vol-1935/paper-02.pdf (accessed
on 5 November 2017).

http://ontogenesis.knowledgeblog.org/740
http://ontogenesis.knowledgeblog.org/740
https://www.w3.org/TR/swbp-n-aryRelations/
https://www.w3.org/TR/swbp-n-aryRelations/
http://ontologydesignpatterns.org/wiki/Submissions:Symmetric_n-ary_relationship
http://ontologydesignpatterns.org/wiki/Submissions:Symmetric_n-ary_relationship
http://www.openstreetmap.org/
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=5981B6747F51611A5FD1E02C563FF0F7?doi=10.1.1.38.1387&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=5981B6747F51611A5FD1E02C563FF0F7?doi=10.1.1.38.1387&rep=rep1&type=pdf
http://ceur-ws.org/Vol-1935/paper-02.pdf

Sensors 2017, 17, 2545 25 of 25

37. Preetham, A.J.; Shirley, P.; Smits, B. A practical analytic model for daylight. In Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99), Los Angeles, CA,
USA, 8–13 August 1999; pp. 91–100.

38. Vricon, Homepage. 2017. Available online: http://www.vricon.com (accessed on 31 July 2017).

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.vricon.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Ontology-Based Reasoning
	Related Works

	Modeling in Ontologies
	GeoSPARQL
	DUL Ontology
	OntoCity
	Refactoring of Spatial Relations
	Taxonomy of geos:Feature

	Path Connectivity in OntoCity

	Populating OntoCity for a Particular Disaster
	Data Acquisition
	Classification and Segmentation
	Population of OntoCity
	Region Instantiation
	Event Instantiation

	Reasoning
	Region Retrieval
	Path Finding

	System Description
	Advanced GUI

	Results and Evaluation
	Scenario
	Results
	Classification
	Population of OntoCity with Stockholm Satellite Data
	Query Time

	Conclusions
	Discussion and Future Work
	References

